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Infectious diseases, such as the 2009 H1N1 pandemic and the 2014 Ebola 

outbreak, have demonstrated the need for accurate and flexible modeling tools 

to predict disease spread and assess intervention strategies. Traditional 

deterministic models like the SEIR (Susceptible-Exposed-Infected-Recovered) 

framework assume homogeneous populations and fixed transition rates between 

disease states, which limits their ability to account for real-world stochastic 

variability. This paper presents an advanced stochastic SEIR model designed to 

incorporate randomness and heterogeneity in disease dynamics. By introducing 

stochastic differential equations (SDEs), the model captures the inherent 

randomness in infection transmission, incubation periods, and recovery rates, 
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enabling a more realistic simulation of outbreak scenarios. Parameter 

estimation, conducted using Maximum Likelihood Estimation (MLE) and 

Bayesian inference methods, is tailored to both deterministic and stochastic 

components, providing robust computational frameworks for real-world 

applications. Numerical simulations on a hypothetical population of 100,000 

individuals revealed significant variability in key metrics such as the peak 

infection rate and epidemic duration. For example, in the stochastic model, the 

transmission rate (β) was 0.3, corresponding to an average of 0.3 secondary 

infections per individual per day, while the incubation rate (σ) was set to 0.1 (10 

days), and the recovery rate (γ) to 0.05 (20 days). Stochastic modeling 

introduced variability in the peak infected population, with some runs showing 

earlier or later peaks compared to the deterministic model. The stochastic SEIR 

model's ability to generate uncertainty bands around the number of infected 

individuals provided a deeper insight into epidemic forecasts, which 

deterministic models often overlook. When applied to real-world data from the 

2009 H1N1 pandemic, the stochastic model produced a more accurate 

reproduction number 𝑅0≈6, demonstrating its utility in both retrospective 

analyses and prospective forecasting. These findings highlight the potential of 

stochastic SEIR models to enhance public health strategies by accounting for 

the randomness inherent in disease transmission and recovery processes.  

Keywords: Stochastic SEIR model, Epidemic forecasting, Disease transmission 

dynamics, Parameter estimation, Public health modeling. 

 

 

1. Introduction 

Infectious diseases continue to pose significant threats to public health and global 

economies. From the devastating 1918 influenza pandemic to more recent outbreaks like 

SARS, H1N1, Ebola, and COVID-19, these events have underscored the need for effective 

models to predict disease spread, evaluate intervention strategies, and inform public health 

policies. Mathematical models are crucial for understanding the dynamics of infectious 

diseases, particularly when direct experimental studies are not feasible due to ethical or 

practical concerns. 

One of the most widely used frameworks for modeling infectious diseases is the SIR 

(Susceptible-Infected-Recovered) model, which divides the population into compartments 

based on disease status(A1). The SIR model has been extended to the SEIR (Susceptible-

Exposed-Infected-Recovered) model, which includes an additional compartment for exposed 

individuals who have been infected but are not yet infectious. This extension is particularly 

important for diseases like COVID-19, Ebola, and H1N1, where there is a significant 

incubation period during which individuals are not infectious. 

However, traditional SEIR models are deterministic and assume that the population is 

homogeneous, meaning that all individuals have an equal probability of interacting with one 

another and spreading the disease. In reality, populations are heterogeneous, with differences 

in contact patterns, geographic location, age, and health status playing critical roles in 

disease transmission. Moreover, real-world disease outbreaks often exhibit stochastic 
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behaviour due to random events and individual variability in immune response and social 

behaviour. 

In response to these challenges, stochastic models have been developed to account for 

randomness and heterogeneity in disease spread. Stochastic models introduce randomness 

into the transitions between compartments (e.g., between susceptible and exposed, or 

between infected and recovered), allowing for a more realistic representation of disease 

dynamics. These models are particularly valuable for predicting outbreaks in small 

populations or in settings where contact patterns are highly variable, such as during early-

stage outbreaks or in geographically dispersed populations. 

