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The research focuses on developing an expert system to predict the mechanical
properties of specimens manufactured using Fused Deposition Modeling
(FDM), utilizing advanced artificial intelligence approaches. A comparative
analysis was conducted between experimental data and predictions made by two
different models: a Fuzzy Logic System and an Artificial Neural Network
(ANN). The study involved 30 samples, with experimental measurements of
tensile and flexural strengths serving as the benchmark. The Fuzzy Logic model
provided estimates with a tendency to slightly underestimate the tensile and
flexural strengths, particularly in lower-strength samples. In contrast, the ANN
demonstrated a closer alignment with the experimental values, particularly in
higher strength ranges. The findings suggest that both models can be useful in
predicting the mechanical properties of FDM-manufactured specimens, with
ANN showing greater accuracy. The results indicate that the Fuzzy Logic
System generally underestimated tensile and flexural strengths compared to
experimental values, with a notable discrepancy observed for lower strength
samples. For instance, the experimental tensile and flexural strengths were
21.34 MPa and 25.56 MPa, respectively measured for respective samples, while
the Fuzzy Logic System predicted 20.46 MPa and 24.99 MPa. In contrast, the
ANN model demonstrated a higher accuracy in predicting these properties, as
evidenced by its closer approximations to the experimental data. For the same
sample, the ANN predicted tensile and flexural strengths of 20.58 MPa and
25.03 MPa, respectively, highlighting the superior predictive capabilities of the
ANN model. This research underscores the potential for Al-driven models to
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streamline material testing processes, providing a computationally efficient
means of estimating material properties and highlighting areas for model
refinement to enhance predictive accuracy across a broader spectrum of material
strengths. The study's implications extend to the design and analysis of
composite materials, where precise property prediction is critical for
performance assessment and reliability.
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1. Introduction

Additive Manufacturing (AM), commonly known as 3D printing, is a transformative
technology that constructs objects layer by layer, directly from digital models. This approach
contrasts sharply with traditional subtractive manufacturing techniques, which involve
cutting away material to shape a final product. AM encompasses a variety of processes that
offer unique benefits, such as material efficiency, design flexibility, and the ability to
produce complex geometries [1-3]. The technology has found applications across numerous
industries, including aerospace, automotive, healthcare, and consumer goods, where it has
become a pivotal tool for rapid prototyping and manufacturing [4-6]. One of the most
prevalent AM techniques is Fused Deposition Modeling (FDM). As shown in Fig. 1, FDM
works by extruding thermoplastic materials through a heated nozzle, depositing the material
layer by layer to form the desired object. This method is popular due to its relative
simplicity, affordability, and the wide range of compatible materials, including ABS, PLA,
and composites [7-9]. The versatility of FDM has made popular choice for prototyping,
tooling, and even the production of functional end-use parts, enabling designers and
engineers to create intricate and customized components efficiently [10-12].

Support Material Filament Spool

N

A . Model Material Filament
«Y —b s

> X B ol P == Filament Pulling System
aP @B

Support Material Nozzle Model Material Nozzle

~H 1 I B
. K ot
Heating Elements —f‘ ‘L_J L_J’ i«—— Heating Elements
Extruder Assembly (moves in X and Y direction) ——sbi -

