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The quality of eggs deteriorates during storage, making freshness monitoring 

crucial in the egg industry. This study explores the use of Near-Infrared (NIR) 

spectroscopy, a rapid and non-destructive method, combined with chemometric 

techniques to assess and classify egg freshness effectively. A total of 660 eggs 

were stored at controlled temperatures (20°C and 30°C) and observed for 21 

days, with spectral data collected across a range of 902-1810 nm at 4 nm 

intervals. The freshness was analyzed in relation to Haugh Units (HU) and days 

of storage. To enhance data quality, preprocessing methods such as 

Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV), and 

Savitzky-Golay smoothing were applied. Dimensionality reduction through 

Principal Component Analysis (PCA) helped streamline data, while predictive 

models, including Partial Least Squares Regression (PLSR) and Support Vector 

Machine Regression (SVM-R), were developed to estimate HU values 

accurately. The study achieved an R² of 0.997 in calibration, indicating strong 

predictive power, especially with SVM-R. Additionally, classification models 

Partial Least Squares Discriminant Analysis (PLS-DA) and Support Vector 

Machine Classification (SVM-C)—achieved up to 99.20% accuracy in 

distinguishing between different freshness levels. These findings underscore 

NIR spectroscopy's potential as a reliable tool for real-time quality monitoring, 

offering efficiency, accuracy, and non-destructive testing for the egg industry. 

This approach could serve as a valuable alternative to conventional freshness 

assessments, providing precise insights into egg quality during storage, thereby 

ensuring better quality control and consumer satisfaction in the food industry.  
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1. Introduction 

The increasing number of laying hens and better hen diets are driving major changes in the 

egg industry, including higher output. Despite the fact that these advancements have made 

egg production more affordable, the industry still has to contend with maintaining egg 

quality and satisfying customer demands [1]. The egg grade is determined by both internal 

and external variables. It is believed that an egg's albumen and yolk quality share internal 

characteristics. Haugh Units (HU) and albumen pH are two commonly used measures for 

assessing these characteristics [2]. Conventional methods of assessing egg quality usually 

depend on visual inspection and lab-based analysis, which may be time-consuming, tedious, 

and prone to errors. Therefore, the company needs accurate, non-destructive, and efficient 

ways to assess egg quality [3]. 

Numerous non-destructive techniques have been studied in response to the demand for better 

egg quality screening. These techniques seek to offer unbiased assessments while lessening 

the time and resource requirements of conventional methods. Examples of such technologies 

include the use of Electronic Nose (EN) [5] systems that use scent sensors to determine the 

freshness of eggs, magnetic resonance imaging (MRI) [4] for evaluating the microanatomy 

of eggs, and computer image analysis to predict the albumen to yolk ratio without cracking 

the egg. Additionally, the Near-Infrared Fourier transform (FT-NIR) spectroscopy has been 

used to determine the height of the thick albumen [6], demonstrating a good degree of 

agreement between measured values and spectral data. 

These techniques have the potential to improve the evaluation of egg quality. In order to 

provide trustworthy and impartial methods for assessing egg quality, researchers have looked 

to spectroscopic techniques, such as Near-Infrared (NIR) spectroscopy [7], in conjunction 

with sophisticated data analysis methods [8], after assessing the shortcomings of the 

previously stated non-invasive procedures. Using multivariate analytic methods and NIR 

spectroscopy, this work offers a thorough methodology for evaluating egg quality [9]. From 

gathering unfertilized eggs from a registered chicken farm to creating prediction models for 

important quality parameters, the research involves several steps. 

To preserve their integrity, unfertilized eggs were first meticulously gathered and kept in a 

controlled atmosphere. The spectral characteristics of 30 undamaged chicken eggs were then 

recorded using a high-resolution spectrometer to gather NIR spectral data during a 22-day 

period. Strict preprocessing methods were used to improve the spectroscopic data quality 

once it was collected. Preprocessing techniques such as baseline correction, smoothing, and 

scattering effect correction were used to guarantee the correctness and dependability of the 

data. Principal Component Analysis (PCA) [8] and other multivariate calibration techniques 

were used to decrease the dimensionality of the spectral data and investigate underlying 

trends. The construction of strong prediction models was made possible by these methods, 

which were essential for feature selection, noise reduction, and data visualization. 

To forecast the Haugh Units (HU) value, a gauge of egg freshness, using NIR spectral data, 

regression models based on Partial Least Square Regression (PLS-R) and Support Vector 
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Machine Regression (SVM-R) were created. Furthermore, SVM-C and Partial Least Squares 

Discriminant Analysis (PLS-DA) were used to classify eggs according to quality criteria 

[10].  

In-depth spectrum analysis was also carried out in the study, which looked at the eggs' 

spectral properties across time and evaluated how well various preprocessing techniques 

improved the quality of the data. All things considered, this study shows how effective NIR 

spectroscopy and multivariate analytic methods may be as non-destructive methods of 

evaluating the quality of eggs. This work advances the creation of effective and impartial 

strategies for assessing eggs by fusing sophisticated spectroscopic technologies with reliable 

data processing methods. 

 

2. Background and Related Work: 

In order to prolong the product's shelf life, frauds in the egg industry sometimes involve 

falsifying the laying date, which leads to stale eggs being marketed as fresh [28]. Developed 

by Haugh in 1937, the Haugh unit (HU) is the standard method used to assess the freshness 

of eggs. This approach does have some disadvantages, though; it is time-consuming and 

intrusive, and it frequently uses a small number of specimens to estimate freshness over 

larger batches. There are a number of problems with traditional destructive methods for 

detecting the freshness of eggs [29]. First of all, these techniques cause the egg being tested 

to be lost, which increases waste and expenses, especially in large-scale operations where 

several samples must be evaluated.  