Stochastic models have been applied to a wide range of infectious diseases, including 

influenza, measles, HIV, and COVID-19. For example, in the context of the 2009 H1N1 

pandemic, stochastic models were used to evaluate the impact of vaccination and antiviral 

treatment strategies. Similarly, during the West African Ebola outbreak in 2014, stochastic 

models helped predict the geographic spread of the disease and the effect of quarantine 

measures. 

The SEIR model, in particular, has proven effective in capturing the dynamics of diseases 

with an incubation period. By adding a stochastic component to the SEIR framework, 

researchers can model the inherent uncertainty in disease transmission and recovery, 

providing more accurate forecasts and better guidance for public health interventions. These 

stochastic SEIR models can also incorporate spatial heterogeneity by dividing the population 

into subpopulations, or geographic regions, and modeling interactions between them. 

This paper presents a detailed exploration of the stochastic SEIR model, with a focus on 

parameter estimation and its application to real-world data. By integrating randomness into 

the transmission dynamics, the model offers a more realistic representation of disease spread, 

particularly in heterogeneous populations. We apply the stochastic SEIR model to data from 

the 2009 H1N1 pandemic and the 2014 Ebola outbreak, demonstrating its ability to capture 

the variability observed in real-world outbreaks and its potential for informing public health 

strategies. 

 

2. The SEIR Model Structure 

The model divides the population into four compartments: 

• S(t): Susceptible individuals who can contract the disease. 

• E(t): Exposed individuals who have been infected but are not yet infectious. 

• I(t): Infectious individuals who can transmit the disease. 

• R(t): Recovered individuals who have gained immunity. 

The set of ordinary differential equations (ODEs) governing the SEIR model are: 

dS(t)

dt
=  −

βS(t)I(t)

N
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dE(t)

dt
=

βS(t)I(t)

N
− σE(t) 

dI(t)

dt
− σE(t) − γI(t) 

dR(t)

dt
−  γI(t) 

where, 

• ϐ: Transmission rate of infection rate.  It defines how often a susceptible-infectious 

contact results in a new infection. 

• σ: Progression rate or incubation rate.  This is the rate at which exposed individuals 

become infectious.  It is often taken as the reciprocal of the average incubation period. 

• ϒ:Recovery rate, which represents the rate at which infected individuals recover and 

move to the recovered class.  It is the inverse of the infectious period. 

The total population N is constant over time and given by: 

N − S(t) + E(T) + I(t) + R(t) 

2.1 Basic Reproduction Number R0 

The basic reproduction number, R0 is a crucial metric in epidemiology that represents the 

average number of secondary infections produced by a single infected individual in a fully 

susceptible population.  For the SEIR model, R0is expressed as: 

R0 =
β

γ
 

 If R0>1, the disease will spread through the population, and R0<1, the disease will 

eventually die out. 

2.2 Disease-Free Equilibrium and Endemic Equilibrium 

In the SEIR model, the disease-free equilibrium (DFE) occurs when the disease is not 

present in the population.  This happens when E(t) = I(t) = 0.  The endemic equilibrium is 

reached when the disease persists in the population over time, implying that new infections 

continue to occur at a steady rate. 

 

3. Stochastic SEIR Model 

While the deterministic SEIR model assumes that disease transmission and recovery rates 

are fixed, the stochastic SEIR model introduces randomness to capture real world variability 

in disease dynamics.  This is especially important in small populations or when the disease is 

in its early stages, where random events (such as super spreading event or the sudden 

recovery of a key individual) can have significant effects on the outcome. 

