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We use the a theoretical approach based on the matching method, Landauer-
Biittiker and Green formalism to investigate the local phonon density of states
(DOS) and the coherent conductance of phonon near the atomic step edge. The
model system, containing the atomic step defect, is composed of intersection on
three parallel semi-infinite monatomic layers and two parallel semi-infinite
monatomic layers. We analysed our model for different cases of elastic
hardening and softening. The purpose is to investigate how the local dynamics
can respond to changes in the microscopic environment on the perturbed
domain. The analysis of the total phonon conductance spectra and the densities
of vibration states identify characteristic features and demonstrate the possible
use, of atomic step defect, as filters of phonon.

Keywords: Localized phonons, step edge defect, transmission and reflection
coefficients, density of states , thermal conductivity, thermodynamic properties.

1. Introduction

Scattering of elastic waves due to structural defects and nanostructures accumulated in low-
dimensional systems is a fundamental problem of interest in solid-state physics. Most of the
recent studies in this field [1-3] show the localization mode around the defect region of the
perturbation system, resulting in several effects, such as wave reflection, resonance
scattering, and localization phenomena [5]. In all cases, the defect leads to an energy trap
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and is confined in the vicinity of the regional defect, which occurs in the form of spatially
localized phonons. Different experimental techniques have been used to measure the elastic
and mechanical properties of low-dimensional systems, in particular surface brillouin light
scattering [6], and surface acoustic wave spectroscopy [7].

To address the problems of vibration spectrum and phonon transmission, there are several
theoretical and numerical methods in the literature. The matching method is used here[8]. In
addition, both the local oscillation mode and the propagation mode scattering can be
analyzed within the same mathematical framework. The coherent scattering cross section for
phonon transmission is determined as a function of the incident frequency.

The harmonic approximation framework and vibrational waves scattered by atomic step edge
inhomogeneity in the nearest and nearest neighbors are studied. The system model is
considered to be on a solid surface without interaction with the substrate and consists of
atomic step edge intersections between three semi-infinite atomic layers and two semi-
infinite atomic layers. In the first step of this work, a complete lattice is investigated (left and
right of the perturbation area). In the second stage, defects in the atomic structure are
introduced, scattering waves are determined.

The local phonon density of states (DOS) and conductance are obtained and analyzed.

The conductance spectra showed a resonant behavior. In particular, it is shown that this
system leads to Fano resonance in the vibrational spectrum. These resonances are due to the
coherent coupling between the localized mode near the defect region and the propagated
wave of the complete waveguide.

In the next section we present a structural model and we will look at the sec.2 describes the
mode of a quasi-one-dimensional waveguide. 3 in seconds. The theoretical form scattering in
the perturbation region is given. Sec.4.1 and sec.In 4.2, we present a theoretical model of
localized phonon methods and steps, and density of states at the edge, respectively. In Sec5.1
and sec 5.2. Formal thermal conductivity and thermodynamic properties are shown,
respectively. Sec6 gives some numerical results and general conclusions.

2. THEORETICAL SYSTEM MODEL AND BULK DYNAMICS

The elastic interactions between nearest and next nearest neighbours in the domains to the
left and the right of the perturbed zone are represented respectively by the constants k1 and
k2, where the shaded area in Fig.1la, constitutes the effective atomic defect domain. The
elastic constants in this inhomogeneous boundary may differ from bulk values, and are hence
labelled k1d and k2d. It is convenient next to define the following ratios: r = k2/k1, rld =
k1d/k1, r2d = k2d/K1.
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Fig.1a: A schematic representation of a model for an extended atomic step egde ina
crystalline solid surface
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Fig.1b: The projection of the schematic representation of a model on the plane xoz

The dynamics of the system in the harmonic approximation, [9], are described by the
equation of motion of atomic sites I, given by
o’M(DUa()=-Zp a2 pk(1,1)ro.rp/d* [us(1)- ug(1)] (1)

The indices o and B denote Cartesian co-ordinates, m(l) is the atomic mass for site I, and
Ua(l) is the corresponding displacement vector vibration, of the | atom. The radius vector r

between the atomic sites at 1 and 1’, has Cartesian components r, , and d = Ir|. The force
constant between the two sites is k(1,1”).

