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This study investigates the long-term dynamics of infectious diseases using a
stochastic Susceptible-Infectious-Recovered (SIR) model with seasonal forcing
and vital dynamics, including birth and death rates. By incorporating these
elements, we explore how seasonality and demographic turnover influence
epidemic patterns, creating complex oscillatory behaviours in susceptible,
infectious, and recovered populations. Our simulation results reveal that
seasonal variations in transmission rates drive epidemic cycles, while births and
deaths ensure disease persistence by continuously replenishing the susceptible
population. Stochastic factors introduce fluctuations, emphasizing the
unpredictability of outbreaks, particularly during low transmission periods.
These findings underscore the importance of integrating seasonal and
demographic factors into epidemic modeling, providing insights relevant to
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diseases with seasonal patterns, such as influenza. This framework offers a
foundation for further exploration of public health interventions, vaccination
strategies, and the impacts of heterogeneous population structures on disease
spread.

Keywords: stochastic SIR model, seasonal forcing, vital dynamics, epidemic
modeling, infectious disease dynamics, stochastic variability.

1. Introduction

Infectious disease modeling plays a crucial role in understanding the spread and control of
diseases within populations. The SIR (Susceptible-Infectious-Recovered) model is one of the
fundamental frameworks used to analyze the dynamics of infectious diseases. However, real-
world epidemics are influenced by multiple factors, such as seasonal changes, demographic
processes (births and deaths), and random variations. The stochastic SIR model extends the
traditional model by incorporating randomness and variability into the interactions, making it
more realistic for capturing unpredictable epidemic patterns [1-3].

In this study, we focus on two key extensions:

Seasonal forcing: Oscillating transmission rates often influenced by seasonal factors like
weather, behaviour, or social interaction patterns [4, 5].

Vital dynamics: Constant rates of birth and death, ensuring a realistic representation of
population turnover [6, 7].

We aim to examine how these factors interact to produce long-term epidemic dynamics and
explore the patterns that emerge in susceptible, infectious, and recovered populations.

2. Methodology
2.1 The SIR Model with Seasonal Forcing

The classical deterministic SIR model is governed by the following set of ordinary
differential equations, describing the flow of individuals through Susceptible (S), Infectious
(1), and Recovered (R) compartments [8, 9].

ds
o = —B(®)SI
dl
- B(£)SI —~I
dR
a 1

Where, B (t) is the time-varying transmission rate, influenced by seasonal factors, and y is the
recovery rate. The seasonal variation is modeled as a sinusoidal function to capture periodic
fluctuations [10].
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2.2 Stochasticity in the Model

To reflect the inherent randomness in disease transmission and recovery, we add stochastic
terms to the deterministic model. Key sources of stochasticity include:

Transmission events: Dependent on probabilistic interactions between susceptible and
infectious individuals [11].

Recovery events: Vary among individuals based on immune responses and healthcare access
[12].

The stochastic SIR model is simulated using Gillespie’s algorithm, which effectively
captures the random timing of events, such as transmission, recovery, births, and deaths [13].

3. Results

The stochastic SIR model was simulated for 20 years, and the results are summarized
through the following figures.

3.1 Seasonal Forcing on Transmission Rate

Figure 1 illustrates the time series of the transmission rate (B(t) under seasonal forcing. The
transmission rate oscillates annually, peaking at B(t)=0.36 and reaching a minimum of
B(t)=0.24. These fluctuations significantly impact infection dynamics by periodically altering
the likelihood of new infections [14, 15].

Figure 1: Transmission Rate (B(t)) Over Time with Seasonal Forcing
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This variation introduces significant changes to the infection dynamics by periodically
increasing and decreasing the likelihood of new infections.
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3.2 Stochastic SIR Model Dynamics

In Figure 2, we observe the population dynamics of the susceptible (S), infectious (I), and
recovered (R) compartments over a 10-year period. The susceptible population shows
periodic oscillations synchronized with the transmission rate, while the infectious and
recovered populations display comparatively smaller fluctuations [16, 17].

The peak in susceptible individuals coincides with periods of low transmission, while the
infectious population grows rapidly during transmission peaks. The recovered population
exhibits slower changes but remains stable in the long term.

Figure 2: Stochastic SIR Model with Seasonal Forcing and Vital Dynamics
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3.3 Epidemic Variability

Figure 3 illustrates the stochastic variability in epidemic outcomes. Although the infectious
population trends toward a long-term average, random variations persist, particularly during
low transmission periods when chance events significantly influence infection numbers [18,
19]. These fluctuations are a direct consequence of the stochastic nature of disease
transmission and recovery, particularly during periods of low transmission when chance
events can have a significant impact on infection numbers.
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Figure 3: Stochastic Variability in Epidemic Outcomes
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3.4 Long-Term Dynamics

Figure 4 presents the long-term dynamics of the model over a 20-year simulation. Seasonal
forcing maintains oscillations in susceptible and recovered populations, while the infectious
population stabilizes around a low average value. Births and deaths modulate these
oscillations, supporting the continual introduction of susceptible individuals into the
population [20, 21]. Births and deaths help maintain these oscillations, as new individuals

enter the susceptible pool, and individuals move through the stages of infection and
recovery.