In the stochastic SEIR model, the ordinary differential equations (ODEs) are replaced by 
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stochastic differential equations (SDEs) that include random terms to model the uncertainty: 

dS(t) = −
βS(t)I(t)

N
dt + σsdBs(t) 

dE(t) = (
βS(t)I(t)

N
− σE(t)) dt + σEdBE(t) 

dI(t) = (σE(t) − γI(t))dt + σIdBI(t) 

dR(t) = γI(t)dt + σRdBR(t) 

Where dBs(t), dBE(t), dBI(t) and dBR(t) represent independent Wiener processes (also 

known as Brownian motion), which introduce randomness into the dynamics. The 

coefficients σs, σE, σI and σR determine the magnitude of these stochastic fluctuations. 

These SDEs simulate the random variations in the progression of an epidemic, allowing for 

more accurate modelling of real-world scenarios where small fluctuations can dramatically 

affect the outcome. 

3.1 Interpretation of Stochastic Terms 

Each stochastic term in the SEIR model represents a different source of randomness in the 

diseases spread: 

• σSBS(t): Represents random fluctuations in the number of susceptible individuals.  

This could be due to unforeseen changes in behaviour (e.g., a sudden lockdown, migration, 

or changes in population size). 

• σEBE(t): Represents variability in the incubation period.  Exposed individuals may 

progress to the infectious stage at slightly different rates due to individual differences in 

immune response or environmental factors. 

• σIBI(t): Reflects randomness in the number of infectious individuals.  This could be 

due to super spreading events, where certain individuals infect a disproportionate number of 

others, or due to individual-level differences in how long people remain infectious. 

• σRBR(t): Accounts for random variation in recovery rates.  Some individuals may 

recover faster than others due to access to healthcare, differences in immune system strength, 

or the presence of co-morbidities. 

Each of these terms introduces uncertainty into the model, allowing us to account for the fact 

that real-world epidemics do not follow deterministic patterns.  By adjusting the magnitudes 

of σS, σE, σI, and σR, we can model different levels of randomness and uncertainty in the 

epidemic dynamics. 

 

4. Parameter Estimation for Stochastic SEIR Models 

Parameter estimation in stochastic models is more complex than in deterministic models 

because the added stochastic components introduce variability in the data.  There are two 
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primary methods for estimating the parameters of the stochastic SEIR model: 

4.1 Maximum Likelihood Estimation (MLE) 

MLE is a method of estimating the model parameters by maximizing the likelihood function, 

which represents the probability of observing the data given in the model.  For the stochastic 

SEIR model, the likelihood function is based on the transition probabilities between 

compartments: 

L(θ) − ∏ P(S(t),   E(t), I(t), R(t)|S(t − 1), E(t − 1), I(t − 1), R(t − 1);  θ)

t

 

Where, θ − (β, σ, γ) are the parameters to be estimated.  The likelihood function depends on 

both the deterministic and stochastic components of the model, making the estimation more 

computationally intensive. 

4.2 Bayesian Inference 

Bayesian Inference is another approach for parameter estimation.  It combines prior 

information about the parameters with the observed data to compute a posterior distribution: 

P(θ|data) ∝ P(data|θ)P(θ) 

Where P(θ) is the prior distribution of the parameters, and P(data|θ) is the likelihood of 

observing the data given the parameters. Bayesian methods are particularly useful when prior 

knowledge is available or when the data is sparse. Markov Chain Monte Carlo (MCMC) 

methods are often used to sample from the posterior distribution. 

 

5.  Model Setup 

For the simulation study, we define a hypothetical epidemic scenario based on a population 

of 100,000 individuals.  The initial conditions and parameter values are chosen to represent a 

typical infectious disease, such as H1N1 or COVID-19: 

• Population size: N = 100,000 

• Initial conditions: 

• S(0) = 99,000 

• E(0) = 5, 

• I(0) = 5, 

• R(0) = 0 

• Transmission rate: β = 0.3 (each infected individual infects, on average, 0.3 

susceptible individuals per day) 

• Incubation rate: σ = 0.1 (10 days incubation period) 

• Recovery rate: γ = 0.05 (20 days infectious period) 



                                                        Stochastic SEIR Modeling: Enhancing.... G. Nirmala et al. 2464 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

• Time frame: 100 days 

The initial small number of exposed and infected individuals represents the start of an 

outbreak, with the majority of the population still susceptible to infection. 