For sites | and 1’ distant from the inhomogeneous boundary to the left and right of the
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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interval n € [-2,2] of Fig.1, the equations of motion may be cast, in the matrix form
[Q21 — D(n,k1,k2)]|U>=0 2)

D is a (6x6) matrix, and |U> is the corresponding displacement vector for a column of the
perfect waveguide, and n is the phase factor.

To illustrate the model, the propagating modes for the perfect waveguides are
presented in Fig.2 for a choice of r = 0.75, as a function of the normalized wave vector @x =
kxa, where @y runs in the interval [—=, 7] over the first Brillouin zone and a is the interatomic
distance between adjacent lattice sites.

There are two acoustical modes Qi and € characterized by the limiting behaviour of their
phonon branches, tending to zero frequency when the wavevector tends to zero, and four
optical modes with branches that differ from zero in the long-wavelength limit.

3. THE SCATTERING PROBLEM AT STEP EDGE

In order to render the problem tractable we need to decouple the dynamics of a
representative and irreducible set of sites at the inhomogeneous boundary of the perturbed
domain from the rest of the system. The represented sites of the step edge set are comprised
as in Fig.1a, from the sites labelled (), (b), (c), (d), (e), (F), (g), (h), (i). and (j).

The matching method [10-12] provides a framework for the calculation of the
localized modes as well as of the spectral densities. We are able to calculate the localized
modes. In this paper, however, the results for the localized mode are not presented. Our main
interest here is to calculate the spectral densities and the phononic conductance.

For an incoming propagating wave corresponding to the eigenmode i at a frequency Q and
incident from the left to right, the resulting scattered waves at Q2, are composed of a reflected
and a transmitted part. The Cartesian components o of the displacement field U(n,n’) for an
outside atom bordering the defect domain [-2, 2], may be expressed using the matching
approach. For a site inside the waveguide to the left of the defect, the displacement field
Uu(n,n’) can be expressed as the sum of the incident wave and a superposition of the
eigenmodes of the perfect wave guide reflected at the same frequency

Ua(n,n’) = umi" + Zm; "Rjju; with n<-2 (3)

Where the vectors u; denote the eigenvectors of the dynamic matrix for the perfect
waveguide at the frequency Q. Rjj are the reflection coefficients that describe the scattering
of a given incident wave i into the eigenmodes j =1, 2, 3, 4, 5, 6. For a site inside the wave
guide to the right of the defect, the displacement field U,"(n, n’) can be expressed by an
appropriate superposition of the eigenmodes of the perfect wave guide transmitted at the
same frequency

Uo'(n,n’) = Zim; "Tiy; with  n>2 4
Tj; are the transmission coefficients for incident wave i into the eigenmodes j =1, 2, 3, 4, 5, 6.
Consider a Hilbert space for the scattering and denote by [|R>, |T>] the basis vector
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for the reflection and transmission coefficients in this space, and by |U> that for the
displacements of a set of irreducible sites in the defect domain. The equations of motion for
the defect, coupled to the rest of the systems, may be written in terms of vector [|U>, |R>,
|T>]. Using the transformations connecting the displacement fields in Egs.(3)-(4), we obtain
a square linear inhomogeneous system of the equations of the form

[Q21 — Dm(n,F,F1a,r20)] [JlU>, |R>, [T>]= -[IH> )

Where the vector -|IH>, mapped appropriately onto the basis vectors, regroups the
inhomogeneous terms describing the incoming wave.

The solution of Eq.(5) yields the displacements |U> of the irreducible set of atomic sites for
the defect domain [-2, 2], as well as the reflection and transmission coefficients Rj and Tjjon
the perfect wave-guides.

The scattering behaviour is usually described in terms of the scattering matrix, which
elements are given by the relative reflection and transmission probabilities r;; and tj at the
scattering frequency Q. These are given by

ri = (Vai/ Vg) | Ryl? and ty= (Vg / V) | Ti|? (6)

Where in order to obtain unitarity of the scattering matrix, the scattered waves have to be
normalised with respect to their group velocity. Vgs is the group velocity of the eigenmodes,
put equal to zero for evanescent modes.