Figure 4: Long-Term Population Dynamics with Birth and Death Rates
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4, Discussion

The results of this study underscore the critical influence of seasonal forcing, demographic
dynamics, and stochastic variability in shaping the patterns of infectious disease outbreaks.
This stochastic SIR model, which incorporates both periodic transmission changes and vital
dynamics, provides a nuanced understanding of the factors driving disease spread,
persistence, and variability over time.

4.1 Impact of Seasonal Forcing on Epidemic Cycles

One of the most striking findings from our model is the role of seasonal forcing in creating
oscillatory epidemic cycles. Seasonal variation in the transmission rate, modeled as a
sinusoidal function, leads to periodic increases and decreases in infection likelihood,
mirroring real-world seasonal trends in diseases such as influenza, measles, and respiratory
infections [1, 2]. These cycles align with observations that infection rates rise during colder
months in temperate climates, likely due to increased indoor activity, behavioral changes,
and potential climatic influences on pathogen stability and transmission [3, 4].

The seasonal oscillations produced in the model underscore the importance of considering
seasonality in public health planning and intervention timing. For example, healthcare
systems can allocate resources to prepare for seasonal surges in infectious diseases,
improving response effectiveness and minimizing healthcare strain. This model’s outputs
also suggest that vaccination campaigns targeting the start of high-transmission seasons may
optimize immunity buildup within populations, potentially reducing the peak of seasonal
outbreaks [5].

4.2 Role of Vital Dynamics in Disease Persistence

Vital dynamics—particularly birth and death rates—introduce a stabilizing force in the
model, with ongoing demographic turnover replenishing the susceptible population and
ensuring the continuity of epidemic cycles. In the absence of births and deaths, a single
epidemic wave would deplete the susceptible pool, eventually leading to disease extinction
within a closed population. However, vital dynamics allow for a consistent influx of new
susceptible individuals, which perpetuates the disease cycle even in the absence of external
pathogen reintroductions [6, 7].

This finding has significant implications for understanding diseases in long-lived populations
or settings with low mortality rates. For instance, diseases such as measles, where immunity
is typically lifelong post-infection or vaccination, continue to pose risks largely due to births
introducing susceptible individuals into the population over time [8]. Furthermore, in
populations with higher birth rates, the replenishment of susceptible can sustain more
frequent epidemic waves, potentially necessitating continuous public health interventions to
manage outbreaks [9, 10].

4.3 Influence of Stochastic Variability on Epidemic Outcomes

Stochastic variability, introduced through probabilistic transmission and recovery events,
captures the inherent unpredictability of real-world epidemics. In this model, stochasticity
leads to fluctuations in epidemic outcomes, particularly during periods of low transmission
when random events (e.g., a sudden outbreak in a small community) can substantially affect
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infection rates. These fluctuations highlight the challenges in predicting epidemic
trajectories, especially in low-transmission settings where even minor changes can shift
disease dynamics dramatically [11, 12].

This unpredictability has practical applications for public health response planning, as it
emphasizes the need for adaptive strategies that can quickly respond to unexpected spikes in
cases. The variability also illustrates how seemingly contained diseases might reemerge in
isolated populations due to stochastic “sparks” of infection, reinforcing the need for
continuous monitoring and responsive healthcare infrastructure [13].

4.4 Implications for Targeted Public Health Interventions

The study’s findings reveal the potential of seasonally optimized interventions and targeted
demographic strategies in managing infectious diseases. Since the transmission rate varies
periodically with seasonality, interventions—such as increased testing, mask mandates, and
vaccination drives—could be concentrated during high-transmission seasons to maximize
impact. By lowering infection rates during these peaks, healthcare systems can better
manage the epidemic load, thereby preventing healthcare infrastructure overload [14, 15].

Furthermore, incorporating demographic insights into disease control measures could guide
targeted vaccination efforts. In communities with high birth rates, where a larger fraction of
the population becomes susceptible over time, maintaining high vaccination coverage may
prevent the buildup of a large susceptible pool, thus reducing the frequency and severity of
epidemic waves [16]. The model’s results also suggest that in aging populations with lower
birth rates, the threat of widespread outbreaks may diminish over time, allowing for a more
relaxed but vigilant approach to disease management [17].

45 Limitations and Future Research Directions

While this model effectively captures long-term dynamics through stochastic SIR processes,
seasonal forcing, and vital dynamics, it also highlights areas for further exploration:

. Multi-strain Pathogen Dynamics: Future models could explore how interactions
between different strains, such as flu subtypes, affect long-term disease persistence and
oscillations, especially when compounded by seasonal forcing [18].

