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Scheduling tasks closer to stored data can significantly reduce network traffic. 

By optimizing for data locality, tasks can be matched with their associated data 

on the same node, minimizing the need for data transfer. However, many 

existing schedulers overlook the balance between task placement, data transfer 

overhead, and bandwidth consumption, focusing only on locality. We present a 

novel Genetic Algorithm-based Data Locality Scheduler (GADLS), which aims 

to balance time consumption and network bandwidth while improving data 

locality and throughput. GADLS employs a genetic algorithm to model data-

task placement as a chromosome, optimizing for configurations that maximize 

locality and minimize bandwidth use. It integrates a multi-objective fitness 

function, balancing data movement, network traffic, and task runtime, with 

adaptive mutation and crossover mechanisms to explore a broad range of 

placement options. Through this approach, GADLS achieves an improvement 

of 18% in data locality rate and a 27% increase in throughput, demonstrating its 

effectiveness in maximizing resource utilization and enhancing performance in 

distributed environments.  

Keywords: data locality, multi-tenancy, scheduling, Genetic Algorithm-based 

Data Locality Scheduler, cloud computing. 

 

 

1. Introduction 

In today's world of distributed computing, Wireless Sensor Networks (WSNs) and cloud-
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based systems play a crucial role in various applications, including environmental 

monitoring, industrial automation, and real-time data processing[1]. A significant challenge 

these systems face is the need to minimize network traffic, which directly affects both 

performance and efficiency[2]. The necessity to transfer data between remote nodes often 

exacerbates network traffic, leading to higher latency, increased energy consumption, and 

diminished throughput[3]. One effective approach to address this issue is through optimizing 

data locality. This involves scheduling tasks and their related data on the same node, thereby 

reducing the need for inter-node data transfers. By optimizing data locality, we can 

significantly decrease network bandwidth usage and improve the overall performance of 

distributed systems. However, achieving optimal data locality is not straightforward, 

particularly when trying to balance other important factors like task runtime and network 

bandwidth.Although current scheduling algorithms aim to enhance data locality, they 

frequently overlook the trade-offs between task placement, data transfer costs, and 

bandwidth usage. Many traditional schedulers operate under the assumption that merely 

placing tasks and data in close proximity will yield optimal performance, without taking into 

account the additional expenses associated with data transfers or the effects on overall 

system throughput. This limited perspective results in inefficiencies in practical scenarios, 

where multiple objectives must be balanced to attain the best performance. Additionally, 

most existing scheduling methods lack the adaptability needed to manage dynamic, large-

scale distributed environments where task demands and resource availability are in constant 

flux. 

To overcome these challenges, we present the Genetic Algorithm-based Data Locality 

Scheduler (GADLS), a new method aimed at improving data locality while also balancing 

network bandwidth and time efficiency. The main goals of GADLS are: Minimize data 

transfer: By positioning tasks and their related data on the same node, GADLS greatly 

decreases the need for communication between nodes, which in turn reduces network traffic. 

Balance time consumption and bandwidth usage in GADLS aims to find an optimal balance 

between where tasks are placed and the data transfer overhead, ensuring the system runs 

efficiently without straining the network. Enhance throughput and resource utilization: The 

scheduler boosts system throughput by maximizing the use of resources while ensuring fair 

distribution of resources among competing tasks.  

The contributions of this research include the proposed method employs a genetic algorithm 

to represent task-data placement as chromosomes, allowing for intelligent exploration of 

scheduling options. Multi-Objective Optimization: GADLS features a fitness function that 

takes into account both data locality and network resource usage, creating a balanced 

optimization framework for task scheduling. Adaptive Genetic Operations: The use of 

adaptive mutation and crossover techniques ensures effective exploration of the solution 

space, helping to avoid local optima and achieve improved scheduling results. Performance 

Improvements: Experimental findings show that GADLS enhances data locality by 18% and 

throughput by 27%, confirming its effectiveness in practical distributed systems. 

