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this approach was limited as it relied on simulated data and calculated co-

residence risk based on the vulnerabilities of each VM, which is insufficient. In 

reality, the co-residence risk level of VMs is determined by the service 

subscribers who own them. To address this issue, we aim to build a fine-grained 

model that better quantifies co-residence risk based on service subscriber data. 

Additionally, performance and adaptability to a dynamic environment are 

critical factors for our proposed framework.  
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1. Introduction 

Pre-Process 

The Pre-Process component involves preparing the raw data collected by the service 

provider. This step includes cleaning, organizing, and applying feature metrics to the data. 

These feature metrics are crucial as they help in accurately profiling and classifying service 

subscribers. Service providers can tailor these metrics to suit their unique requirements, 

ensuring that the processed data is relevant and useful for subsequent analysis. 

Clustering 

The Clustering component uses the processed data to categorize service subscribers. This 

involves applying a chosen clustering algorithm to identify patterns and group similar 
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subscribers together. The resulting clusters represent candidate categories of subscribers, 

which are then subject to further analysis and partial labeling to refine the classification. 

Our framework aims to provide a more precise quantification of co-residence risk by 

incorporating service subscriber data into the risk assessment model. By addressing the 

limitations of previous approaches and ensuring adaptability to dynamic environments, we 

strive to enhance the security and reliability of cloud computing systems. 

Figure1: illustrates the diagram of our proposed framework for classifying service 

subscribers and quantifying the Co-Resident Risk Rate. It comprises five essential 

components to generate a quantified co-residence risk rate and one optional component to 

enhance adaptability to practical environments. Below is a brief description of each 

component: 

 

Figure 1: Overview of Framework 

Partial Labeling 

In this component, the service provider examines candidate categories of subscribers and 

determines the labeling principle for each category. Categories deemed irrelevant to the 

quantification task can be discarded. In our experiment, each category was automatically 

assigned a dummy code, preparing the training dataset for the classification component. 

Classification 

With the prepared training data, a Deep Neural Network (DNN) is trained to classify 

incoming subscribers. Hyper-parameter tuning is performed to enhance training efficiency 

and model accuracy. 

Quantified Risk Rate 

The risk rate of incoming subscribers is evaluated based on the classification predictions and 

a pre-defined quantification function. In our experiment, the probability that a subscriber 

belongs to a high-risk group is directly used as the Quantified Risk Rate. 
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Manual Verification 

This optional component enhances framework adaptability to real-world conditions. Service 

providers can manually verify new subscriber data predictions and integrate this feedback 

into the training data, ensuring the DNN model remains up-to-date with the latest 

environment. 

 

2. Feature Metrics to Profile Normal Service Subscribers 

In our proposed framework, the feature metrics are used in the Pre-Process component to 

handle collected raw data. Service providers can customize these feature metrics to meet 

their unique requirements. In our experiments, we proposed an eight-dimensional feature 

metrics model to profile service subscribers effectively: 

• N - The total number of VMs created and deployed by a specific service subscriber. 

• T - The average interval time between starting two VMs. Note that this is the time 

between starting the ith VM and the (i+1)th VM, rather than the time between stopping the 

ith VM and starting the (i+1)th VM. 

• M - The median memory size among VMs for a specific service subscriber. 

• A - The overall active rate for a specific service subscriber. This will be explained in 

more detail in the following section. 

• W - The average number of active VMs at each time stamp for a specific service 

subscriber. 

• I - The median of the average CPU utilization rate among all VMs at each time 

stamp for a specific service subscriber. 

Features 1 to 4 provide an overall analysis of each service subscriber, offering a broad view 

of their behavior. Features 5 and 6 offer more detailed insights, allowing us to profile each 

subscriber’s behavior pattern accurately and build a detailed characteristic image. 

Quantifying Co-Residency Risk 

In our framework, the quantification component utilizes softmax activation to output 

category probabilities. We utilize the probability rate of the normal category to quantify co-

residency risk, indicative of deviations from normal behavioral patterns. 

 

3. Experimental Results and Evaluation 

Experiments were conducted on a Dell Precision Tower T5810 Workstation, featuring an 

Intel Xeon E5-1620, 32GB RAM, and Nvidia Quadro P5000 Graphic Card for GPU 

acceleration, significantly reducing training time. 

We employed the Azure Public Dataset, providing a real-world large-scale dataset 

encompassing VM workload data from Microsoft Azure. This dataset comprises over 12,000 

service subscribers, 5 million VMs, and 3.1 billion CPU utilization records sampled every 
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five minutes over one month, totaling over 500GB. Analysis of the dataset revealed valuable 

insights, facilitating our evaluation process. 

A - Overall Active Rate: The observation from Figure 2 highlights that the CPU utilization 

rate of over 90% of VMs remains below 15%, indicating that the majority of VMs operate at 

very low workload levels. 

Upon computing the Overall Active Rate for all subscribers, the cumulative distribution 

diagram presented in Figure 3 is examined. Broadly speaking, the analysis reveals that over 

80% of subscribers exhibit an active rate of less than 10%. 