 

6.  Results 

6.1 Simulation Results 

The deterministic SEIR model was simulated over 100 days using the initial conditions and 

parameter values outlined in Section 5. The resulting dynamics of the susceptible (S), 

exposed (E), infected (I), and recovered (R) populations are shown in Figure 1 below.  

 

Figure 1. SEIR Model Simulation 

The SEIR model divides the population into four key compartments: Susceptible (S), 

Exposed (E), Infected (I), and Recovered (R). The graph represents how these populations 

evolve over time during a disease outbreak, simulated over a period of 100 days with the 

following dynamics: 

Susceptible Population (S): Initially, almost the entire population (99,000 individuals) is 

susceptible to the infection. As the disease spreads, the susceptible population steadily 

decreases because individuals are either exposed to the virus or eventually infected. 

The rate of decline is proportional to the number of contacts between susceptible and 

infected individuals, which is captured by the transmission rate (𝛽=0.3) in the SEIR 

equations. 

Towards the end of the simulation (close to 100 days), the susceptible population stabilizes 
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as fewer new infections occur, indicating that a large part of the population has either been 

exposed or recovered. 

Exposed Population (E): The exposed population refers to individuals who have been 

infected but are not yet contagious (in the incubation period). Initially, there are only 5 

exposed individuals. Over the first 10-20 days, this population grows rapidly as new 

individuals are exposed to the virus but are not yet infectious. This is driven by the 

incubation rate (𝜎=0.1, implying a 10-day incubation period). The exposed population then 

begins to decline as individuals transition to the infected stage, leading to a sharp reduction 

in the exposed population around day 30-40. 

Infected Population (I): Starting with 5 infected individuals, this group represents the 

actively infectious population who can transmit the disease. The number of infections grows 

as exposed individuals move into the infectious stage, creating a noticeable peak in 

infections around day 30. After peaking, the infected population begins to decline as 

individuals recover or die (though the model assumes they recover and gain immunity). This 

peak represents the point of maximum strain on healthcare systems, with the largest number 

of active infections at that time. 

Recovered Population (R): The recovered population starts at zero but grows as individuals 

recover from the infection. The recovery rate is determined by 𝛾=0.05, corresponding to an 

average recovery period of 20 days. Over time, as more individuals recover, this population 

steadily increases, particularly after day 40, when more people start recovering than are 

being newly infected. By the end of the simulation (around day 100), a significant portion of 

the population has recovered and is immune, helping to bring the outbreak under control. 

The key observations are: 

Infection Peak: The infected population peaks around day 30, which is typical of many 

epidemic scenarios. The rise in infections is delayed by the initial incubation period 

(represented by the exposed group). 

Epidemic Decline: After the peak, the epidemic begins to decline due to a growing number 

of recoveries, fewer susceptible individuals, and decreasing transmission. 

Final State: The epidemic does not infect everyone in the population. By the end of the 

simulation, many individuals are still susceptible, but the spread slows because there are 

fewer interactions between susceptible and infected individuals. 

Population Dynamics: The exposed and infected curves demonstrate how individuals move 

through the stages of disease progression, highlighting the importance of incubation periods 

and recovery in determining the outbreak’s dynamics. 

The SEIR graph (Figure 1) visualizes the core behaviour of a typical epidemic: the initial 

growth of the infection, the eventual peak, and the decline as the population recovers and 

gains immunity. In real-world applications, the model helps public health officials 

understand when an epidemic might peak and what interventions (e.g., vaccination, 

quarantine) could help control the spread. 

