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Scheduling tasks closer to stored data can significantly reduce network traffic.
By optimizing for data locality, tasks can be matched with their associated data
on the same node, minimizing the need for data transfer. However, many
existing schedulers overlook the balance between task placement, data transfer
overhead, and bandwidth consumption, focusing only on locality. We present a
novel Genetic Algorithm-based Data Locality Scheduler (GADLS), which aims
to balance time consumption and network bandwidth while improving data
locality and throughput. GADLS employs a genetic algorithm to model data-
task placement as a chromosome, optimizing for configurations that maximize
locality and minimize bandwidth use. It integrates a multi-objective fitness
function, balancing data movement, network traffic, and task runtime, with
adaptive mutation and crossover mechanisms to explore a broad range of
placement options. Through this approach, GADLS achieves an improvement
of 18% in data locality rate and a 27% increase in throughput, demonstrating its
effectiveness in maximizing resource utilization and enhancing performance in
distributed environments.

Keywords: data locality, multi-tenancy, scheduling, Genetic Algorithm-based
Data Locality Scheduler, cloud computing.

1. Introduction

In today's world of distributed computing, Wireless Sensor Networks (WSNs) and cloud-
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based systems play a crucial role in various applications, including environmental
monitoring, industrial automation, and real-time data processing[1]. A significant challenge
these systems face is the need to minimize network traffic, which directly affects both
performance and efficiency[2]. The necessity to transfer data between remote nodes often
exacerbates network traffic, leading to higher latency, increased energy consumption, and
diminished throughput[3]. One effective approach to address this issue is through optimizing
data locality. This involves scheduling tasks and their related data on the same node, thereby
reducing the need for inter-node data transfers. By optimizing data locality, we can
significantly decrease network bandwidth usage and improve the overall performance of
distributed systems. However, achieving optimal data locality is not straightforward,
particularly when trying to balance other important factors like task runtime and network
bandwidth.Although current scheduling algorithms aim to enhance data locality, they
frequently overlook the trade-offs between task placement, data transfer costs, and
bandwidth usage. Many traditional schedulers operate under the assumption that merely
placing tasks and data in close proximity will yield optimal performance, without taking into
account the additional expenses associated with data transfers or the effects on overall
system throughput. This limited perspective results in inefficiencies in practical scenarios,
where multiple objectives must be balanced to attain the best performance. Additionally,
most existing scheduling methods lack the adaptability needed to manage dynamic, large-
scale distributed environments where task demands and resource availability are in constant
flux.

To overcome these challenges, we present the Genetic Algorithm-based Data Locality
Scheduler (GADLS), a new method aimed at improving data locality while also balancing
network bandwidth and time efficiency. The main goals of GADLS are: Minimize data
transfer: By positioning tasks and their related data on the same node, GADLS greatly
decreases the need for communication between nodes, which in turn reduces network traffic.
Balance time consumption and bandwidth usage in GADLS aims to find an optimal balance
between where tasks are placed and the data transfer overhead, ensuring the system runs
efficiently without straining the network. Enhance throughput and resource utilization: The
scheduler boosts system throughput by maximizing the use of resources while ensuring fair
distribution of resources among competing tasks.

The contributions of this research include the proposed method employs a genetic algorithm
to represent task-data placement as chromosomes, allowing for intelligent exploration of
scheduling options. Multi-Objective Optimization: GADLS features a fitness function that
takes into account both data locality and network resource usage, creating a balanced
optimization framework for task scheduling. Adaptive Genetic Operations: The use of
adaptive mutation and crossover techniques ensures effective exploration of the solution
space, helping to avoid local optima and achieve improved scheduling results. Performance
Improvements: Experimental findings show that GADLS enhances data locality by 18% and
throughput by 27%, confirming its effectiveness in practical distributed systems.

