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Infectious diseases, such as the 2009 H1N1 pandemic and the 2014 Ebola
outbreak, have demonstrated the need for accurate and flexible modeling tools
to predict disease spread and assess intervention strategies. Traditional
deterministic models like the SEIR (Susceptible-Exposed-Infected-Recovered)
framework assume homogeneous populations and fixed transition rates between
disease states, which limits their ability to account for real-world stochastic
variability. This paper presents an advanced stochastic SEIR model designed to
incorporate randomness and heterogeneity in disease dynamics. By introducing
stochastic differential equations (SDEs), the model captures the inherent
randomness in infection transmission, incubation periods, and recovery rates,
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enabling a more realistic simulation of outbreak scenarios. Parameter
estimation, conducted using Maximum Likelihood Estimation (MLE) and
Bayesian inference methods, is tailored to both deterministic and stochastic
components, providing robust computational frameworks for real-world
applications. Numerical simulations on a hypothetical population of 100,000
individuals revealed significant variability in key metrics such as the peak
infection rate and epidemic duration. For example, in the stochastic model, the
transmission rate () was 0.3, corresponding to an average of 0.3 secondary
infections per individual per day, while the incubation rate () was set to 0.1 (10
days), and the recovery rate (y) to 0.05 (20 days). Stochastic modeling
introduced variability in the peak infected population, with some runs showing
earlier or later peaks compared to the deterministic model. The stochastic SEIR
model's ability to generate uncertainty bands around the number of infected
individuals provided a deeper insight into epidemic forecasts, which
deterministic models often overlook. When applied to real-world data from the
2009 HIN1 pandemic, the stochastic model produced a more accurate
reproduction number R0~6, demonstrating its utility in both retrospective
analyses and prospective forecasting. These findings highlight the potential of
stochastic SEIR models to enhance public health strategies by accounting for
the randomness inherent in disease transmission and recovery processes.
Keywords: Stochastic SEIR model, Epidemic forecasting, Disease transmission
dynamics, Parameter estimation, Public health modeling.

1. Introduction

Infectious diseases continue to pose significant threats to public health and global
economies. From the devastating 1918 influenza pandemic to more recent outbreaks like
SARS, H1IN1, Ebola, and COVID-19, these events have underscored the need for effective
models to predict disease spread, evaluate intervention strategies, and inform public health
policies. Mathematical models are crucial for understanding the dynamics of infectious
diseases, particularly when direct experimental studies are not feasible due to ethical or
practical concerns.

One of the most widely used frameworks for modeling infectious diseases is the SIR
(Susceptible-Infected-Recovered) model, which divides the population into compartments
based on disease status(Al). The SIR model has been extended to the SEIR (Susceptible-
Exposed-Infected-Recovered) model, which includes an additional compartment for exposed
individuals who have been infected but are not yet infectious. This extension is particularly
important for diseases like COVID-19, Ebola, and H1IN1, where there is a significant
incubation period during which individuals are not infectious.

However, traditional SEIR models are deterministic and assume that the population is
homogeneous, meaning that all individuals have an equal probability of interacting with one
another and spreading the disease. In reality, populations are heterogeneous, with differences
in contact patterns, geographic location, age, and health status playing critical roles in
disease transmission. Moreover, real-world disease outbreaks often exhibit stochastic
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behaviour due to random events and individual variability in immune response and social
behaviour.

In response to these challenges, stochastic models have been developed to account for
randomness and heterogeneity in disease spread. Stochastic models introduce randomness
into the transitions between compartments (e.g., between susceptible and exposed, or
between infected and recovered), allowing for a more realistic representation of disease
dynamics. These models are particularly valuable for predicting outbreaks in small
populations or in settings where contact patterns are highly variable, such as during early-
stage outbreaks or in geographically dispersed populations.

Stochastic models have been applied to a wide range of infectious diseases, including
influenza, measles, HIV, and COVID-19. For example, in the context of the 2009 H1N1
pandemic, stochastic models were used to evaluate the impact of vaccination and antiviral
treatment strategies. Similarly, during the West African Ebola outbreak in 2014, stochastic
models helped predict the geographic spread of the disease and the effect of quarantine
measures.

The SEIR model, in particular, has proven effective in capturing the dynamics of diseases
with an incubation period. By adding a stochastic component to the SEIR framework,
researchers can model the inherent uncertainty in disease transmission and recovery,
providing more accurate forecasts and better guidance for public health interventions. These
stochastic SEIR models can also incorporate spatial heterogeneity by dividing the population
into subpopulations, or geographic regions, and modeling interactions between them.