 

Figure 2: Average CPU Utilization distribution among VMs 

W - Average Active VM amount After computing the Average Active VM amount for all 

subscribers, the cumulative distribution diagram depicted in Figure 4 is examined. By 

integrating this information with feature A, we can identify and filter out the type of extreme 

active subscribers. 

I - Median of Average CPU Utilization Rate Additionally, upon reviewing the cumulative 

distribution diagram in Figure 5 for the Median of Average CPU Utilization Rate, it becomes 

evident that over 90% of subscribers fall into the inactive type category, as depicted in 

Figure 6. 

Through the analysis of the aforementioned feature metrics, we have gained a preliminary 

understanding of service subscribers. In the subsequent section, we will utilize our proposed 

feature metrics to execute the task of clustering subscribers. 

 

Figure 3: Cumulative Distribution of Active Rate per Subscriber 
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Figure 4: Cumulative Distribution of Average Active VM Amount per Subscriber 

 

Figure 5: Cumulative Distribution of CPU Average Utilization per Subscriber 

Clustering of Subscribers 

Given the extensive nature of the Azure Dataset, encompassing over 12,000 service 

subscribers, our objective is to cluster them into several candidate groups for future 

utilization. 

Aspect from Activeness Rate 

Initially, drawing insights from Figure 6, it is apparent that approximately 65% of 

subscribers have created only one VM, while another 25% have created fewer than five VMs 

throughout their subscription tenure. When combined with the cumulative distribution of 

feature I, it can be inferred that most service subscribers maintain a small number of VMs 

operating at the inactive level.To validate this hypothesis, we conducted an analysis of the 

active rate curve across all timestamps for all subscribers. Based on the observations derived 

from these curve diagrams, we delineated several categories of subscribers solely based on 

their activeness rate:Single VM Subscribers: Constituting approximately 65% of the 

subscriber base, these individuals or entities have deployed only one VM, indicating minimal 
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activity within the Azure environment. Low VM Count Subscribers: Accounting for about 

25% of subscribers, this group has created fewer than five VMs during their subscription 

period, suggesting limited engagement with the platform.These initial categorizations based 

on activeness rate provide a foundation for further exploration and refinement of subscriber 

clustering. 

 

Figure 6 Cumulative Distribution of Created VMs Amount per Subscriber 

• Inactive Subscriber: Illustrated at the uppermost section of Figure 7, this curve 

exemplifies the characteristic behavior of inactive subscribers as defined. Over 80% of 

subscribers fall into this category. These subscribers create very few VMs, and most of the 

time, these VMs remain inactive. 

• Period Active Subscriber: Positioned in the middle portion of Figure 7, this curve 

represents the typical behavior of period active subscribers. These subscribers create 

multiple VMs, and the level of activity fluctuates significantly over their subscription period. 

• Extreme Active Subscriber: The curve at the very bottom of Figure 7 signifies the 

behavior of extreme active subscribers. Typically, these subscribers maintain an 

exceptionally high level of activity throughout their subscription lifetime. 

In our experiments, DBSCAN served as an initial clustering tool for subscribers. Throughout 

the experimental process, we tested the MinPts parameter within the range of 3 to 20. 

Considering our assumption that over 99% of the data should originate from normal service 

subscribers, we anticipated the presence of a significant majority of such subscribers within 

the dataset. 
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Figure 7: Subscriber categorized with activeness level 

After conducting the initial clustering, we found that one clustering output encompassed a 

significant portion of the subscribers. To achieve this, we set the MinPts parameter to 5 and ε 

to 1.5. Following the initial clustering, we manually inspected the activeness level curves of 

all users throughout their subscription lifetimes. Based on this examination, we separated 

subscribers into three major categories, as depicted in Figure 7. It's worth noting that if an 

attacker were to simulate as a normal user, the associated costs would be substantial. In our 

future work, we plan to utilize detailed curve-level diagrams in our Convolutional Neural 

Network sub-module to prevent the loss of crucial information due to over-abstraction. 

Additionally, we demonstrated the coefficient relationship between extreme active 

subscribers and others in Figure 8. Our clustering results are illustrated in Figures 9 and 10. 

Notably, the majority of service subscribers were clustered into one category, aligning well 

with our expectations. Of particular significance, we identified a total of 80 subscribers as 

outliers. Upon examining their detailed active rate curves, we believe their behavioral 

patterns closely resemble those of potential high-risk users. 

  

Figure 8: Cluster Pairing                                     Figure 9: Cluster Result 
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Figure 10: Cluster Result (Extreme Active) 

 

4. Conclusion 

A dynamic adaptive framework for quantifying co-resident risks, leveraging feature metrics 

to profile the behavior patterns of normal service subscribers in the cloud. Through the use 

of clustering algorithms and manual labeling, you categorize subscribers into Inactive, 

Period Active, and Extreme Active groups, facilitating the training of a classification 

component. This component demonstrates robustness to new data, achieving an impressive 

98% accuracy rate for the test dataset. The validation of its performance through F 

Measuring Matrix analysis further underscores the reliability of your classification approach. 
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