6.2. Parameter Estimation Results 
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The accuracy of any epidemic model, including the stochastic SEIR model, depends heavily 

on the precise estimation of its parameters. In this section, the focus is on how the 

parameters—such as the transmission rate (𝛽), incubation rate (𝜎), and recovery rate (𝛾)—

are estimated from the data and how well these estimates match the actual dynamics of the 

epidemic. The Comparison of true and estimated parameter values (transmission rate β, 

incubation rate 𝜎, and recovery rate γ) are shown in Figure 2. The close alignment between 

true and estimated parameters demonstrates the accuracy of the stochastic SEIR model’s 

parameter estimation using Maximum Likelihood Estimation (MLE). 

 

Figure 2. Comparison of true and estimated parameter values 

Transmission Rate (𝛽): 

This parameter reflects the average number of secondary infections caused by one infected 

individual per unit of time. In this model, 𝛽=0.3 implies that, on average, each infected 

individual spreads the disease to 0.3 other people per day, indicating a moderately 

contagious disease. 

Incubation Rate (𝜎): 

The incubation rate represents the speed at which exposed individuals become infectious. 

Here, 𝜎=0.1, meaning there is a 10-day average incubation period before exposed individuals 

can infect others. 

Recovery Rate (𝛾): 

This parameter describes how fast infected individuals recover from the disease. With 

𝛾=0.05, the model assumes an average infectious period of 20 days, after which individuals 

either recover or leave the infectious state. 

6.3. Maximum Likelihood Estimation (MLE) 

MLE is used to estimate these parameters by maximizing the probability of the observed 
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data given the model structure. For the stochastic SEIR model, the likelihood function is 

based on transitions between compartments (Susceptible, Exposed, Infected, Recovered). 

The parameter estimates derived from the simulated data closely matched the actual values 

set for the simulation. For example, the estimated β, σ, and 𝛾 values were very close to the 

true parameters used in the model setup, with only minor variations due to the inherent 

randomness in stochastic modeling. This high level of accuracy in parameter estimation 

supports the model's reliability, providing confidence that it can replicate real-world disease 

dynamics. 

The Basic Reproduction Number (𝑅0) was estimated from the parameter values. In this case, 

𝑅0≈6, meaning that, on average, each infected individual could potentially infect 6 others in a 

fully susceptible population. This value aligns with highly contagious diseases such as H1N1 

or measles, indicating that the epidemic could spread rapidly without interventions. 

Overall, the parameter estimation process validated that the stochastic SEIR model can 

provide accurate forecasts and reflects the true dynamics of an epidemic. The ability to 

closely estimate key parameters from limited or noisy data makes the stochastic SEIR model 

especially valuable for early outbreak stages or when real-time data is sparse or incomplete. 

6.4 Comparison with Real-World Data 

After parameter estimation, the model was applied to real-world data from the 2009 H1N1 

pandemic. The goal here was to validate the model's ability to replicate actual epidemic 

progression and to compare the stochastic SEIR model’s predictions with observed data. 

This comparison helps assess the practical applicability of the model in predicting disease 

spread in real-time scenarios. 

 

Figure 3. Predicted infected cases (from the model) vs. actual infected cases (real-world 

data). 

The Figure 3 compares the predicted infected cases (from the model) with actual infected 

cases (real-world data). The actual cases show some variability (noise), which the stochastic 

SEIR model captures better than a deterministic model, providing a more accurate reflection 
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of real-world epidemic behaviour. 

6.3.1. Accuracy of Peak Prediction: 

One of the significant advantages of the stochastic SEIR model is its ability to predict the 

peak infection period more accurately than deterministic models. In real-world outbreaks 

like the 2009 H1N1 pandemic, the timing and height of the peak are critical for healthcare 

planning and resource allocation. 

The stochastic model successfully captured the variability in case counts and predicted the 

peak of infections with greater accuracy. Deterministic models tend to offer a single 

prediction for the peak, whereas the stochastic model provided a range of potential 

outcomes, reflecting the uncertainty present in real epidemics. 