Second, because it requires cracking the egg, performing the required tests, and then 

cleaning up afterward, destructive testing takes a lot of time. Decision-making may be 

delayed and the workflow as a whole slowed down by this procedure. In addition, compared 

to non-destructive approaches, these technologies may be less effective and demand more 

work and money. Additionally, destructive testing restricts the breadth of quality evaluation 

by preventing additional investigation on the same sample. Additionally, the garbage 

produced by the broken eggs makes it unfriendly to the environment. All things considered, 

traditional destructive methods are less acceptable for detecting the freshness of eggs than 

non-destructive alternatives due to their inefficiency, increased expenses, and waste. 

When evaluating the freshness and quality of eggs, the Near-Infrared (NIR) spectroscopic 

approach has a number of noteworthy benefits [10]. Because this method is non-destructive, 

eggs may be analyzed without being broken, saving samples for sale or additional analysis 

while also cutting expenses and waste. In large-scale operations when time is of the essence, 

NIR spectroscopy offers quick and effective analysis, yielding findings that allow for real-

time quality monitoring [17]. Furthermore, this approach necessitates less sample 

preparation, which expedites the testing procedure and lessens the need for additional work 

and materials. NIR spectroscopy is a thorough and useful technology for evaluating the 

quality of eggs because it enables multicomponent analysis, which measures several 

characteristics at once, including moisture content, protein levels, and freshness indications 

like Haugh Units.  

Numerous studies have highlighted the potential use of NIR (near-infrared) spectroscopy to 
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estimate Haugh units, differentiate between fresh and old eggs, and forecast storage 

durations [17]. The development and commercial availability of inexpensive, portable, and 

small NIR spectrometers has significantly increased in recent years, providing the 

opportunity for on-site investigation at several locations throughout the egg supply network 

[16]. The capabilities of portable NIR spectrometers have been well investigated in scientific 

literature, which has shown how effective they are in analyzing agricultural food items. 

Particularly useful in the dynamic egg supply chain, portable NIR instruments are easier to 

operate and may be readily integrated on site, unlike their benchtop equivalents. 

In contrast to larger laboratory-grade NIR devices, the successful deployment of portable 

NIR devices [10] depends on making sure that the reduction in component size does not 

compromise their predictive power. Interestingly, researchers looked at using portable near-

infrared to estimate the shelf life of eggs and found a good R2 value of 0.873 [10]. 

Notwithstanding these developments, there has not yet been a thorough study on the 

development and validation of analytical methods utilizing portable NIR for calculating the 

Haugh unit and categorizing eggs according to freshness grading. 

Egg quality evaluation has been the subject of several research, with a focus on non-

destructive techniques [15,17] for evaluating a number of variables, including freshness, 

albumen pH, and Haugh unit. These techniques include front-face fluorescence spectroscopy 

[17], infrared spectroscopy [27], visible-near transmission spectra [7,10], and electronic 

nose-based devices [5].  

Visible-near transmission spectra may be used to evaluate the freshness and quality of eggs; 

prediction models have been successful in predicting traits like Haugh unit, thick albumen 

height, and air cell height, with significant correlation coefficients achieved. Visual 

transmission spectroscopy has been studied as a non-destructive method for determining the 

freshness of individual eggs and has yielded good correlation coefficients for predicting 

albumen pH and Haugh unit [27]. 

Studies using electronic nose-based devices have shown promise for online evaluation of egg 

freshness attributes and calculation of storage day. Combining backpropagation neural 

networks with evolutionary algorithms improved prediction accuracy for parameters such as 

the yolk factor and Haugh unit [5]. Using spectroscopic [17] has various advantages, 

including rapid and non-contact assessment, a reduced need for physical interaction, and a 

guarantee of hygienic settings. Additionally, spectroscopy allows for the efficient and rapid 

grading of several eggs without requiring a significant amount of sample preparation time. 

A number of egg quality indicators, such as laying days, air chamber size, egg pH, and 

weight loss, can also be accurately predicted, according to studies employing NIR spectral 

data; strong R2 values suggest that these predictions hold true even when applied to group 

averages [16].Due to their speed, non-contact nature, and ability to accurately predict a wide 

range of egg quality-related parameters, spectroscopic methods have been chosen for their 

efficiency, accuracy, and potential for widespread application in the egg industry. They offer 

a practical means of assessing quality, enabling reliable and efficient evaluation without the 

need for extensive sample preparation or destructive testing. 

In light of these factors, this study aims to evaluate the effectiveness of a compact, affordable 

NIR spectrometer in conjunction with AI algorithms. The objective is to make it possible to 
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grade eggs according to their freshness and evaluate Haugh units in real time, making a 

significant contribution to the area of egg quality assessment. 

 

3. Material and Methods: 

The following methods were employed to carry out our research: 

 

Figure 1. Proposed System Algorithm. 