This paper presents a detailed exploration of the stochastic SEIR model, with a focus on
parameter estimation and its application to real-world data. By integrating randomness into
the transmission dynamics, the model offers a more realistic representation of disease spread,
particularly in heterogeneous populations. We apply the stochastic SEIR model to data from
the 2009 H1N1 pandemic and the 2014 Ebola outbreak, demonstrating its ability to capture
the variability observed in real-world outbreaks and its potential for informing public health
strategies.

2. The SEIR Model Structure

The model divides the population into four compartments:

S(t): Susceptible individuals who can contract the disease.

E(t): Exposed individuals who have been infected but are not yet infectious.

I(t): Infectious individuals who can transmit the disease.

R(t): Recovered individuals who have gained immunity.
The set of ordinary differential equations (ODEs) governing the SEIR model are:

s BSOI)
dd N
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dE(t)  BS(HI(V)
dt N
dI(t)
T oE(t) — yI(t)

dR(t)

T yI(D)

—oE(t)

where,

o 6: Transmission rate of infection rate. It defines how often a susceptible-infectious
contact results in a new infection.

o o: Progression rate or incubation rate. This is the rate at which exposed individuals
become infectious. It is often taken as the reciprocal of the average incubation period.

o Y:Recovery rate, which represents the rate at which infected individuals recover and
move to the recovered class. It is the inverse of the infectious period.

The total population N is constant over time and given by:
N —S(t) + E(T) + I(t) + R(t)
2.1 Basic Reproduction Number Ro

The basic reproduction number, Ro is a crucial metric in epidemiology that represents the
average number of secondary infections produced by a single infected individual in a fully
susceptible population. For the SEIR model, Rois expressed as:

If Ro>1, the disease will spread through the population, and Roe<1, the disease will
eventually die out.

2.2 Disease-Free Equilibrium and Endemic Equilibrium

In the SEIR model, the disease-free equilibrium (DFE) occurs when the disease is not
present in the population. This happens when E(t) = I(t) = 0. The endemic equilibrium is
reached when the disease persists in the population over time, implying that new infections
continue to occur at a steady rate.

3. Stochastic SEIR Model

While the deterministic SEIR model assumes that disease transmission and recovery rates
are fixed, the stochastic SEIR model introduces randomness to capture real world variability
in disease dynamics. This is especially important in small populations or when the disease is
in its early stages, where random events (such as super spreading event or the sudden
recovery of a key individual) can have significant effects on the outcome.

In the stochastic SEIR model, the ordinary differential equations (ODESs) are replaced by
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stochastic differential equations (SDEs) that include random terms to model the uncertainty:

_BSOI®
N

ds(t) = dt + o,dB(t)

dE(t) = (% — GE(t)) dt + ogdBg(t)

di(t) = (cE(t) — yI(t))dt + o1dBy(t)

Where dBg(t), dBg(t),dB;(t) and dBg(t) represent independent Wiener processes (also
known as Brownian motion), which introduce randomness into the dynamics. The
coefficients og, o, oy and oy determine the magnitude of these stochastic fluctuations.

These SDEs simulate the random variations in the progression of an epidemic, allowing for
more accurate modelling of real-world scenarios where small fluctuations can dramatically
affect the outcome.

3.1 Interpretation of Stochastic Terms

Each stochastic term in the SEIR model represents a different source of randomness in the
diseases spread:

o osBg(t): Represents random fluctuations in the number of susceptible individuals.
This could be due to unforeseen changes in behaviour (e.g., a sudden lockdown, migration,
or changes in population size).

o ogBg(t): Represents variability in the incubation period. Exposed individuals may
progress to the infectious stage at slightly different rates due to individual differences in
immune response or environmental factors.

o 0B (t): Reflects randomness in the number of infectious individuals. This could be
due to super spreading events, where certain individuals infect a disproportionate number of
others, or due to individual-level differences in how long people remain infectious.

o orBr(t): Accounts for random variation in recovery rates. Some individuals may
recover faster than others due to access to healthcare, differences in immune system strength,
or the presence of co-morbidities.

Each of these terms introduces uncertainty into the model, allowing us to account for the fact
that real-world epidemics do not follow deterministic patterns. By adjusting the magnitudes
of ag, 0, 01, and og, we can model different levels of randomness and uncertainty in the
epidemic dynamics.