2. Related Work

Task scheduling and data placement in distributed systems have become a significant focus
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due to their impact on performance and resource utilization. Optimizing data locality is
essential for reducing network overhead, yet traditional schedulers like Hadoop’s FIFO often
prioritize fairness over locality. Recent studies, such as Ali et al. [4], have proposed locality-
aware scheduling to minimize remote data fetches, although there are still throughput trade-
offs when handling heavy workloads. Genetic Algorithms (GAs) are commonly employed to
tackle NP-hard task allocation issues, as shown by Kumar et al. [5], who highlighted their
effectiveness in balancing workloads and optimizing resource usage, but their application in
data placement strategies is still limited. Multi-objective resource allocation methods,
including Dominant Resource Fairness (DRF), promote fair distribution and enhanced
throughput, as noted by Zhang et al. [6], yet their use in dynamic environments requires
further investigation. Moreover, bipartite graph-based models have proven useful for task-
node mapping; Liu et al. [7] applied weighted graphs to improve data locality and load
balancing, although these approaches often struggle to adapt to changing workloads.
Machine learning methods, such as Multilayer Perceptrons (MLPs), have demonstrated
potential in predicting task runtimes and resource release times, leading to more informed
scheduling choices, as observed by Wang et al. [8], but their computational demands can be
a drawback. Together, these foundational studies motivate the creation of the Genetic
Algorithm-Based Data Locality Scheduler (GADLS), which combines genetic algorithms,
bipartite graph modeling, and fairness principles to enhance task scheduling and optimize
data placement in distributed systems.

Data locality-aware scheduling has emerged as a vital research focus in distributed systems
and cloud computing, with numerous studies aimed at enhancing task execution efficiency
by taking into account both data and task placement. Choi et al. [9] worked on improving
data locality within Hadoop's MapReduce framework through a technique known as delay
scheduling. This method allows tasks to be scheduled when the necessary data blocks are
available on local nodes, thereby reducing network traffic and boosting data locality.
Choudhury et al. [10] explored energy-efficient scheduling strategies aimed at optimizing
data locality. Their study highlighted that by balancing task scheduling with energy
constraints, it is possible to reduce power consumption while maintaining a high level of data
locality. They suggested techniques that adaptively modify scheduling policies based on
system load and task dependencies. In the realm of task scheduling and resource allocation,
Qiu et al. [11] introduced a method that specifically enhances data locality by minimizing
communication overhead between tasks and their associated data. Their approach ensures
that tasks are assigned to nodes where their corresponding data resides, thus improving
performance by avoiding the need for remote data access. Wang et al. [12] presented
dynamic data placement strategies designed for large-scale distributed systems. Their
approach modifies data placement during execution to ensure that data is allocated in a
manner that reduces network congestion while maximizing task efficiency. This dynamic
strategy is especially crucial in systems experiencing variable workloads.

Zhang et al. [13] put forward a fair scheduling algorithm that takes into account both data
locality and resource allocation. Their algorithm ensures that tasks are assigned to nodes in a
way that optimizes both computation and data access, thereby enhancing the overall
throughput of the system. They contend that fairness in scheduling can lead to improved
resource utilization and greater data locality. Sharma, Gupta, and Choudhury [14] proposed
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a hybrid genetic algorithm aimed at enhancing data locality and task scheduling within cloud
systems. Their method emphasizes optimizing task placement to reduce data transfer
overhead while maximizing resource utilization. The study showcases the algorithm's ability
to balance computational loads and improve system throughput in cloud environments.

3. Methodology and Implementation

The proposed Genetic Algorithm-based Data Locality Scheduler (GADLS) aims to enhance
task scheduling by focusing on data locality and resource efficiency. It utilizes a bipartite
graph matching framework that reflects the distribution of data blocks alongside the
computational performance of the nodes. A job is deemed complete only when all its sub-
tasks have been executed. To facilitate this, nodes are prioritized based on their
computational idleness and utilization, with tasks assigned first to those with higher priority.
The node that demonstrates the highest available resource utilization is chosen as the main
candidate for task processing.