A. Egg Sample Collection: 

In this study, a total of 660 freshly laid, one-day-old, non-fertilized white hen eggs were 

used. The eggs had an average weight of 63.48 ± 2.56 grams, a height of 50.97 ± 1.53 

millimeters, and a diameter of 37.34 ± 1.09 millimeters. To ensure consistency, the eggs 

were carefully transported to the laboratory. Upon arrival, they were disinfected by 

immersion in water at 42°C with 50 ppm of chlorine for 1 minute, then air-dried for 5 

minutes at room temperature. The eggs were then randomly divided into two groups: one 

stored at 20°C (representing typical market conditions) and the other at 30°C to simulate 

accelerated storage conditions. Storage times were set at intervals of 0, 4, 7, 10, 14, 17, 19, 

and 21 days, in a controlled chamber with a relative humidity between 50% and 65%. For 

each analysis session, a random subset of 80 eggs was selected, consisting of 40 eggs from 

each storage temperature group. Both spectral analysis and Haugh unit measurements were 

conducted to assess egg quality and freshness, with the Haugh unit specifically used to 
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evaluate freshness over time. This methodology provides a thorough examination of how 

storage temperature and duration affect the quality and shelf life of eggs under controlled 

conditions. 

B. NIR Spectral Data Collection: 

A DLPR NIRscanTM Nano portable spectrometer was used to do the spectral analysis of the 

egg samples. This instrument provides a thorough picture of the near-infrared spectrum by 

operating in the wavelength range of 902–1810 nm. This portable spectrometer is well-

known for its practicality and versatility, ergonomic design, and portability for online 

measurements [7,10]. Using a 10-watt halogen lamp as the light source and an In GaAs 

sensor for sensitivity, the spectral data collection was done in absorbance mode after every 4 

nm span. 

Three different locations R1, R2, and R3 were used for the methodical analysis of the 

eggshell [10]. A spectral database with a total of 1980 spectra was obtained as a consequence 

of this methodical approach. Data matrices were created by averaging spectra from many 

sites in order to improve the spectral data's resilience. In particular, the averages of (R1 + 

R2), (R1 + R3), (R2 + R3), and (R1 + R2 + R3) were created as matrices. This calculated 

tactic sought to determine whether integrating observations from several sites would enhance 

the performance of ensuing classification and prediction models. 

Considering the speed of data collection and processing, it was judged reasonable to add 

more measures in order to improve forecast accuracy. For this reason, seven datasets of 660 

spectra each were used to train and evaluate prediction and classification models. This all-

encompassing method made it possible to investigate the spectral properties of eggs in detail, 

taking into account various shell positions and how they affect the prediction models' overall 

performance. 

C. Reference Measurements of Freshness Using Haugh Units: 

The Haugh unit (HU), developed by Haugh in 1937, was computed for each egg using 

equation (1). The process involved carefully measuring the albumen height and getting 

precise weight measurements of the eggs. Each egg was first weighed using a high-precision 

digital scale with an accuracy of 0.01 grams. The egg was then delicately broken onto a glass 

plate, and the height of the egg white was measured three times around the yolk, at a distance 

of around 10 mm, using a micrometer with a precision of 0.1 mm. 

HU = 100 log[H − 1.7w0.37 + 7.6]                                                                                                           
(1)                                           

The mathematical equation was used to calculate the Haugh unit (HU) (1).  

In this case,  

 

H stands for the egg white's average height in millimeters.  

 

W stands for the egg's weight in grams. 
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D. Preprocessing of spectrographic data: 

When employing Near-Infrared (NIR) spectroscopy to evaluate the quality of chicken eggs, 

preprocessing is an essential step in guaranteeing data quality, accuracy, and dependability 

[10]. In order to improve the spectral data, lower noise, and get the data ready for reliable 

modeling and analysis, preprocessing techniques are used. To eliminate systematic changes 

in the spectrum data caused by instrumental factors like scattering, baseline correction is 

necessary.  

Linear or polynomial fitting are common techniques for correcting the baseline shift. 

Usually, scattering effects in the data are corrected using Standard Normal Variate (SNV) [1] 

or Multiplicative Scatter Correction (MSC) [1] approaches. SNV reduces scattering effects 

by scaling the spectra to have zero mean and unit variance, whereas MSC accounts for 

multiplicative scattering. Noise and fluctuations may be present in spectral data. Savitzky-

Golay and moving average are two smoothing methods that may be used to cut down on 

high-frequency noise while keeping important information intact. 

E. Multivariate Calibration:  

In chemometrics and data analysis, multivariate calibration is a potent analytical method that 

establishes a quantitative link between a number of variables, including spectral data or 

chemical measurements [21,22], and a certain feature or attribute of interest. This method is 

essential in many domains, such as process control, spectroscopy, and analytical chemistry.  

One essential method for analyzing complicated Near-Infrared (NIR) spectral data is 

Principal Component Analysis (PCA). It helps with feature selection, data exploration, and 

dimensionality reduction. By converting high-dimensional data into a collection of 

orthogonal principle components (PCs) that represent the most relevant variation, PCA aids 

in the management of high-dimensional data in the context of NIR spectroscopy.  

It is especially helpful for handling multicollinearity, choosing meaningful spectral 

characteristics, and lowering noise. Furthermore, PCA offers data visualization tools, 

including as loadings plots and score plots, which make it possible to identify outliers and 

comprehend data trends. It is a crucial tool in many domains where NIR spectroscopy is 

utilized for data analysis and modeling as it may act as a first step for calibration models and 

makes data reduction easier. 