4, Parameter Estimation for Stochastic SEIR Models

Parameter estimation in stochastic models is more complex than in deterministic models
because the added stochastic components introduce variability in the data. There are two
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primary methods for estimating the parameters of the stochastic SEIR model:
4.1 Maximum Likelihood Estimation (MLE)

MLE is a method of estimating the model parameters by maximizing the likelihood function,
which represents the probability of observing the data given in the model. For the stochastic
SEIR model, the likelihood function is based on the transition probabilities between
compartments:

L(8) — HP(S(t), E(t), 1(t), R(t)|S(t — 1), E(t — 1), I(t — 1), R(t — 1); 6)
t

Where, 6 — (B3, 0,y) are the parameters to be estimated. The likelihood function depends on
both the deterministic and stochastic components of the model, making the estimation more
computationally intensive.

4.2 Bayesian Inference

Bayesian Inference is another approach for parameter estimation. It combines prior
information about the parameters with the observed data to compute a posterior distribution:

P(0|data) « P(data|0)P(6)

Where P(0) is the prior distribution of the parameters, and P(datal|®) is the likelihood of
observing the data given the parameters. Bayesian methods are particularly useful when prior
knowledge is available or when the data is sparse. Markov Chain Monte Carlo (MCMC)
methods are often used to sample from the posterior distribution.

5. Model Setup

For the simulation study, we define a hypothetical epidemic scenario based on a population
of 100,000 individuals. The initial conditions and parameter values are chosen to represent a
typical infectious disease, such as HIN1 or COVID-19:

Population size: N = 100,000

Initial conditions:

. S(0) = 99,000

. E(0) =5,

o 1(0) =5,

. R(0)=0

o Transmission rate: = 0.3 (each infected individual infects, on average, 0.3
susceptible individuals per day)

o Incubation rate: o = 0.1 (10 days incubation period)

o Recovery rate: y = 0.05 (20 days infectious period)
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o Time frame: 100 days

The initial small number of exposed and infected individuals represents the start of an
outbreak, with the majority of the population still susceptible to infection.

6. Results
6.1 Simulation Results

The deterministic SEIR model was simulated over 100 days using the initial conditions and
parameter values outlined in Section 5. The resulting dynamics of the susceptible (S),
exposed (E), infected (1), and recovered (R) populations are shown in Figure 1 below.

100000 — Susceptible
Exposed

— Infected

—— Recovered

80000

60000

Population

40000

200001

e

0 20 40 60 80 100
Days

Figure 1. SEIR Model Simulation

The SEIR model divides the population into four key compartments: Susceptible (S),
Exposed (E), Infected (1), and Recovered (R). The graph represents how these populations
evolve over time during a disease outbreak, simulated over a period of 100 days with the
following dynamics:

Susceptible Population (S): Initially, almost the entire population (99,000 individuals) is
susceptible to the infection. As the disease spreads, the susceptible population steadily
decreases because individuals are either exposed to the virus or eventually infected.

The rate of decline is proportional to the number of contacts between susceptible and
infected individuals, which is captured by the transmission rate ($=0.3) in the SEIR
equations.

Towards the end of the simulation (close to 100 days), the susceptible population stabilizes
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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as fewer new infections occur, indicating that a large part of the population has either been
exposed or recovered.

Exposed Population (E): The exposed population refers to individuals who have been
infected but are not yet contagious (in the incubation period). Initially, there are only 5
exposed individuals. Over the first 10-20 days, this population grows rapidly as new
individuals are exposed to the virus but are not yet infectious. This is driven by the
incubation rate (0=0.1, implying a 10-day incubation period). The exposed population then
begins to decline as individuals transition to the infected stage, leading to a sharp reduction
in the exposed population around day 30-40.

Infected Population (1): Starting with 5 infected individuals, this group represents the
actively infectious population who can transmit the disease. The number of infections grows
as exposed individuals move into the infectious stage, creating a noticeable peak in
infections around day 30. After peaking, the infected population begins to decline as
individuals recover or die (though the model assumes they recover and gain immunity). This
peak represents the point of maximum strain on healthcare systems, with the largest number
of active infections at that time.

Recovered Population (R): The recovered population starts at zero but grows as individuals
recover from the infection. The recovery rate is determined by y=0.05, corresponding to an
average recovery period of 20 days. Over time, as more individuals recover, this population
steadily increases, particularly after day 40, when more people start recovering than are
being newly infected. By the end of the simulation (around day 100), a significant portion of
the population has recovered and is immune, helping to bring the outbreak under control.
The key observations are:

Infection Peak: The infected population peaks around day 30, which is typical of many
epidemic scenarios. The rise in infections is delayed by the initial incubation period
(represented by the exposed group).