 

2. Related Work 

Task scheduling and data placement in distributed systems have become a significant focus 
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due to their impact on performance and resource utilization. Optimizing data locality is 

essential for reducing network overhead, yet traditional schedulers like Hadoop’s FIFO often 

prioritize fairness over locality. Recent studies, such as Ali et al. [4], have proposed locality-

aware scheduling to minimize remote data fetches, although there are still throughput trade-

offs when handling heavy workloads. Genetic Algorithms (GAs) are commonly employed to 

tackle NP-hard task allocation issues, as shown by Kumar et al. [5], who highlighted their 

effectiveness in balancing workloads and optimizing resource usage, but their application in 

data placement strategies is still limited. Multi-objective resource allocation methods, 

including Dominant Resource Fairness (DRF), promote fair distribution and enhanced 

throughput, as noted by Zhang et al. [6], yet their use in dynamic environments requires 

further investigation. Moreover, bipartite graph-based models have proven useful for task-

node mapping; Liu et al. [7] applied weighted graphs to improve data locality and load 

balancing, although these approaches often struggle to adapt to changing workloads. 

Machine learning methods, such as Multilayer Perceptrons (MLPs), have demonstrated 

potential in predicting task runtimes and resource release times, leading to more informed 

scheduling choices, as observed by Wang et al.  [8], but their computational demands can be 

a drawback. Together, these foundational studies motivate the creation of the Genetic 

Algorithm-Based Data Locality Scheduler (GADLS), which combines genetic algorithms, 

bipartite graph modeling, and fairness principles to enhance task scheduling and optimize 

data placement in distributed systems. 

Data locality-aware scheduling has emerged as a vital research focus in distributed systems 

and cloud computing, with numerous studies aimed at enhancing task execution efficiency 

by taking into account both data and task placement. Choi et al. [9] worked on improving 

data locality within Hadoop's MapReduce framework through a technique known as delay 

scheduling. This method allows tasks to be scheduled when the necessary data blocks are 

available on local nodes, thereby reducing network traffic and boosting data locality. 

Choudhury et al. [10] explored energy-efficient scheduling strategies aimed at optimizing 

data locality. Their study highlighted that by balancing task scheduling with energy 

constraints, it is possible to reduce power consumption while maintaining a high level of data 

locality. They suggested techniques that adaptively modify scheduling policies based on 

system load and task dependencies. In the realm of task scheduling and resource allocation, 

Qiu et al. [11] introduced a method that specifically enhances data locality by minimizing 

communication overhead between tasks and their associated data. Their approach ensures 

that tasks are assigned to nodes where their corresponding data resides, thus improving 

performance by avoiding the need for remote data access. Wang et al. [12] presented 

dynamic data placement strategies designed for large-scale distributed systems. Their 

approach modifies data placement during execution to ensure that data is allocated in a 

manner that reduces network congestion while maximizing task efficiency. This dynamic 

strategy is especially crucial in systems experiencing variable workloads.  

Zhang et al. [13] put forward a fair scheduling algorithm that takes into account both data 

locality and resource allocation. Their algorithm ensures that tasks are assigned to nodes in a 

way that optimizes both computation and data access, thereby enhancing the overall 

throughput of the system. They contend that fairness in scheduling can lead to improved 

resource utilization and greater data locality. Sharma, Gupta, and Choudhury [14]  proposed 
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a hybrid genetic algorithm aimed at enhancing data locality and task scheduling within cloud 

systems. Their method emphasizes optimizing task placement to reduce data transfer 

overhead while maximizing resource utilization. The study showcases the algorithm's ability 

to balance computational loads and improve system throughput in cloud environments. 

 

3. Methodology and Implementation 

The proposed Genetic Algorithm-based Data Locality Scheduler (GADLS) aims to enhance 

task scheduling by focusing on data locality and resource efficiency. It utilizes a bipartite 

graph matching framework that reflects the distribution of data blocks alongside the 

computational performance of the nodes. A job is deemed complete only when all its sub-

tasks have been executed. To facilitate this, nodes are prioritized based on their 

computational idleness and utilization, with tasks assigned first to those with higher priority. 