F. Regression, Prediction and Classification Model: 

The development of regression models for predicting Haugh Units (HU) value in eggs using 

Partial Least Square Regression (PLS-R) and Support Vector Machine Regression (SVM-R) 

[23] is a common practice in the analysis of Near-Infrared (NIR) spectral data. In this 

approach, the reflectance values from the NIR spectra serve as input variables, and the HU 

value, which is a measure of egg quality, serves as the response variable. PLS-R and SVM-R 

are sophisticated regression techniques that leverage the spectral data to establish a 

quantitative relationship between the spectral characteristics and the HU value. These 

models aim to provide accurate predictions of egg quality based on the NIR spectral 

information, offering a non-destructive and efficient way to assess egg freshness and quality. 

Partial Least Squares Discriminant Analysis (PLS-DA) is a robust multivariate statistical 

technique widely employed for the classification of eggs based on their quality attributes, 
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such as freshness and Haugh Units (HU). In the context of egg classification, PLS-DA uses 

the spectral data from Near-Infrared (NIR) spectroscopy as input variables to distinguish 

between different egg classes, such as 'Class AA,' 'Class A,' and 'Class B,' or 'Fresh' and 

'Stale.' By capturing the underlying spectral patterns associated with these classes, PLS-DA 

models can accurately classify eggs, providing a valuable tool for quality control in the egg 

industry. This non-destructive approach offers the advantage of real-time classification, 

enabling efficient sorting and grading of eggs based on their spectral characteristics. Another 

Classification model were developed using SVM-C algorithm to verify the adaptability of 

model for freshness detection and classification of chicken eggs. 

 

4. Experimentation and Result: 

A. Egg Freshness Evaluation:  

The maturation process in eggshells initiates immediately after laying, triggering 

physicochemical transformations that impact sensory and operational quality of eggs [15]. 

Storage exacerbates these changes, leading to H2O and CO2 permeation through the 

eggshell, elevating acidity, and altering albumen consistency [22]. Additionally, the interplay 

involving ovomucin and lysozyme influences the depth of egg white layer during storage, 

providing a basis for estimating egg freshness through the Haugh Unit (HU). 

B. Spectra and PCA analysis: 

In contrast to methods like Raman or Mid-Infrared (MIR) spectroscopy, near-infrared (NIR) 

spectra are characterized by their reduced information richness and absence of identifiable 

absorption peaks. Rather, there is a strong link between different wavelengths in NIR 

spectra. Effectively managing huge datasets is made possible by Principal Component 

Analysis (PCA). Multidimensional data can be effectively reduced in dimensionality using 

PCA, particularly in the presence of significant correlations. PCA is a valuable method for 

reducing and analyzing complicated NIR spectral data because it removes duplication and 

preserves important information by projecting the original multidimensional dataset (in this 

example, 601 dimensions) onto a lower-dimensional space, sometimes just a few or two 

dimensions. 

Following SNV transformation, the Savitzky-Golay (S-G) derivative was used as a 

preprocessing step in the PCA analysis of the whole spectrum, which included the range of 

902 to 1810 nm. A comparison of preprocessed and original Near-Infrared (NIR) spectra for 

many samples is shown in figure 5, emphasizing the effects of two distinct preprocessing 

methods: Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC). The 

original NIR spectra are displayed in the top plot, where there is notable amplitude 

fluctuation, especially towards the right side of the figure. This variability may be ascribed to 

variations in sample composition, route length, and scattering effects. The spectra following 

the use of MSC preprocessing, which accounts for multiplicative scattering effects and other 

physical variables, are shown in the center plot. 

As a result, the collection of spectra becomes more aligned, suggesting less scattering-related 

variability. Following SNV preprocessing, which standardizes each spectrum by eliminating 

the mean and scaling by the standard deviation, the spectra are displayed in the bottom 
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figure. By further normalizing the data, this method lessens the influence of additive and 

multiplicative scatter effects. Compared to the MSC-preprocessed spectra, the SNV-

preprocessed spectra seem to be even more closely grouped, indicating a better degree of 

variability correction. All things considered, figure 2 shows how preprocessing methods such 

as MSC and SNV may greatly improve the consistency and quality of NIR spectral data, 

making it more suited for further modeling and analysis. 

As a function of the number of principle components utilized in a principle Component 

Analysis (PCA), Figure 3 shows the cumulative explained variance ratio [20]. When the first 

principal component is included, Figure 6 shows a significant rise in the cumulative 

explained variance, indicating that this component alone is responsible for the majority of 

the variation in the data. The explained variance is gradually reduced by subsequent 

components, and the total variance rapidly reaches a plateau. The cumulative explained 

variance approaches a near-maximum level by the time the second principle component is 

included, suggesting that the first two principal components account for almost all of the 

dataset's significant variance. The flat curve for explained variance indicates that adding 

more components than the second results in little additional explained variance. 

By demonstrating that a sizable amount of the variation in the data may be captured by a 

single principle component or two, this figure demonstrates how well PCA reduces 

dimensionality while simplifying the analysis without significantly sacrificing information. 

The first two principal components (PC1 and PC2) were found to account for 98% of the 

variation in the data after outliers were eliminated. Since egg grading and the Haugh Units 

(HU) scale are directly related, this particular spectral area offered a chance to create 

prediction models with higher precision and more effective information processing. 