Bipartite Graph Model for Task Scheduling

The problem of data placement is formulated using a weighted bipartite graph
G=(TUS,E) where T represents the Set of tasks, S represents the Set of nodes and
ECTxS defines the Set of edges connecting tasks and nodes. The weight wei(t,i) on edge
e(t,i) denotes the available resource utilization of node n; for task t. The resource utilization
of node niis given as urs(n;) , and the available resource utilization is computed as:

Uava_res(1i) = 1 — Ures(724) Q)

If a task t has multiple potential nodes, it selects the node ng with the highest weight weif(t,s),
ensuring efficient resource allocation and reduced remote data access. The allocation
function f:T—S maps each task t to a nodeng(t), aiming to minimize task execution delays
while maintaining balanced load distribution.

Task Allocation Using Genetic Algorithm

The task allocation is treated as a maximum weighted bipartite matching problem, where the
objective is to find an optimal mapping that minimizes remote task execution and improves
throughput. The Genetic Algorithm (GA) is employed to solve this optimization problem
effectively.

1. Encoding: Represent each task-to-node allocation as a chromosome. Each task-to-node
allocation is represented as a chromosome. A chromosome encodes the mapping of
tasks Tto nodes S, where each taskti € Tis assigned to a nodenj € S. A solution
(chromosome) consists of a series of task-node assignments:

Chromosome = {(t1,nil), (t2, ni2), ..., (tk, nik)} 3

where t1 is the task and nik is the assigned node for task ti.
2. Fitness Evaluation: Calculate the fitness based on data locality, resource utilization, and
minimized data transfer. The fitness of each solution is evaluated based on data locality and
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resource utilization. We aim to maximize the fitness function F that balances these two
objectives:

F = a X Data Locality + B X Resource Utilization 4)

3. Selection: Choose parent chromosomes based on their fitness scores. The fitness of each
chromosome is evaluated based on two main factors: data locality and resource utilization.
We aim to maximize the fitness function F, which is a weighted sum of these two objectives.

F = w1 X Data Locality Score — w2 X Resource Utilization Score (5)

4. Crossover and Mutation: Generate new task allocations by combining and mutating parent
solutions to explore diverse allocations.Example of crossover between two
chromosomes C1 and C2:

C1 = {(t1,n1), (t2,n2),...},C2 = {(t1,n3), (t2,n4), ...} (6)
After crossover, the resulting offspring might be:
C3 = {(t1,n1), (t2,n4), ...}, C4 = {(t1,n3), (t2,n2), ...} @)

Mutation introduces randomness by modifying one or more elements of the chromosome.
For example, task ti assigned to node nj may be randomly reassigned to another node:

Mutation: (ti,nj) = (ti, nk) 8)

This allows the algorithm to explore new task-node allocations that may not have been
considered during crossover.

5. Termination: Stop when an optimal or near-optimal allocation is found.
Data Transfer Time Estimation

The decision to move data or computation depends on estimating the data transfer
time Ttran(t) and resource release time W, (a(t)). The data transfer time is calculated
using:

_|dt| x rtt(n4, ny)
(T (t) = ST ) ”

Where, | dt | represents the Size of the data block, rtt(n;n;, ) represents the Round-trip time
between nodes n; and n;and twt represents the TCP window size. To estimate the remaining
execution time of tasks, a Multi-Layer Perceptron (MLP) model is incorporated into
GADLS. This MLP model, built with Keras, delivers accurate predictions for resource
release time, which aids in optimizing task placement decisions. These predictions enhance
the scheduler's efficiency by allowing it to adapt dynamically to changes in workload.

The proposed research aimed at enhancing task scheduling and data placement in distributed
systems. It starts by creating a weighted bipartite graph G = (T'US, E) | where tasks (T)
symbolize computational jobs, nodes (S) represent computational resources, and edges (E)
illustrate the relationships between tasks and nodes, with weights determined by the

utilization of available resources %ava res(7:) = 1 — Uzes(7)  Chromosomes in this
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framework encode the mappings of tasks to nodes, reflecting potential scheduling solutions.
An initial population is generated randomly to maintain diversity within the solution pool.
Each chromosome undergoes evaluation through a fitness function that takes into account
data locality, bandwidth usage, and task runtime, ensuring that solutions focus on
minimizing data transfer and optimizing execution. The fitness function integrates edge
weights and calculates data transfer time as equation (2), which is used to rank the
chromosomes.