We can further define total reflection and transmission probabilities for a given eigenmode at
scattering frequency Q by summing over all the contributions

ri(€2) = () and () = 2iti(€2) (7

Furthermore, in order to describe the over all transmission of mesoscopic multichannel
systems at a given frequency Q, it is useful to define the conductance of the system (or the
domain defect transmittance) t(€2), by summing over all input and output channels

() = 22 tij () 8)

The sum is carried out over all propagating modes at frequency Q. The transmission
probabilities ti(€2) per eigenmode i, and the conductance of the system t(Q2), are important to
calculate because each corresponds indeed to an experimentally measurable observable.
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Fig.4 .Curve of the transmission and reflection coefficients as the dimension less frequencies
Q and the parameter of the system at neighborhood of the defect of the model
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Q and the parameter of the system at neighborhood of the defect of the mode2
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Fig.6 .Curve of the phononic conductance as function the dimension less frequencies QQ and
the parameter of the system at neighborhood of the defect of the model

4. 1.LOCALIZED PHONONS AT THE STEP EDGE

Consider the Cartesian x, y, and z-axes, referring to Fig.1a, as respectively parallel to the
directions [100] normal to the step edge, [ 1 00]

The the edge is next considered. This breaks the translation symmetry along the x axis
normal to its plane. To describe the step edge dynamic effects, there is need to consider both
the propagating and the evanescent eigenmodes along this axis. The eigenmodes are then
described in a general manner by the phase doublets {nx n«'} normal to the defect. The
propagating phonons satisfy the condition |nX = 1 whereas the evanescent eigenmodes are
determined from the condition |nx|< 1. The nontrivial doublet solutions {ny, nx'} are
calculated, as a function of the frequency Q, and of the force constants of the system, from
the solutions of the secular equation for the resultant matrix

[Q%1-D(e", ny, n], [15].

Since the dynamics of the step edge generate an infinite system of coupled equations, the
dynamics of an irreducible set of sites at the step edge need to be decoupled appropriately
from the rest of the system, in order to render the problem tractable, [13]. In the matching
domains at the left and the right of the defect, the vibration displacements u, for an atom
may be expressed in a constructed Hilbert space over the basis vectors |[R ) of the
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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evanescence field. Using Eq.4 for the surface vibrations, and the transformations mapping
the two vectors |R ) and |u>, we obtain a system of linear equations

[Dm( €', mx, Q, 0] Ju, R>=10>, 9)

where [Dm( €%, 1., Q, 1] is a characteristic square matrix, calculated in the matching
formalism. The dimensions of this matrix are characteristic of an irreducible set of sites at
the surface boundary, and of the size of the constructed Hilbert

space for the matching domain between the surface and the bulk. The matching formalism
provides a framework for the calculation of the localized modes and of the spectral densities
at the step edge..

By diagonalizing the matrix [Dm( €' , nx Q, )], we are able to calculate the Rayleigh
phonons that propagate in the high symmetry direction oy and which essentially decay
exponentially into the bulk. We assume that the force constants are unaltered in the defect.
They are calculated here for the step edge along the [010] direction, and are presented in
Fig.7. We identify an optic non dispersive Einstein mode, clearly visible in Fig.7 which are
situated under the bulk band frequencies.
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Fig.7: Localized phonons at the step edge as function the dimension less frequencies Q
and the parameter of the system at neighborhood of the defect.
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4.2. STATE DENSITY AT THE ATOMIC DEFECT

The most direct manner to calculate the spectral densities is via the Green’s functions, which
may be expressed formally [13], using equation (5), as

G(Q2+ig) = [(©Q2 + i)l — Dm(N,F.F1aF20)]” (10)

The vibration density of states (DOS) per atomic site |, is obtained next as a sum over the
trace of the spectral density matrix.

Ny(Q)=-2Q/r Y lim(lim[G" _ (Q2 +ig)]) (11)

The vibration spectra are calculated and presented for the different sites of the perturbed
domain in the following section.
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Fig.8: State density of Localized phonons at site 1= (b) of the step edge as function the
dimension less frequencies Q And the parameter of the system at neighborhood of the defect
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dimension less frequencies Q2 And the parameter of the system at neighborhood of the defect
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Fig.10: State density of Localized phonons at site 3 = () of the step edge as function the
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dimension less frequencies Q And the parameter of the system at neighborhood of the defect
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Fig.11: State density of localized phonons at the 4 = (g) site of the step edge as function of
dimension less frequencies Q and the parameters of the system at neighbourhood of the
defect
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Fig.12: State density of Localized phonons at site 5= (h) of the step edge as function
the dimension less frequencies Q And the parameter of the system at neighborhood of the
defect=(b)
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5.1. THERMAL TRANSPORT VIA THE ATOMIC STEP EDG