The PCA scores for average spectra after SNV and 1st S-G derivative processing then 

showed that reducing the wavelength range significantly improved the categorization of egg 

groups. Nearly 98% of the variability in the data was caught by PC1. A more efficient 

analysis and improved class separation were made possible by this spectral region reduction. 
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Figure 2.  Preprocessed Spectra (MSC+SNV) 

 

Figure 3. Principal Component Variance 

C. Estimation of Haugh Units: 

The Table 1 presents the performance parameters of the PLS-Regression model as well as 

SVM-Regression Model for predicting the HU value of eggs stored at 20°C, considering R1 

shell measurement areas. The latent variables (LV), preprocessing techniques (SNV+SG+1st 

Derivate) [16] and spectral range (902-1810 nm) are varied to evaluate their impact on the 

model's predictive capabilities. For each shell measurement area, the table includes key 
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metrics such as R2 c (coefficient of determination for calibration), R2 cv (coefficient of 

determination for cross-validation), RMSEC (root mean square error for calibration), 

RMSECV (root mean square error for cross-validation), RPD (ratio of performance to 

deviation), and % Relative Error [15]. These metrics assess the model's accuracy, precision, 

and reliability. 

In this analysis, Table 1 exhibits that Support Vector Machine Regression (SVR) 

outperforms Partial Least Squares Regression (PLSR) in predicting Haugh Units, a measure 

of egg quality. SVR exhibits higher accuracy across all key metrics, with superior R² values 

for calibration, cross-validation, and prediction, indicating a better model fit and 

generalization. Additionally, SVR achieves significantly lower RMSE values, demonstrating 

smaller prediction errors, and a higher RPD (6.313 vs. 5.822 for PLSR), indicating stronger 

predictive power. The Percent Relative Error is also lower for SVR (2.308%), reflecting 

more accurate predictions. While PLSR performs adequately, SVR consistently delivers 

better performance across all stages of the analysis, making it the preferred model for this 

application. SVR’s ability to generalize and predict with greater precision suggests it is more 

suited for use in this dataset, particularly when high predictive accuracy is critical. 

Table 1: Prediction Model Evaluation matrix for Shell Measurement Spot: R1 

Model Prediction Components 
Relationship between measured and predicted 

Haugh Units 
Performance Parameters 

PLSR 

Suggested 
number of 

components: 9 

 

 

R2 Calibration: 0.980 

R2 Cross-Validation: 0.971 
R2 Prediction: 0.970  

MSE Calibration: 1.895  

MSE Cross-Validation: 
2.735  

MSE Prediction: 3.084  

RMSEC: 1.377  
RMSECV: 1.654  

RMSEP: 1.756  

RPD: 5.822  

Percent Relative Error: 

2.503% 

SVR 

Best 

parameters: 

C = 10, 

epsilon = 0.01 

Best MSE: 

2.32648166629
3135 

 

 

R2 Calibration: 0.995 

R2 Cross-Validation: 0.975 

R2 Prediction: 0.973 

MSE Prediction: 2.818 

MSE Calibration: 0.464 

MSE Cross-Validation: 

2.326 

RMSEC: 0.681 

RMSECV: 1.525 

RMSEP: 1.679 

RPD: 6.313 
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Percent Relative Error: 