. Heterogeneous Population  Structures: Real-world populations often vary
significantly in age, health status, and immunity. Incorporating these demographic layers
could offer insights into disease spread among vulnerable subpopulations, such as children
and the elderly [19].

. Effect of Public Health Interventions: Simulating the impact of public health
strategies, such as vaccination, quarantine, and social distancing, within the model could
provide actionable insights on mitigating seasonal peaks and managing resource allocation
effectively [20].

. Environmental and Climatic Factors: External factors, like temperature and
humidity, are known to influence pathogen viability. Modeling these as additional variables
could further refine seasonal forcing and provide more accurate predictions for specific
regions [21, 22].
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4.6 Broader Relevance to Epidemic Management

This model’s insights have broader applications in epidemic management beyond specific
diseases. The combined effects of seasonal forcing, vital dynamics, and stochasticity may
apply to newly emerging pathogens, particularly respiratory viruses with seasonal
transmission patterns. Lessons from this model can inform pandemic preparedness
frameworks, ensuring that healthcare systems can flexibly respond to the nuanced and
complex dynamics of infectious disease outbreaks [23, 24, 25].

In summary, this study demonstrates how incorporating seasonality and demographic
turnover into epidemic models adds depth to our understanding of disease persistence and
unpredictability. By acknowledging the inherent variability in transmission rates and the
continuous renewal of susceptible populations, this model provides a robust foundation for
designing adaptive, evidence-based public health strategies.

5. Conclusion

This study demonstrates the critical role that seasonal forcing, demographic dynamics, and
stochastic variability play in shaping the long-term patterns and persistence of infectious
diseases. By enhancing the classical SIR (Susceptible-Infectious-Recovered) model with
these components, we have gained insights into the intricate behaviours of epidemic cycles
and the underlying factors that sustain or mitigate outbreaks. The findings from this research
have several important implications for understanding disease spread, preparing public
health responses, and developing targeted intervention strategies.

Key Findings

Seasonal Forcing: Seasonal changes in the transmission rate introduce periodic peaks and
troughs in infection rates, reflecting real-world patterns seen in diseases such as influenza
and measles. This seasonality emphasizes the importance of timing in epidemic cycles,
where high-transmission seasons drive recurrent surges in cases. The model highlights how
predictable seasonal patterns can inform the timing of preventative measures, such as
vaccination campaigns or public health advisories, to curb the impact of these surges.

Vital Dynamics and Disease Persistence: The inclusion of demographic factors, particularly
birth and death rates, adds a stabilizing component to the epidemic cycles. Demographic
turnover ensures a continuous influx of susceptible individuals, supporting the long-term
persistence of disease within a population even after previous waves of infection. This
insight is particularly relevant for understanding diseases with lifelong immunity post-
infection, where demographic renewal can re-establish susceptibility in the population and
thus sustain periodic outbreaks. In communities with high birth rates, this effect is more
pronounced, underscoring the need for sustained public health vigilance and ongoing
vaccination efforts to prevent large outbreaks.

Stochastic Variability and Unpredictable Epidemic Outcomes: Stochastic elements in the
model, including random variations in transmission and recovery events, illustrate the
inherent unpredictability of epidemic outcomes. This unpredictability becomes especially
significant during low-transmission periods when chance events can disproportionately
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influence the number of new infections. Such variability underscores the limitations of
deterministic models for predicting epidemic trajectories, as real-world epidemics are often
subject to unexpected fluctuations. The presence of stochastic effects calls for flexibility and
adaptability in public health strategies, enabling rapid responses to unexpected increases in
case numbers.

Implications for Public Health and Policy

This study’s findings hold practical value for designing epidemic management strategies.
The identification of seasonally driven epidemic patterns suggests that public health
interventions could be concentrated around high-transmission seasons to maximize their
effectiveness. Targeted vaccination programs and preventive measures, timed to precede
seasonal peaks, could significantly reduce infection rates and lessen healthcare burdens.
Furthermore, the role of demographic renewal in sustaining epidemics implies that public
health efforts should not only address immediate outbreaks but also account for long-term
population changes. Continuous vaccination coverage in high-birth-rate populations, for
example, can prevent the build-up of large susceptible pools, reducing the risk of severe
outbreaks over time.

Future Directions

The results from this model pave the way for several avenues of further research and
refinement. Future studies could incorporate additional complexities, such as:

Age-structured models that differentiate between age groups, allowing a better understanding
of transmission dynamics among vulnerable populations.

Multi-strain dynamics to explore interactions between different pathogen strains, such as
those seen with influenza subtypes, which may influence disease persistence and epidemic
intensity.

Environmental variables like temperature and humidity, which could modulate seasonal
forcing more accurately for specific pathogens and geographic regions.

By expanding the model to include these factors, researchers can develop a more
comprehensive framework for predicting and managing infectious diseases in diverse
settings. Additionally, simulating the effects of specific interventions, such as quarantine,
social distancing, or vaccination, within this model could provide valuable insights into the
optimal strategies for controlling future outbreaks.
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