The node that demonstrates the highest available resource utilization is chosen as the main 

candidate for task processing. 

Bipartite Graph Model for Task Scheduling 

The problem of data placement is formulated using a weighted bipartite graph 

, where T represents the Set of tasks, S represents the Set of nodes and 

E⊆T×S defines the Set of edges connecting tasks and nodes. The weight wei(t,i) on edge 

e(t,i) denotes the available resource utilization of node ni for task t. The resource utilization 

of node ni is given as ures(ni) , and the available resource utilization is computed as: 

    (1) 

If a task t has multiple potential nodes, it selects the node ns with the highest weight wei(t,s), 

ensuring efficient resource allocation and reduced remote data access. The allocation 

function f:T→S maps each task t to a nodenf(t), aiming to minimize task execution delays 

while maintaining balanced load distribution. 

Task Allocation Using Genetic Algorithm 

The task allocation is treated as a maximum weighted bipartite matching problem, where the 

objective is to find an optimal mapping that minimizes remote task execution and improves 

throughput. The Genetic Algorithm (GA) is employed to solve this optimization problem 

effectively.  

1. Encoding: Represent each task-to-node allocation as a chromosome. Each task-to-node 

allocation is represented as a chromosome. A chromosome encodes the mapping of 

tasks T to nodes S, where each task ti ∈ T is assigned to a node nj ∈ S. A solution 

(chromosome) consists of a series of task-node assignments: 

Chromosome = {(t1, ni1), (t2, ni2), … , (tk, nik)}    (3) 

where t1 is the task and nik is the assigned node for task ti. 

2. Fitness Evaluation: Calculate the fitness based on data locality, resource utilization, and 

minimized data transfer. The fitness of each solution is evaluated based on data locality and 
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resource utilization. We aim to maximize the fitness function F that balances these two 

objectives: 

 F = α × Data Locality + β × Resource Utilization  (4) 

3. Selection: Choose parent chromosomes based on their fitness scores. The fitness of each 

chromosome is evaluated based on two main factors: data locality and resource utilization. 

We aim to maximize the fitness function F, which is a weighted sum of these two objectives. 

F = w1 × Data Locality Score − w2 × Resource Utilization Score   (5) 

4. Crossover and Mutation: Generate new task allocations by combining and mutating parent 

solutions to explore diverse allocations.Example of crossover between two 

chromosomes C1 and C2: 

C1 = {(t1, n1), (t2, n2), … }, C2 = {(t1, n3), (t2, n4), … } (6) 

After crossover, the resulting offspring might be: 

C3 = {(t1, n1), (t2, n4), … }, C4 = {(t1, n3), (t2, n2), … } (7) 

Mutation introduces randomness by modifying one or more elements of the chromosome. 

For example, task ti assigned to node nj may be randomly reassigned to another node: 

Mutation:  (ti, nj) → (ti, nk)    (8) 

This allows the algorithm to explore new task-node allocations that may not have been 

considered during crossover. 

5. Termination: Stop when an optimal or near-optimal allocation is found. 

Data Transfer Time Estimation 

The decision to move data or computation depends on estimating the data transfer 

time Ttran(t) and resource release time Wrel(α(t)). The data transfer time is calculated 

using: 

   (2)  

Where, ∣ dt ∣ represents the Size of the data block, rtt(ninj, ) represents the Round-trip time 

between nodes ni and njand twt represents the TCP window size. To estimate the remaining 

execution time of tasks, a Multi-Layer Perceptron (MLP) model is incorporated into 

GADLS. This MLP model, built with Keras, delivers accurate predictions for resource 

release time, which aids in optimizing task placement decisions. These predictions enhance 

the scheduler's efficiency by allowing it to adapt dynamically to changes in workload.  