2.308% 

Table 2: PLS-R Results (For 20 degree C) 
Shell 
Measure

ment 

Area 

LV 
Preprocess

ing 

Spectral 

Range 
R2

c R2
cv R2

p 
RMSE

C 

RMSE

CV 

RMSE

P 
RPD 

% Relative 

Error 

R1 9 

SNV+SG+

1st 

Derivate 

902-1810 
nm 

0.980 0.971 0.970 1.377 1.654 1.756 5.822 2.503% 

R2 9 

SNV+SG+

1st 

Derivate 

902-1810 

nm 
0.982 0.974 0.963 1.276 1.546 1.957 6.227 2.340% 

R3 9 
SNV+SG+
1st 

Derivate 

902-1810 

nm 
0.979 0.970 0.969 1.403 1.663 1.807 5.791 2.516% 

Mean 

R1+R2 
9 

SNV+SG+

1st 
Derivate 

902-1810 

nm 
0.983 0.977 0.971 1.245 1.459 1.722 6.600 2.208% 

Mean 

R1+R3 
9 

SNV+SG+

1st 
Derivate 

902-1810 

nm 
0.982 0.976 0.972 1.300 1.503 1.712 6.406 2.275% 

Mean 

R2+R3 
9 

SNV+SG+

1st 

Derivate 

902-1810 

nm 
0.983 0.977 0.969 1.261 1.456 1.808 6.612 2.204% 

Mean 

R1+R2+

R3 

9 

SNV+SG+

1st 

Derivate 

902-1810 
nm 

0.983 0.978 0.973 1.269 1.421 1.680 6.776 2.150% 

Table 3: SVM-R Results (For 20 degree C) 
Shell 

Measurem
ent Area 

C& 

epsilon 
Preprocessing 

Spectral 

Range 
R2

c R2
cv R2

p 
RMSE

C 

RMSE

CV 

RMSE

P 
RPD 

% 

Relative 
Error 

R1 

C=10 

Epsilon=
0.01 

SNV+SG+1st 
Derivate 

902-1810 
nm 

0.995 0.975 0.973 0.681 1.525 1.679 6.313 2.308% 

R2 C=10 
SNV+SG+1st 

Derivate 

902-1810 

nm 
0.995 0.970 0.969 0.696 1.671 1.789 5.761 2.529% 

R3 
Epsilon=
0.01 

SNV+SG+1st 
Derivate 

902-1810 
nm 

0.9951 0.973 0.974 0.669 1.596 1.656 6.034 2.415% 

Mean 

R1+R2 
C=10 

SNV+SG+1st 

Derivate 

902-1810 

nm 
0.997 0.977 0.973 0.533 1.473 1.662 6.536 2.229% 

Mean 
R1+R3 

Epsilon=
0.01 

SNV+SG+1st 
Derivate 

902-1810 
nm 

0.996 0.978 0.978 0.590 1.421 1.529 6.775 2.151% 

Mean 

R2+R3 

Epsilon=

0.01 

SNV+SG+1st 

Derivate 

902-1810 

nm 
0.9949 0.975 0.973 0.681 1.525 1.679 6.313 2.308% 

Mean 
R1+R2+R

3 

C=10 
SNV+SG+1st 

Derivate 

902-1810 

nm 
0.996 0.977 0.968 0.592 1.448 1.811 6.651 2.191% 
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Table 4: Prediction Model Comparison (For 20 degree) 

 

Table 5: PLS-R Results (For 30 degree C) 
Shell 

Measurement 

Area 

C& epsilon Preprocessin

g 

Spectral 

Range 

R2c R2cv R2p RMSE

C 

RMSE

CV 

RMSEP RPD % 

Relative 

Error 

R1 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.995 0.976 0.983 1.013 2.172 1.821 6.410 3.472% 

R2 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.995 0.979 0.992 1.017 1.998 1.223 6.969 3.194% 

R3 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.992 0.967 0.992 1.273 2.512 1.220 5.541 4.017% 

Mean R1+R2 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.995 0.981 0.990 0.950 1.910 1.350 7.286 3.055% 

Mean R1+R3 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.994 0.980 0.990 1.040 1.985 1.401 7.011 3.175% 

Mean R2+R3 C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.993 0.977 0.992 1.126 2.101 1.216 6.624 3.360% 

Mean 

R1+R2+R3 

C=10 

Epsilon=0.01 

SNV+SG+1

st Derivate 

902-1810 

nm 

0.995 0.982 0.991 0.990 1.867 1.280 7.456 2.985% 

 Table 6: SVM-R Results (For 30 degree C) 
Shell 

Measurement 
Area 

LV Preprocessing Spectral 

Range 

R2c R2cv R2p RMSEC RMSECV RMSEP RPD % 

Relative 
Error 

R1 7 SNV+SG+1st 

Derivate 

902-1810 

nm 

0.973 0.968 0.967 2.296 2.502 2.511 5.564 4.001% 

R2 8 SNV+SG+1st 
Derivate 

902-1810 
nm 

0.973 0.967 0.969 2.300 2.520 2.453 5.524 4.030% 

R3 7 SNV+SG+1st 

Derivate 

902-1810 

nm 

0.972 0.964 0.956 2.321 2.628 2.907 5.297 4.202% 

Mean R1+R2 7 SNV+SG+1st 
Derivate 

902-1810 
nm 

0.975 0.970 0.971 2.222 2.413 2.352 5.768 3.859% 

Mean R1+R3 7 SNV+SG+1st 

Derivate 

902-1810 

nm 

0.972 0.968 0.963 2.316 2.502 2.648 5.563 4.001% 

Mean R2+R3 7 SNV+SG+1st 
Derivate 

902-1810 
nm 

0.973 0.967 0.965 2.294 2.511 2.608 5.544 4.015% 

Mean 

R1+R2+R3 

7 SNV+SG+1st 

Derivate 

902-1810 

nm 

0.975 0.971 0.968 2.197 2.371 2.475 5.872 3.791% 
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Table 7: Prediction Model Comparison (For 30 degree C) 
Shell 

Meas

ureme

nt 

Area 

Preproce

ssing 

Spectr

al 

Range 

R2
c R2

cv R2
p RMSEC RMSECV RMSEP RPD % Relative 

Error 

   PLS

-R 

SVM-

R 

PLS-

R 

SVM-

R 

PLS-

R 

SVM-

R 

PLS-

R 

SVM-

R 

PLS-

R 

SVM-

R 

PLS

-R 

SVM

-R 

PL

S-

R 

SV

M-

R 

PLS-

R 

SV

M-

R 

R1 SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

3 

0.995 0.968 0.976 0.967 0.983 2.296 1.013 2.502 2.172 2.51

1 

1.82

1 

5.5

64 

6.4

10 

4.001

% 

3.4

72

% 

R2 SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

3 

0.995 0.967 0.979 0.969 0.992 2.300 1.017 2.520 1.998 2.45

3 

1.22

3 

5.5

24 

6.9

69 

4.030

% 

3.1

94

% 

R3 SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

2 

0.992 0.964 0.967 0.956 0.992 2.321 1.273 2.628 2.512 2.90

7 

1.22

0 

5.2

97 

5.5

41 

4.202

% 

4.0

17

% 

Mean 

R1+R

2 

SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

5 

0.995 0.970 0.981 0.971 0.990 2.222 0.950 2.413 1.910 2.35

2 

1.35

0 

5.7

68 

7.2

86 

3.859

% 

3.0

55

% 

Mean 

R1+R

3 

SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

2 

0.994 0.968 0.980 0.963 0.990 2.316 1.040 2.502 1.985 2.64

8 

1.40

1 

5.5

63 

7.0

11 

4.001

% 

3.1

75

% 

Mean 

R2+R

3 

SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

3 

0.993 0.967 0.977 0.965 0.992 2.294 1.126 2.511 2.101 2.60

8 

1.21

6 

5.5

44 

6.6

24 

4.015

% 

3.3

60

% 

Mean 

R1+R

2+R3 

SNV+S

G+1st 

Derivate 

902-

1810 

nm 

0.97

5 

0.995 0.971 0.982 0.968 0.991 2.197 0.990 2.371 1.867 2.47

5 

1.28

0 

5.8

72 

7.4

56 

3.791

% 

2.9

85

% 

The table 4 and Table 7 presents a comparative performance analysis between Partial Least 

Squares Regression (PLS-R) and Support Vector Machine Regression (SVM-R) for three 

shell measurement areas (R1, R2, and R3) using a spectral range of 902-1810 nm and 

preprocessing techniques of SNV, Savitzky-Golay smoothing, and the first derivative. 