In this part, we will develop the numerical results of the study of the thermal conductivity of
phonons through the atomic junctions connecting three and two semi-infinite layers
waveguides. The calculation process was carried out by analogy with the calculations
developed by R. Landauer for the study of electronic transport. Our work will be oriented

directly towards the study of the reduced thermal conductivity K, = 21K /kgmgas a
function of the reduced temperature T, = kT /hwgusing the formula (13) given in the third
chapter. The study will include the effect of the length of the atomic defect, the angle of
incidence of the exciting wave ¢, ,.We will obtain a final expression for the thermal
conductivity of the form

szsmo _(hOJoTZ;QZ. eI, / kT .0 (®).dQ (12)
21 LkBTJ vy (eﬁmVQV/kBT N v

We define the reduced temperature by: T, =kgT / hmgand the reduced thermal conductivity
as follows: K, = 21K /kgzmg . The expression (12) becomes

K =2 f QF e/ 5 (0).dQ (13)
'
r 2 Vv r 2
v o Tr (eQ /T, _1) \Y

The Figures represent the variation of the reduced thermal conductivity of the system
perturbed by the atomic step edge connecting the two perfect waveguides, as a function of
reduced temperature for a variety of system parameters.

The reduced thermal conductivity which is defined as being the integral over the entire range
of propagation of the vibration modes, to within a factor, of the product of the square of the
Bose distribution with the phononic conductance. It is proportional to the reduced
temperature, it starts with zero for low temperatures then increases until reaching a
maximum value which differs depending on the system parameters.

In Figure, we have shown the influence of the atomic defect on the reduced thermal
conductance of the system, in the case of a ratio of elastic constants We notice that the
maximum thermal conductivity is better for the length and reaches approximately , then
gradually decreases in decreasing the length of the atomic wire until reaching approximately
in the case of the length . Therefore, we can say that the reduced thermal conductivity is
proportional to the length of the atomic step edge.

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Fig.13: Thermal conductivity of the step edge as function the temperature and the
parameter of the system at neighborhood of the defect

5.2. THERMODYNAMIC PROPERTIES.

Phonons, rooted in the foundations of quantum mechanics and embodying the principle of
wave-particle duality, exert a profound influence on a plethora of solid-state properties.
These include critical thermal attributes such as vibrational specific heat [14, 15], vibrational
free energy, vibrational internal energy [16-18], and vibrational entropy [19-21].
Consequently, the theory of lattice vibrations [36-44 becomes indispensable for the inclusion
of phonon contributions in the computation of thermodynamic properties.

Within the realm of statistical physics, the partition function Z serves as a cornerstone
concept that facilitates the deconvolution of the composite system into its harmonic
oscillators. This leads to a scenario where the partition function manifests as the product of
the individual partition functions corresponding to each vibrational mode [22, 23]. The
expression for this pivotal function is articulated as follows:

Eiqm

Z=% g KBT (14)

gy

The density of states is recognized as an exceptionally utilitarian metric in the realm of
physics[45-55], not only for its direct measurability but also for its conceptualization as a
continuous function in the context of the thermodynamic limit. This facilitates the
calculation of a myriad of thermodynamic properties, contingent upon the computation of the
vibrational density of states, thus serving as a vital precursor to further thermodynamic
inquiry [24-25].