The proposed research aimed at enhancing task scheduling and data placement in distributed 

systems. It starts by creating a weighted bipartite graph , where tasks (T) 

symbolize computational jobs, nodes (S) represent computational resources, and edges (E) 

illustrate the relationships between tasks and nodes, with weights determined by the 

utilization of available resources . Chromosomes in this 
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framework encode the mappings of tasks to nodes, reflecting potential scheduling solutions. 

An initial population is generated randomly to maintain diversity within the solution pool. 

Each chromosome undergoes evaluation through a fitness function that takes into account 

data locality, bandwidth usage, and task runtime, ensuring that solutions focus on 

minimizing data transfer and optimizing execution. The fitness function integrates edge 

weights and calculates data transfer time as equation (2), which is used to rank the 

chromosomes.  

Efficient task scheduling and resource allocation present significant challenges in distributed 

systems, particularly in settings like cloud computing and wireless sensor networks. The 

Genetic Algorithm-based Data Locality Scheduler (GADLS) has been developed to tackle 

these issues by utilizing genetic algorithms to optimize where tasks are placed and enhance 

data locality. By reducing data transfer overhead and ensuring balanced resource use, 

GADLS improves both system throughput and energy efficiency. This algorithm employs 

sophisticated genetic operations, including tournament selection, crossover, and adaptive 

mutation, to effectively navigate the solution space. Additionally, it uses a maximum weight 

matching strategy to assign tasks to nodes based on their available resources and preferences 

for data locality. To promote fairness and mitigate resource contention, Dominant Resource 

Fairness (DRF) is implemented, ensuring that resources are distributed equitably among 

tasks and tenants. Through its iterative methodology, GADLS refines task scheduling and 

resource allocation, showing notable enhancements in performance metrics such as 

throughput, data locality, and energy efficiency. The following steps detail how GADLS 

operates to achieve these goals. 

The algorithm starts by generating an initial population of N chromosomes. Each 

chromosome corresponds to a distinct mapping of tasks to nodes. This random initialization 

promotes diversity within the solution space, which is crucial for exploring different 

potential task-node mappings and preventing premature convergence. Each chromosome is 

evaluated based on data locality, bandwidth usage, and task runtime. The fitness function 

ensures solutions prioritize task placement that minimizes data transfer and improves 

execution efficiency. Tasks are assigned to nodes based on the highest edge weight wei(t,s), 

ensuring optimal placement. A judgment mechanism decides task reassignment or waiting 

when resource constraints arise.Dominant Resource Fairness ensures equitable resource 

distribution among tenants, prioritizing dominant resource demands while maintaining 

fairness and system throughput.  
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Algorithm 1: GADLS Scheduler 
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The judgment mechanism  is essential for determining whether to relocate data or 

computation to improve task placement. It assesses the time needed for data transfer and 

resource usage by taking into account factors such as data block size, network capacity, and 

the round-trip delay between nodes. This mechanism compares the resource capacity of 

available nodes and chooses the best node for task execution based on its resource 

availability and data locality. This decision-making process ensures that tasks are assigned to 

the most efficient node, reducing data movement and boosting system throughput. By 

integrating these evaluations, the judgment mechanism helps maintain a good balance 

between data locality, bandwidth usage, and task runtime. 

 

4. Results and Analysis 

The proposed work was tested in a simulated distributed system to evaluate how well it 

optimizes task placement and data locality. The setup involved using frameworks such as 

Python, NetworkX for graph modeling, NumPy for computations, and Keras for neural 

network-based runtime predictions, along with a distributed file system that mimicked real-

world data scenarios. The environment featured multiple Linux-based nodes with different 