Efficient task scheduling and resource allocation present significant challenges in distributed
systems, particularly in settings like cloud computing and wireless sensor networks. The
Genetic Algorithm-based Data Locality Scheduler (GADLS) has been developed to tackle
these issues by utilizing genetic algorithms to optimize where tasks are placed and enhance
data locality. By reducing data transfer overhead and ensuring balanced resource use,
GADLS improves both system throughput and energy efficiency. This algorithm employs
sophisticated genetic operations, including tournament selection, crossover, and adaptive
mutation, to effectively navigate the solution space. Additionally, it uses a maximum weight
matching strategy to assign tasks to nodes based on their available resources and preferences
for data locality. To promote fairness and mitigate resource contention, Dominant Resource
Fairness (DRF) is implemented, ensuring that resources are distributed equitably among
tasks and tenants. Through its iterative methodology, GADLS refines task scheduling and
resource allocation, showing notable enhancements in performance metrics such as
throughput, data locality, and energy efficiency. The following steps detail how GADLS
operates to achieve these goals.

The algorithm starts by generating an initial population of N chromosomes. Each
chromosome corresponds to a distinct mapping of tasks to nodes. This random initialization
promotes diversity within the solution space, which is crucial for exploring different
potential task-node mappings and preventing premature convergence. Each chromosome is
evaluated based on data locality, bandwidth usage, and task runtime. The fitness function
ensures solutions prioritize task placement that minimizes data transfer and improves
execution efficiency. Tasks are assigned to nodes based on the highest edge weight wei(t,s),
ensuring optimal placement. A judgment mechanism decides task reassignment or waiting
when resource constraints arise.Dominant Resource Fairness ensures equitable resource
distribution among tenants, prioritizing dominant resource demands while maintaining
fairness and system throughput.
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Algorithm 1: GADLS Scheduler

1: Input: Task set 7', node set S, resource utilization 1, and data locality information.

2: Qutput: Optimized task-node mapping with improved data locality and system throughput.
Initialization

3: Construct a weighted bipartite graph G = (T U S, E).

4:wei(t, 8): Edge weights representing the available resource utilization gyg res = 1 — Ues-

Task Scheduling Process

5: while (tasks ¢ remain unscheduled in T') do
6. for(eachtasktinT) do

7. // ldentify candidate nodes for ¢.

8: for (each node s in S) do

9: if (node s contains data required by £) then

10: // Add node to candidate set.

11: S+ SUs.

12: // Calculate edge weight based on resource availability.
13: wet(t, 8) ¢ Unpa_res(8).

14: E+ EU(t,s).

15: end if

16: end for

Maximum Weight Matching

17: Find feasible node 75y for task ¢ with:

18 ngg ¢ argmax, g{wei(t, s)}.

19: end for

Judgment Mechanism

20:  while (4yq res(ny(y)) < Resource Demand(t)) do
21 // Calculate data transfer time T},.m(t):

) |dt|-rtte (i n;)
220 Tpanlt) « =0

23: // Estimate resource releasing time W,;.

24: if Wyt < Tiran(t)) then

25: // Assign t to () and wait for resources.

26 Continue with scheduling.

27: else

28: // Find alternative node with available resources.
29: Tei 4 AGMAX, ¢{ Ugua_res(8)}-

30: Move £ to Nyeq.

31 end if

32:  end while

Resource Allocation Strategy

33: Call Dominant Resource Fairness (DRF) strateqy to allocate resources efficiently.
34; end while
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The judgment mechanism is essential for determining whether to relocate data or
computation to improve task placement. It assesses the time needed for data transfer and
resource usage by taking into account factors such as data block size, network capacity, and
the round-trip delay between nodes. This mechanism compares the resource capacity of
available nodes and chooses the best node for task execution based on its resource
availability and data locality. This decision-making process ensures that tasks are assigned to
the most efficient node, reducing data movement and boosting system throughput. By
integrating these evaluations, the judgment mechanism helps maintain a good balance
between data locality, bandwidth usage, and task runtime.