Epidemic Decline: After the peak, the epidemic begins to decline due to a growing number
of recoveries, fewer susceptible individuals, and decreasing transmission.

Final State: The epidemic does not infect everyone in the population. By the end of the
simulation, many individuals are still susceptible, but the spread slows because there are
fewer interactions between susceptible and infected individuals.

Population Dynamics: The exposed and infected curves demonstrate how individuals move
through the stages of disease progression, highlighting the importance of incubation periods
and recovery in determining the outbreak’s dynamics.

The SEIR graph (Figure 1) visualizes the core behaviour of a typical epidemic: the initial
growth of the infection, the eventual peak, and the decline as the population recovers and
gains immunity. In real-world applications, the model helps public health officials
understand when an epidemic might peak and what interventions (e.g., vaccination,
quarantine) could help control the spread.

6.2. Parameter Estimation Results
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The accuracy of any epidemic model, including the stochastic SEIR model, depends heavily
on the precise estimation of its parameters. In this section, the focus is on how the
parameters—such as the transmission rate (), incubation rate (o), and recovery rate (y)—
are estimated from the data and how well these estimates match the actual dynamics of the
epidemic. The Comparison of true and estimated parameter values (transmission rate f,
incubation rate o, and recovery rate y) are shown in Figure 2. The close alignment between
true and estimated parameters demonstrates the accuracy of the stochastic SEIR model’s
parameter estimation using Maximum Likelihood Estimation (MLE).

mmm True Parameters

0.30f Estimated Parameters

0.25

0.10

0.05f

0-00 —Fransmission Rate (B) Incubation Rate (o) Recovery Rate (y)

Parameters

Figure 2. Comparison of true and estimated parameter values
Transmission Rate (B):

This parameter reflects the average number of secondary infections caused by one infected
individual per unit of time. In this model, $=0.3 implies that, on average, each infected
individual spreads the disease to 0.3 other people per day, indicating a moderately
contagious disease.

Incubation Rate (o):

The incubation rate represents the speed at which exposed individuals become infectious.
Here, 6=0.1, meaning there is a 10-day average incubation period before exposed individuals
can infect others.

Recovery Rate (y):

This parameter describes how fast infected individuals recover from the disease. With
y=0.05, the model assumes an average infectious period of 20 days, after which individuals
either recover or leave the infectious state.

6.3. Maximum Likelihood Estimation (MLE)

MLE is used to estimate these parameters by maximizing the probability of the observed
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data given the model structure. For the stochastic SEIR model, the likelihood function is
based on transitions between compartments (Susceptible, Exposed, Infected, Recovered).

The parameter estimates derived from the simulated data closely matched the actual values
set for the simulation. For example, the estimated B, ¢, and y values were very close to the
true parameters used in the model setup, with only minor variations due to the inherent
randomness in stochastic modeling. This high level of accuracy in parameter estimation
supports the model's reliability, providing confidence that it can replicate real-world disease
dynamics.

The Basic Reproduction Number (Ro) was estimated from the parameter values. In this case,
Ro=6, meaning that, on average, each infected individual could potentially infect 6 others in a
fully susceptible population. This value aligns with highly contagious diseases such as HIN1
or measles, indicating that the epidemic could spread rapidly without interventions.

Overall, the parameter estimation process validated that the stochastic SEIR model can
provide accurate forecasts and reflects the true dynamics of an epidemic. The ability to
closely estimate key parameters from limited or noisy data makes the stochastic SEIR model
especially valuable for early outbreak stages or when real-time data is sparse or incomplete.

6.4 Comparison with Real-World Data

After parameter estimation, the model was applied to real-world data from the 2009 H1N1
pandemic. The goal here was to validate the model's ability to replicate actual epidemic
progression and to compare the stochastic SEIR model’s predictions with observed data.
This comparison helps assess the practical applicability of the model in predicting disease
spread in real-time scenarios.

25000 = Predicted Infected (Model)
=== Actual Infected (Real Data)
20000

15000

10000

Number of Infected Individuals

5000

Days

Figure 3. Predicted infected cases (from the model) vs. actual infected cases (real-world
data).