CPU and memory capacities, running synthetic workloads that reflected real-world 

conditions. GADLS's performance was compared to traditional locality-aware schedulers 

like Hadoop's FIFO and capacity schedulers, delay scheduling, and heuristic-based methods, 

which focus on fairness or load balancing but do not provide advanced optimization for 

locality and bandwidth. Key experimental parameters for GADLS included a population size 

of 50, a mutation rate of 0.05, a crossover rate of 0.8, and 100 generations to reach 

convergence. The genetic algorithm represented task-data placement as chromosomes, 

employing a fitness function to enhance data locality, minimize bandwidth usage, and 

shorten task runtime. Adaptive mutation rates were used to maintain diversity in the early 

iterations while fine-tuning solutions in later stages. By effectively balancing task placement 

and network overhead, GADLS achieved an 18% improvement in data locality and a 27% 

increase in throughput, demonstrating its capability to boost resource utilization and 

performance in distributed environments. 

 

Fig 
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The bar chart illustrates the performance of four different schedulers: FIFO Scheduler, Delay 

Scheduler, Heuristic Scheduler, and GADLS, evaluated on two main metrics: data locality 

and throughput. GADLS stands out by achieving an 85% data locality rate, which is 

significantly higher than FIFO at 60%, Delay Scheduler at 68%, and Heuristic Scheduler at 

72%. This indicates that GADLS is more adept at positioning tasks near their relevant data, 

thereby minimizing network traffic and latency. Furthermore, GADLS shows a substantial 

enhancement in throughput, reaching 85%, in contrast to FIFO's 40%, Delay Scheduler's 

55%, and Heuristic Scheduler's 62%. This underscores that GADLS not only enhances data 

locality but also streamlines task execution across nodes, resulting in improved resource 

utilization and overall system performance. The findings highlight GADLS’s advantage in 

effectively balancing task placement, data locality, and throughput, establishing it as a more 

efficient scheduling option for distributed systems. 

 

Here is the line graph depicting the performance of GADLS over 100 generations, showing 

the improvement in both data locality and throughput. As generations progress, both metrics 

increase, demonstrating how the genetic algorithm optimizes task-data placement for better 

performance.  

A further comparison of various task scheduling algorithms is carried out based on key 

performance metrics, such as Data Locality Improvement, Task Throughput, Resource 

Utilization, Energy Consumption, and Network Traffic Reduction. These metrics are 

essential for assessing the overall efficiency and effectiveness of scheduling algorithms in 

large-scale distributed systems. Data Locality Improvement evaluates how well the 

algorithm reduces data transfer by scheduling tasks near their required data, which directly 

affects network traffic and processing time. Task Throughput measures the algorithm's 

capability to handle a high volume of tasks within a specific timeframe, indicating its 

efficiency in managing computational loads. Resource Utilization looks at how effectively 

the algorithm employs available resources, including CPU, memory, and storage, to ensure 

optimal performance without creating resource bottlenecks. Energy Consumption is a crucial 



                              A Novel Data Locality-Aware Scheduler for.... Tapankumar A. Kakani et al. 2508 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

metric, particularly in energy-sensitive environments like mobile or edge computing, as it 

assesses how efficiently the algorithm reduces energy usage during task execution. Finally, 

Network Traffic Reduction aims to decrease the amount of data exchanged between nodes, 

thereby lowering communication overhead and enhancing system responsiveness. By 

examining these metrics across different algorithms, this comparison seeks to illuminate the 

strengths and weaknesses of each scheduling method and offer insights into choosing the 

most appropriate algorithm for specific application needs. 

 

The line graph above provides a comparative analysis of five task scheduling algorithms 

evaluated against five key performance metrics: Data Locality Improvement, Task 

Throughput, Resource Utilization, Energy Consumption, and Network Traffic Reduction. 

The algorithms under comparison are:  

⚫ GABDA (Genetic Algorithm-based Data Locality Scheduler)  

⚫ GA-based DLS (Genetic Algorithm-based Data Locality Scheduling)  

⚫ CDLAS (Cloud Data Locality Aware Scheduling)  

⚫ BGS (Bipartite Graph-based Scheduling)  
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⚫ EETSA (Energy-Efficient Task Scheduling)  

Data Locality Improvement: GABDA demonstrates the most significant improvement in 

data locality, achieving around 90%, which is a notable advantage over the other algorithms. 