4. Results and Analysis

The proposed work was tested in a simulated distributed system to evaluate how well it
optimizes task placement and data locality. The setup involved using frameworks such as
Python, NetworkX for graph modeling, NumPy for computations, and Keras for neural
network-based runtime predictions, along with a distributed file system that mimicked real-
world data scenarios. The environment featured multiple Linux-based nodes with different
CPU and memory capacities, running synthetic workloads that reflected real-world
conditions. GADLS's performance was compared to traditional locality-aware schedulers
like Hadoop's FIFO and capacity schedulers, delay scheduling, and heuristic-based methods,
which focus on fairness or load balancing but do not provide advanced optimization for
locality and bandwidth. Key experimental parameters for GADLS included a population size
of 50, a mutation rate of 0.05, a crossover rate of 0.8, and 100 generations to reach
convergence. The genetic algorithm represented task-data placement as chromosomes,
employing a fitness function to enhance data locality, minimize bandwidth usage, and
shorten task runtime. Adaptive mutation rates were used to maintain diversity in the early
iterations while fine-tuning solutions in later stages. By effectively balancing task placement
and network overhead, GADLS achieved an 18% improvement in data locality and a 27%
increase in throughput, demonstrating its capability to boost resource utilization and
performance in distributed environments.

Comparison of Schedulers: Data Locality vs Throughput
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The bar chart illustrates the performance of four different schedulers: FIFO Scheduler, Delay
Scheduler, Heuristic Scheduler, and GADLS, evaluated on two main metrics: data locality
and throughput. GADLS stands out by achieving an 85% data locality rate, which is
significantly higher than FIFO at 60%, Delay Scheduler at 68%, and Heuristic Scheduler at
72%. This indicates that GADLS is more adept at positioning tasks near their relevant data,
thereby minimizing network traffic and latency. Furthermore, GADLS shows a substantial
enhancement in throughput, reaching 85%, in contrast to FIFO's 40%, Delay Scheduler's
55%, and Heuristic Scheduler's 62%. This underscores that GADLS not only enhances data
locality but also streamlines task execution across nodes, resulting in improved resource
utilization and overall system performance. The findings highlight GADLS’s advantage in
effectively balancing task placement, data locality, and throughput, establishing it as a more
efficient scheduling option for distributed systems.

GADLS Performance: Data Locality vs Throughput over Generations
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Here is the line graph depicting the performance of GADLS over 100 generations, showing
the improvement in both data locality and throughput. As generations progress, both metrics
increase, demonstrating how the genetic algorithm optimizes task-data placement for better
performance.

A further comparison of various task scheduling algorithms is carried out based on key
performance metrics, such as Data Locality Improvement, Task Throughput, Resource
Utilization, Energy Consumption, and Network Traffic Reduction. These metrics are
essential for assessing the overall efficiency and effectiveness of scheduling algorithms in
large-scale distributed systems. Data Locality Improvement evaluates how well the
algorithm reduces data transfer by scheduling tasks near their required data, which directly
affects network traffic and processing time. Task Throughput measures the algorithm's
capability to handle a high volume of tasks within a specific timeframe, indicating its
efficiency in managing computational loads. Resource Utilization looks at how effectively
the algorithm employs available resources, including CPU, memory, and storage, to ensure
optimal performance without creating resource bottlenecks. Energy Consumption is a crucial
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metric, particularly in energy-sensitive environments like mobile or edge computing, as it
assesses how efficiently the algorithm reduces energy usage during task execution. Finally,
Network Traffic Reduction aims to decrease the amount of data exchanged between nodes,
thereby lowering communication overhead and enhancing system responsiveness. By
examining these metrics across different algorithms, this comparison seeks to illuminate the
strengths and weaknesses of each scheduling method and offer insights into choosing the
most appropriate algorithm for specific application needs.