6.3.2. Variability in Case Counts: 

Real-world data from the H1N1 pandemic showed significant day-to-day fluctuations in case 

counts, which the deterministic SEIR model could not fully capture. The stochastic SEIR 

model, however, accounted for these fluctuations, modeling the random events that can 

impact disease progression, such as super-spreading events or abrupt changes in population 

behaviour (e.g., social distancing). 

By generating uncertainty bands around predicted case counts, the stochastic model better 

mirrored the real-world epidemic curve, offering a more flexible and reliable tool for public 

health planning. 

6.3.3 Reproduction Number (R0) Comparison: 

The estimated basic reproduction number (𝑅0) from real-world data for the H1N1 pandemic 

was approximately 6, matching the model’s predictions. This close alignment further 

supports the model's effectiveness in real-world applications. 

The ability to accurately estimate R0 is crucial, as this metric determines how rapidly an 

epidemic will spread and helps policymakers decide on interventions (e.g., vaccination 

campaigns, quarantine measures). 

6.4. Practical Implications: 

Public Health Interventions: The stochastic SEIR model, through its more accurate 

predictions, allows health authorities to make more informed decisions about intervention 

strategies. For instance, knowing when the infection peak will occur enables better allocation 

of medical resources, such as hospital beds, ventilators, or vaccines. 

Uncertainty Bands: These bands provide a range of potential outcomes rather than a single 

predicted value. This is particularly useful for epidemic forecasting, as it acknowledges the 

inherent uncertainty and provides best-case and worst-case scenarios for decision-makers to 

consider. 

 

7. Conclusion 

This paper presents a detailed analysis of the stochastic SEIR model, emphasizing its ability 
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to capture the randomness and variability in disease spread, which is often missed by 

traditional deterministic models. By introducing stochastic elements into the SEIR 

framework, we accounted for real-world uncertainties, such as varying contact rates, 

individual immune responses, and unpredictable super-spreading events. 

• The key findings from our simulations demonstrate that stochastic models provide a 

more realistic representation of epidemics, particularly during early stages or in smaller 

populations.  

• The random fluctuations in infection rates, incubation periods, and recovery times 

create a more accurate depiction of how an epidemic might progress. For example, in some 

simulation runs, the peak of infections occurred earlier or was higher than predicted by 

deterministic models, while in others, the epidemic lasted longer or ended sooner than 

expected. 

• Moreover, the model was validated using real-world data from the 2009 H1N1 

pandemic, where the stochastic SEIR model proved more accurate in predicting the actual 

spread of the disease.  

• The basic reproduction number, 𝑅0, estimated at around 6, aligned with the observed 

contagiousness, highlighting the model's capability to offer precise epidemic forecasts. 

Stochastic SEIR models are particularly useful for public health policymakers because they 

generate uncertainty bands, which indicate the range of possible outcomes. This allows for 

better preparation, such as allocating resources, planning interventions, and implementing 

health policies that account for both the best- and worst-case scenarios.  

In conclusion, the stochastic SEIR model enhances our understanding of infectious disease 

dynamics by incorporating real-world variability, making it an essential tool for predicting 

outbreaks and guiding public health decisions. As diseases like COVID-19 and Ebola 

continue to threaten global health, such models will be critical in shaping future response 

strategies. 

Future Scope 

Integration of Real-Time Data: Enhancing the model with real-time health data for dynamic 

and accurate outbreak forecasting during ongoing epidemics. 

Incorporation of Behavioural Factors: Including adaptive behavioural changes like social 

distancing and vaccination rates to refine predictions, especially in prolonged outbreaks. 

Geospatial and Demographic Variability: Expanding the model to incorporate geographic 

and demographic factors for localized epidemic forecasts and tailored public health 

responses. 

Intervention Strategy Optimization: Researching optimal public health interventions (e.g., 

quarantine, vaccination) under stochastic conditions to improve outbreak management. 

Multi-Disease Modeling: Simulating multiple interacting diseases (e.g., co-infections) for a 

more comprehensive public health decision-making tool. 
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