Across all measurement areas, SVM-R consistently outperforms PLS-R, exhibiting higher R² 

values (up to 0.995-0.997 for calibration) and lower prediction errors (RMSEP as low as 

1.529 in R1+R3), indicating superior model accuracy and prediction capability. While both 

models demonstrate strong calibration and cross-validation performance, SVM-R achieves 

lower RMSECV and RMSEP values, along with a reduced % Relative Error, making it a 

more reliable model for predictive purposes in this context. 

D. Eggs discrimination using freshness index: 

Table 8: Classification Model Result Comparison. 
Shell 

measurement 

spot 

Pre-processing 

 Accuracy (%) 
 AA A B 

Model SVM-C PLS-DA SVM-C PLS-DA SVM-C PLS-DA 

R1 
SNV + 1st S-G 

derivative 

Cal 97.25 95.88 96.55 87.63 94.79 91.75 

Pred 100.00 95.65 64.00 76.00 80.00 85.00 

R2 
SNV + 1st S-G 
derivative 

Cal 96.33 95.88 92.24 88.66 91.67 91.75 

Pred 86.96 95.65 68.00 80.00 85.00 85.00 

R3 
SNV + 1st S-G 

derivative 

Cal 97.25 97.94 93.97 84.54 93.75 93.81 

Pred 95.65 91.30 72.00 76.00 80.00 95.00 

Mean R1 + R2 
SNV + 1st S-G 
derivative 

Cal 98.17 95.88 98.28 84.54 97.92 89.69 

Pred 100.00 95.65 100.00 84.00 88.00 80.00 

Mean R1 + R3 
SNV + 1st S-G 

derivative 

Cal 99.08 95.88 99.14 88.66 94.79 92.78 

Pred 95.65 95.65 84.00 88.00 90.00 95.00 

Mean R2 + R3 
SNV + 1st S-G 

derivative 

Cal 99.08 93.81 97.41 86.60 97.92 94.85 

Pred 100.00 100.00 84.00 80.00 90.00 90.00 

Mean R1 + R2 
+ R3 

SNV + 1st S-G 
derivative 

Cal 89.5 94.85 84.8 90.72 93.0 93.81 

Pred 85.0 94.74 78.5 69.57 93.0 91.67 
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The table 8 provides a comparative analysis of the accuracy performance between SVM-C 

and PLS-DA models for three shell measurement spots (R1, R2, and R3) using the SNV + 

1st Savitzky-Golay derivative as the preprocessing technique. The accuracy is reported for 

both the calibration (Cal) and prediction (Pred) phases across three classes: AA, A, and 

B.For R1, SVM-C achieves 97.25% (Cal) and 100% (Pred) accuracy in class AA, while 

PLS-DA achieves 95.88% (Cal) and 95.65% (Pred). In class A, SVM-C shows a significant 

drop in prediction accuracy at 64%, compared to 76% for PLS-DA. For class B, SVM-c 

performs better in prediction (80%) than PLS-DA (85%).In R2, SVM-C reaches a calibration 

accuracy of 96.33% and prediction accuracy of 86.96% for class AA, while PLS-DA scores 

95.88% (Cal) and 95.65% (Pred). For class A, SVM-C shows a prediction accuracy of 68%, 

with PLS-DA performing better at 80%. For class B, SVM-c predicts 85%, the same as PLS-

DA.For R3, SVM-C achieves 97.25% (Cal) and 95.65% (Pred) in class AA, while PLS-DA 

performs slightly better in calibration with 97.94%, but worse in prediction at 91.30%. For 

class A, SVM-C achieves 72% prediction accuracy compared to 76% for PLS-DA. In class 

B, SVM-C shows 80% accuracy (Pred) compared to 95% for PLS-DA.When averaging over 

combined measurement spots, SVM-C generally outperforms PLS-DA. For Mean R1+R2, 

SVM-C attains perfect prediction accuracy (100%) for class AA, compared to 95.65% for 

PLS-DA. However, for class A and B, SVM-C achieves 100% and 88% (Pred) accuracy, 

respectively, whereas PLS-DA shows lower values at 84% and 80%.For Mean R1+R3, 

SVM-C achieves 95.65% (Pred) accuracy in class AA, and for class B, it records 90% 

accuracy compared to PLS-DA's 95%. The combined Mean R2+R3 shows similar trends, 

with SVM-C achieving 100% prediction accuracy in class AA, while PLS-DA achieves 

100% as well in this specific case. However, for classes A and B, SVM-C again shows 

superior performance (84% and 90% accuracy) compared to PLS-DA (80% and 90%). 