In the framework of thermodynamics, the total energy of a system, commonly referred to as
the internal energy (U or E), particularly within a volume where the particle count is held
constant to preserve unchanged energy levels, is intricately linked to and derivable from the
partition function Z. The relationship between the internal energy and the partition function
is not only fundamental but also quantifiable, allowing for a robust method to compute the
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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internal energy [26]:
dLlogZ
aF

Considering the density of vibrational states D(w), the internal energy U is transformed into
the form [27]:

U,, =K T_I“x(ﬁ“] cc.th(*‘“) D(w)dw (16)

U= (15)

The free energy F of a system can be expressed as:
F,, =K T_]r Ln(2. smh( ) D(w)dw 7)
KEgT

The cohesive interrelation that seamlessly ties the free energy and internal energy in a
thermodynamic system paves the way to unearth a pivotal thermodynamic quantity: the
Vibrational Entropy, denoted as Svi,. Mathematically, vibrational entropy is expounded as:

Sy = KaT [ (—] {—] — Ln2sinh (—]]D(w—j dw (18)

Vibrational entropy[56-61] is distinctively defined as a thermodynamic variable intrinsically
associated with a system's state of particulate constituents. Its quintessential role is to
quantify the level of disorder or the extent of randomness present within a system.
Embracing the postulate that entropy exists as a tangible attribute, particularly in the analysis
of a substantial aggregate of particles conceived as a continuum, we proceed to its
quantification within the thermodynamic limit. The introduction of the vibrational density of
states function (®) permits the establishment of an expression for vibrational entropy,
providing a formulaic representation of this concept [28-31]:

Su =Kz [ [(*‘“j co th(ﬁ“ ) — Ln2sinh(o> D (w)dw (19)

Specific heat, another essential material property, mvolves two primary forms of energy
conduction in a solid; electronic and through atomic vibrations. Focusing on the phonon
contribution (atomic vibration) and specifically the specific heat at constant volume due to
its fundamental nature for solids, it is definded by [32-35]:

oo " Fw }© 1

Coin = Kz | [(KB_T) -ME}]D(WMW (20)
ET

It’s crucial to note that the vibrational specific heat encompasses the energy density variation

associated with network vibrations as per temperature. The total system energy,

encompassing the contributions of all particles within the system, is derived concerning the

temperature T.

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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6. NUMERICAL APPLICATIONS AND CONCLUSIONS

The step edge monatomic defect, are presented in Fig.1a. The perturbed domain is taken on
gray area. The scattering of the phonons at the domain defect is studied with reference to
incident vibrational waves of the perfect wave-guide, which is split into its transmitted and
reflected parts.

The results presented in this section are obtained with reference to phonons incident from the
left of the domain defect to right in Fig.1a. The numerical analysis is carried out for three
different cases determining a choice of the elastic properties of the perturbed domain.

(i) r1g=0.9, r=0.75, r,=0.65

(i) rg=1.0, rg=r=0.75

iii) rig=1.1, r=0.75, r,¢=0.85.

Which is a reasonable possibility (softening, homogeneous and hardening).

The states density (DOS) for the above sites, are presented in figure 4, for the individual
sites, (a), (b) (c), (d),(e),(f), (g) and (h) from top to bottom, and are arranged so that the
columns from left to right correspond to the cases (i), (ii) and (iii). There is evidence with
reference to the DOS, for a localized collective resonance about Q=0.5 for the ensemble of
the irreducible sites of the nano domain.

It is observed that the energy line of this mode goes to higher frequencies with increasing
hardness of the elastic constants: Q2 = 0.45 for (i), Q = 0.50 for (ii), Q = 0.55 for (iii).

The changes in Q are of the order of magnitude of the changes considered for the elastic
constants of the nanocontact domain, which leads us to the conclusion that this mode would
correspond primarily to a collective vibration of the nanocontact domain in the potential step
edge.

The corner sites (8, 11) do not present any other features attesting to more of a role of
confinement for the nanocontact domain. The analysis of their DOS vyields a number of
further conclusions.

In contrast, the pair of sites (3, 5) present a specific resonance lines, at Q = 1.25, that do not
show up for any of the other sites in the nanocontact domain. We interpret this by assigning
these resonance lines to collective localized vibration modes of the pair of sites (3, 5) against
the rest of the system where all sites remains stationary.

In conclusion, we have presented a simple model for the study of the vibration spectra of an
atomic nanocontact which acts as the joint between two sets of semi-infinite monatomic
chains. It enables one to address questions regarding the mechanical properties of
nanocontacts. The analysis of the vibration spectra and of the DOS of the set of irreducible
sites in the nanocontact domain demonstrates the central role of a core subset of these sites
for the dynamics of the nanocontact. It can also serve towards the study of granular chains
constructed in an analogous manner on the classical macroscopic scale.

Nanotechnology Perceptions Vol. 20 No.6 (2024)
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