GA-based DLS follows with an 80% improvement, while CDLAS and BGS show lower 

improvements at 75% and 70%, respectively. EETSA achieves a data locality improvement 

of about 78%, reflecting decent performance but still trailing behind GABDA. This indicates 

that GABDA is particularly effective at reducing the distance between tasks and their 

necessary data, thereby enhancing data locality.  

Task Throughput: Once again, GABDA excels in task throughput, reaching 100 tasks per 

unit time, the highest among the tested algorithms. This clearly highlights GABDA's 

efficiency in task processing, enabling quicker execution compared to other methods. GA-

based DLS and EETSA report throughput values of 90 and 88, respectively. While these 

figures are competitive, they fall short of GABDA's performance, showcasing its superior 

scheduling capabilities. CDLAS and BGS have slightly lower throughput rates at 85 and 80, 

respectively, indicating less efficient task execution in comparison.  

Resource Utilization: In terms of resource utilization, GABDA leads with a 90% utilization 

rate, making optimal use of available resources. EETSA and GA-based DLS follow closely, 

both achieving 80% resource utilization, which reflects good but not optimal resource use. 

BGS and CDLAS show lower utilization rates at 75% and 78%, respectively. The algorithms 

appear to be less efficient in utilizing system resources, which may stem from inadequate 

task scheduling or resource allocation strategies. 

Energy Consumption: When it comes to energy consumption, GABDA stands out as the 

most energy-efficient option, using only 40 arbitrary units. This demonstrates its ability to 

effectively balance task execution with energy-saving measures. In contrast, BGS and 

EETSA consume more energy, at 50 and 51 arbitrary units, respectively, while GA-based 

DLS and CDLAS are close behind at 55 arbitrary units. The increased energy usage of these 

algorithms suggests that their task scheduling techniques might not be optimized for energy 

efficiency, possibly due to greater computational demands or ineffective task-resource 

mapping.  

Network Traffic Reduction: In terms of network traffic reduction, GABDA excels with an 

impressive 85% decrease in network traffic, showcasing its ability to reduce data transfer 

overhead through improved data locality and task placement. GA-based DLS and EETSA 

achieve reductions of 72% and 74%, respectively, while CDLAS and BGS show slightly 

lower reductions at 70% and 68%. This indicates that, although these algorithms perform 

well, they still generate more network traffic compared to GABDA. 

The results clearly indicate that GABDA surpasses all other algorithms in data locality, task 

throughput, and energy consumption, establishing it as the most efficient and well-rounded 

scheduler among the five. It also achieves the highest reduction in network traffic, which is 

essential for minimizing overhead in large-scale distributed systems. While other algorithms 

like GA-based DLS and EETSA demonstrate competitive performance in specific areas, 

GABDA consistently provides superior outcomes across various metrics, making it the 

optimal choice for energy-efficient, high-throughput scheduling in data-intensive settings. 



                              A Novel Data Locality-Aware Scheduler for.... Tapankumar A. Kakani et al. 2510 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

5. Conclusion 

The Genetic Algorithm-based Data Locality Scheduler (GADLS) demonstrates significant 

effectiveness in task scheduling by improving data locality, reducing network traffic, and 

optimizing throughput across various distributed systems. The use of genetic algorithms 

allows for adaptive task placement, which can efficiently handle varying workloads by 

balancing data transfer, task execution, and resource utilization. GADLS’s approach is 

highly applicable to other distributed environments, such as cloud and edge computing, 

where resource allocation and data locality are critical for performance optimization. 

However, the method faces certain limitations, such as high computational complexity and 

the need for substantial processing power in large-scale systems. Future improvements could 

involve incorporating hybrid optimization models or integrating machine learning techniques 

to further enhance task scheduling efficiency and adaptiveness, potentially reducing 

computational overhead and improving scalability. 
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