Data Locality Improvement Task Throughput Comparison
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The line graph above provides a comparative analysis of five task scheduling algorithms
evaluated against five key performance metrics: Data Locality Improvement, Task
Throughput, Resource Utilization, Energy Consumption, and Network Traffic Reduction.
The algorithms under comparison are:

e GABDA (Genetic Algorithm-based Data Locality Scheduler)

e GA-based DLS (Genetic Algorithm-based Data Locality Scheduling)
e CDLAS (Cloud Data Locality Aware Scheduling)

e BGS (Bipartite Graph-based Scheduling)
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e EETSA (Energy-Efficient Task Scheduling)

Data Locality Improvement: GABDA demonstrates the most significant improvement in
data locality, achieving around 90%, which is a notable advantage over the other algorithms.
GA-based DLS follows with an 80% improvement, while CDLAS and BGS show lower
improvements at 75% and 70%, respectively. EETSA achieves a data locality improvement
of about 78%, reflecting decent performance but still trailing behind GABDA. This indicates
that GABDA is particularly effective at reducing the distance between tasks and their
necessary data, thereby enhancing data locality.

Task Throughput: Once again, GABDA excels in task throughput, reaching 100 tasks per
unit time, the highest among the tested algorithms. This clearly highlights GABDA's
efficiency in task processing, enabling quicker execution compared to other methods. GA-
based DLS and EETSA report throughput values of 90 and 88, respectively. While these
figures are competitive, they fall short of GABDA's performance, showcasing its superior
scheduling capabilities. CDLAS and BGS have slightly lower throughput rates at 85 and 80,
respectively, indicating less efficient task execution in comparison.

Resource Utilization: In terms of resource utilization, GABDA leads with a 90% utilization
rate, making optimal use of available resources. EETSA and GA-based DLS follow closely,
both achieving 80% resource utilization, which reflects good but not optimal resource use.
BGS and CDLAS show lower utilization rates at 75% and 78%, respectively. The algorithms
appear to be less efficient in utilizing system resources, which may stem from inadequate
task scheduling or resource allocation strategies.

Energy Consumption: When it comes to energy consumption, GABDA stands out as the
most energy-efficient option, using only 40 arbitrary units. This demonstrates its ability to
effectively balance task execution with energy-saving measures. In contrast, BGS and
EETSA consume more energy, at 50 and 51 arbitrary units, respectively, while GA-based
DLS and CDLAS are close behind at 55 arbitrary units. The increased energy usage of these
algorithms suggests that their task scheduling techniques might not be optimized for energy
efficiency, possibly due to greater computational demands or ineffective task-resource
mapping.

Network Traffic Reduction: In terms of network traffic reduction, GABDA excels with an
impressive 85% decrease in network traffic, showcasing its ability to reduce data transfer
overhead through improved data locality and task placement. GA-based DLS and EETSA
achieve reductions of 72% and 74%, respectively, while CDLAS and BGS show slightly
lower reductions at 70% and 68%. This indicates that, although these algorithms perform
well, they still generate more network traffic compared to GABDA.

The results clearly indicate that GABDA surpasses all other algorithms in data locality, task
throughput, and energy consumption, establishing it as the most efficient and well-rounded
scheduler among the five. It also achieves the highest reduction in network traffic, which is
essential for minimizing overhead in large-scale distributed systems. While other algorithms
like GA-based DLS and EETSA demonstrate competitive performance in specific areas,
GABDA consistently provides superior outcomes across various metrics, making it the
optimal choice for energy-efficient, high-throughput scheduling in data-intensive settings.
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5. Conclusion

The Genetic Algorithm-based Data Locality Scheduler (GADLS) demonstrates significant
effectiveness in task scheduling by improving data locality, reducing network traffic, and
optimizing throughput across various distributed systems. The use of genetic algorithms
allows for adaptive task placement, which can efficiently handle varying workloads by
balancing data transfer, task execution, and resource utilization. GADLS’s approach is
highly applicable to other distributed environments, such as cloud and edge computing,
where resource allocation and data locality are critical for performance optimization.
However, the method faces certain limitations, such as high computational complexity and
the need for substantial processing power in large-scale systems. Future improvements could
involve incorporating hybrid optimization models or integrating machine learning techniques
to further enhance task scheduling efficiency and adaptiveness, potentially reducing
computational overhead and improving scalability.
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