The Figure 3 compares the predicted infected cases (from the model) with actual infected
cases (real-world data). The actual cases show some variability (noise), which the stochastic
SEIR model captures better than a deterministic model, providing a more accurate reflection
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of real-world epidemic behaviour.
6.3.1. Accuracy of Peak Prediction:

One of the significant advantages of the stochastic SEIR model is its ability to predict the
peak infection period more accurately than deterministic models. In real-world outbreaks
like the 2009 HIN1 pandemic, the timing and height of the peak are critical for healthcare
planning and resource allocation.

The stochastic model successfully captured the variability in case counts and predicted the
peak of infections with greater accuracy. Deterministic models tend to offer a single
prediction for the peak, whereas the stochastic model provided a range of potential
outcomes, reflecting the uncertainty present in real epidemics.

6.3.2. Variability in Case Counts:

Real-world data from the HLN1 pandemic showed significant day-to-day fluctuations in case
counts, which the deterministic SEIR model could not fully capture. The stochastic SEIR
model, however, accounted for these fluctuations, modeling the random events that can
impact disease progression, such as super-spreading events or abrupt changes in population
behaviour (e.g., social distancing).

By generating uncertainty bands around predicted case counts, the stochastic model better
mirrored the real-world epidemic curve, offering a more flexible and reliable tool for public
health planning.

6.3.3 Reproduction Number (Ro) Comparison:

The estimated basic reproduction number (Ro) from real-world data for the HIN1 pandemic
was approximately 6, matching the model’s predictions. This close alignment further
supports the model's effectiveness in real-world applications.

The ability to accurately estimate Ro is crucial, as this metric determines how rapidly an
epidemic will spread and helps policymakers decide on interventions (e.g., vaccination
campaigns, quarantine measures).

6.4. Practical Implications:

Public Health Interventions: The stochastic SEIR model, through its more accurate
predictions, allows health authorities to make more informed decisions about intervention
strategies. For instance, knowing when the infection peak will occur enables better allocation
of medical resources, such as hospital beds, ventilators, or vaccines.

Uncertainty Bands: These bands provide a range of potential outcomes rather than a single
predicted value. This is particularly useful for epidemic forecasting, as it acknowledges the
inherent uncertainty and provides best-case and worst-case scenarios for decision-makers to
consider.

7. Conclusion

This paper presents a detailed analysis of the stochastic SEIR model, emphasizing its ability
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to capture the randomness and variability in disease spread, which is often missed by
traditional deterministic models. By introducing stochastic elements into the SEIR
framework, we accounted for real-world uncertainties, such as varying contact rates,
individual immune responses, and unpredictable super-spreading events.

o The key findings from our simulations demonstrate that stochastic models provide a
more realistic representation of epidemics, particularly during early stages or in smaller
populations.

. The random fluctuations in infection rates, incubation periods, and recovery times
create a more accurate depiction of how an epidemic might progress. For example, in some
simulation runs, the peak of infections occurred earlier or was higher than predicted by
deterministic models, while in others, the epidemic lasted longer or ended sooner than
expected.

o Moreover, the model was validated using real-world data from the 2009 H1IN1
pandemic, where the stochastic SEIR model proved more accurate in predicting the actual
spread of the disease.

o The basic reproduction number, RO, estimated at around 6, aligned with the observed
contagiousness, highlighting the model's capability to offer precise epidemic forecasts.

Stochastic SEIR models are particularly useful for public health policymakers because they
generate uncertainty bands, which indicate the range of possible outcomes. This allows for
better preparation, such as allocating resources, planning interventions, and implementing
health policies that account for both the best- and worst-case scenarios.

In conclusion, the stochastic SEIR model enhances our understanding of infectious disease
dynamics by incorporating real-world variability, making it an essential tool for predicting
outbreaks and guiding public health decisions. As diseases like COVID-19 and Ebola
continue to threaten global health, such models will be critical in shaping future response
strategies.

Future Scope

Integration of Real-Time Data: Enhancing the model with real-time health data for dynamic
and accurate outbreak forecasting during ongoing epidemics.

Incorporation of Behavioural Factors: Including adaptive behavioural changes like social
distancing and vaccination rates to refine predictions, especially in prolonged outbreaks.

Geospatial and Demographic Variability: Expanding the model to incorporate geographic
and demographic factors for localized epidemic forecasts and tailored public health
responses.

Intervention Strategy Optimization: Researching optimal public health interventions (e.g.,
quarantine, vaccination) under stochastic conditions to improve outbreak management.

Multi-Disease Modeling: Simulating multiple interacting diseases (e.g., co-infections) for a
more comprehensive public health decision-making tool.
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