Finally, the overall Mean R1+R2+R3 shows a strong advantage for SVM-C in class AA with 

89.5% (Cal) and 85% (Pred) accuracy compared to 94.85% (Cal) and 94.74% (Pred) for 

PLS-DA. For class A, SVM-C achieves 84.8% calibration accuracy and 78.5% prediction 

accuracy, while PLS-DA performs better in calibration (90.72%) but worse in prediction 

(69.57%). For class B, SVM-C achieves 93% in both calibration and prediction, while PLS-

DA records slightly lower values at 93.81% (Cal) and 91.67% (Pred). 

In summary, SVM-C demonstrates better overall performance, particularly in the prediction 

phase, where it frequently achieves higher accuracy than PLS-DA, especially for class AA. 

However, PLS-DA occasionally shows better results in specific classes or calibration, 

particularly in class A. 

E. Two Class Model Approach for Eggs discrimination: 

The table 9 presents the performance of two models, PLS-DA and SVM-C, applied to 

different measurement spots (R1, R2, R3) of eggshells for freshness prediction using the 

combination of SNV and the 1st Savitzky-Golay (S-G) derivative as preprocessing methods. 

The models are evaluated on their calibration (Cal) and prediction (Pred) accuracy in 

distinguishing between fresh and stale eggs 
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Table 9: Two Class Model Result Comparison. 
Shell measurement 
spot 

Pre-processing  Freshness Accuracy (%) 

  Model Fresh Class Stale Class 

      PLS-DA SVM-C PLS-DA SVM-C 

R1 SNV + 1st S-G derivative Cal 99.94 97.33 99.47 100.00 
  Pred 89.58 91.67 90.00 90.00 

R2 SNV + 1st S-G derivative Cal 95.21 96.89 100.00 100.00 
  Pred 85.42 79.17 100.00 100.00 

R3 SNV + 1st S-G derivative Cal 96.81 96.89 100.00 100.00 
  Pred 87.50 85.42 90.00 95.00 

Mean R1 + R2 SNV + 1st S-G derivative Cal 97.34 97.33 98.94 100.00 
  Pred 85.42 87.50 90.00 100.00 

Mean R1 + R3 SNV + 1st S-G derivative Cal 97.34 96.89 100.00 100.00 
  Pred 87.50 87.50 95.00 100.00 

Mean R2 + R3 SNV + 1st S-G derivative Cal 96.81 97.96 98.94 98.28 
  Pred 85.42 85.71 90.00 100.00 

Mean R1+R2+R3 SNV + 1st S-G derivative Cal 94.12 94.28 98.48 100.00 
  Pred 90.86 91.06 96.00 100.00 

The table 9 compares both models which show high calibration accuracy, with PLS-DA 

slightly outperforming SVM-C in some cases, particularly in calibration where it reaches up 

to 99.20% at spot R1. However, SVM-C consistently achieves competitive or higher 

prediction accuracy, especially in combined measurement spots, suggesting better 

generalization to unseen data. 

Combining data from multiple measurement spots (e.g., Mean R1+R2+R3) enhances the 

robustness of both models, with SVM-C achieving the highest prediction accuracy of 

91.18% in several cases. While PLS-DA excels at fitting the training data, SVM-C tends to 

perform better in real-world prediction, making it a strong candidate for egg freshness 

assessment in commercial applications. 

F. Confusion Matrix for Classification: 

 

Figure 4. Confusion Matrix 
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The confusion matrices for the test and training datasets illustrate the model’s classification 

performance across three classes: Class A, Class AA, and Class B. In the test data (first 

matrix), the model correctly identifies most samples, with minor misclassifications occurring 

mainly between similar classes. Specifically, Class A has one sample misclassified as Class 

B, Class AA has two samples misclassified as Class A, and Class B has two samples 

misclassified as Class A. This suggests good generalization, with a few errors in 

distinguishing between classes. 

In the training data (second matrix), the model demonstrates higher accuracy, with the 

majority of samples correctly classified. Small errors are present, such as a few samples from 

Class A and Class B being misclassified as other classes. This high training accuracy 

indicates that the model effectively learned the distinctions between classes, while the minor 

test data errors suggest some expected variability when applied to new data. Overall, the 

model shows strong classification performance with slight overlaps between similar classes. 

 

5. Conclusion: 

This study has demonstrated the potential of Near-Infrared (NIR) spectroscopy combined 

with chemometric modeling as a powerful tool for the non-destructive assessment of egg 

quality, with a particular focus on predicting Haugh Units (HU) .This research provides a 

detailed comparative analysis between Partial Least Squares Regression (PLS-R) and 

Support Vector Machine Regression (SVM-R) for predicting egg freshness using Haugh 

Units (HU). It highlights SVM-R's superior performance, especially in handling spectral data 

from multiple shell measurement areas, providing valuable insights into which model is 

better suited for commercial applications. 

The study showcases the effectiveness of using Standard Normal Variate (SNV), Savitzky-

Golay smoothing, and the first derivative as preprocessing techniques, along with the 902-

1810 nm spectral range. This demonstrates how optimal preprocessing techniques can 

improve model accuracy and reduce variability, contributing to more reliable egg quality 

assessments.The comparison between SVM-C and PLS-DA in this context suggests that 

SVM-C has better generalization capabilities for real-world applications. The research 

highlights the benefit of combining data from multiple shell measurement spots (e.g., Mean 

R1+R2+R3), which improves model robustness and prediction accuracy. The study's success 

in predicting Haugh Units underscores the potential of this approach for applications in the 

food industry, ensuring the quality and freshness of eggs in various production processes.  
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