+— Model Part
Support Part —=

+— Draft or Base

Build Platform (moves up and
down in Z direction|

Figure. 1 Schematic diagram of Fused Deposition Modeling (FDM) Process
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Fused Deposition Modeling (FDM) is one of the most widely used additive manufacturing
techniques due to its versatility and cost-effectiveness. It involves the extrusion of
thermoplastic materials to build parts layer by layer, offering significant advantages in
prototyping and small-scale production. The mechanical properties of FDM-fabricated parts
are influenced by a variety of process parameters, such as layer height, print speed, extrusion
temperature, and infill density. Understanding the impact of these parameters is crucial for
optimizing the mechanical performance and dimensional accuracy of FDM parts. Research
on the influence of process parameters on FDM parts has been extensive. For instance,
studies have shown that layer height significantly affects the surface roughness and
mechanical strength of parts [12]. Smaller layer heights generally lead to improved surface
finish and strength but at the cost of longer print times. Additionally, print speed and
extrusion temperature are critical in determining the bond strength between layers, which
directly impacts the overall mechanical integrity of the printed objects [13-15]. Infill density
and pattern also play a vital role; higher infill densities usually result in stronger parts,
though they require more material and longer printing durations [16-18]. Recent
advancements in FDM technology have expanded the range of materials that can be used,
including composites and high-performance polymers. This has led to further investigations
into how varying process parameters affect the mechanical properties of these advanced
materials. Studies have demonstrated that optimizing parameters such as nozzle temperature
and cooling rate can significantly enhance the mechanical properties of parts made from
materials like carbon fiber-reinforced polymers [19-22]. Moreover, the orientation of parts
during printing has been found to influence the anisotropy in mechanical properties,
highlighting the need for careful consideration of part orientation during the design phase
[23-25]. In the context of composite materials, the dispersion and alignment of reinforcing
fibers are additional factors that are influenced by process parameters. The nozzle
temperature, print speed, and layer height can all affect the distribution of fibers within the
matrix, which in turn impacts the mechanical properties of the final part [26-29].
Furthermore, post-processing treatments, such as annealing, have been explored to improve
the mechanical properties of FDM parts, although these treatments introduce additional
complexities and costs [30-32]. Despite these advancements, there remain challenges in fully
understanding and optimizing the effects of process parameters on FDM parts. Variability in
material properties, machine calibration, and environmental conditions can lead to
inconsistencies in part quality. Therefore, ongoing research is focused on developing more
robust models and control systems to predict and manage these variations [33-35]. The
development of Additive Manufacturing (AM), particularly Fused Deposition Modeling
(FDM), has revolutionized the production of complex and customized parts. FDM's layer-by-
layer deposition process allows for the creation of intricate geometries and rapid prototyping,
making it a preferred method in various industries, including aerospace, automotive, and
biomedical engineering. The quality and mechanical properties of parts manufactured by
FDM are significantly influenced by various process parameters, such as layer thickness,
print speed, infill density, and nozzle temperature [36]. Understanding the relationship
between these parameters and the resulting part properties is crucial for optimizing the FDM
process. In recent years, machine learning (ML) methods have gained prominence in
studying and predicting the effects of FDM process parameters. ML techniques such as
Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees
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have been employed to model the complex relationships between process parameters and
part properties. These methods enable the analysis of large datasets and the identification of
patterns that may not be evident through traditional statistical methods [37]. For instance,
ANNs have been used to predict tensile strength and surface roughness of FDM-
manufactured parts, demonstrating their potential to enhance process control and quality
assurance [38]. The integration of ML techniques into the study of FDM processes offers
several advantages, including improved accuracy in predictions and the ability to handle
non-linear relationships between variables. Studies have shown that ML models can
outperform traditional empirical models in predicting mechanical properties such as tensile
strength, flexural strength, and impact resistance [39-40]. Additionally, the use of machine
learning in FDM can facilitate the optimization of process parameters, leading to reduced
material waste, shorter production times, and improved part quality [41-42]. Despite the
advancements in this field, challenges remain in the widespread adoption of ML techniques
in FDM research. These include the need for large, high-quality datasets and the complexity
of model selection and training [43]. Furthermore, the generalizability of ML models across
different materials and printer types is a critical area of ongoing research [44]. As the field
continues to evolve, there is a growing interest in exploring hybrid approaches that combine
machine learning with traditional simulation methods, such as finite element analysis (FEA),
to achieve more comprehensive and accurate predictions [45]. To bridge the same, present
work aims to developed an expert system using three artificial intelligence approaches i.e.
fuzzy logic, artificial neural network and adaptive neuro fuzzy interface system.

2. Materials and Methodologies

To investigate the impact of FDM process parameters on the mechanical properties of the
manufactured parts, a series of experiments were conducted. For Fabrication of specimens
Tevo Tarantula 3D Printer is used with Bagasse natural filament. The parameters considered
in this study included nozzle temperature, layer thickness, part orientation, and raster
orientation. Each parameter was tested at three distinct levels to comprehensively understand
their influence on the final properties of the parts. The details about the selected process
parameters are as:

o Nozzle Temperature (°C): The nozzle temperature was varied at three levels: 230°C,
240°C, and 250°C. This range was chosen to study the influence of different temperatures on
the material's melting and flow properties, which can significantly affect the bonding
between layers and overall mechanical strength.

o Layer Thickness (mm): The layer thickness was set at 0.12 mm, 0.21 mm, and 0.30
mm. This parameter influences the surface finish and dimensional accuracy of the parts, as
well as the mechanical properties, by altering the amount of material deposited in each layer.

o Part Orientation (°): The orientation of the parts during printing was varied between
0°, 45° and 90°. Part orientation affects the distribution of stresses and the overall
mechanical behavior of the printed parts, as the layer bonding strength varies with
orientation.
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o Raster Orientation (°): The raster orientation, or the angle at which the material is
laid down, was set at 0°, 45°, and 90°. This parameter plays a crucial role in determining the
internal structure and mechanical properties of the printed parts, particularly in relation to
tensile and flexural strengths.

Each experimental run involved printing test specimens with a unique combination of the
specified parameters, adhering to the levels mentioned in Table 1. The specimens were then
subjected to mechanical testing to evaluate the effects of the different settings on tensile
strength, flexural strength, and other relevant properties. The results from these tests
provided valuable insights into the optimal settings for achieving desired mechanical
properties in FDM-manufactured parts and also helps to developed an expert system. In this
study, a Face-Centered Central Composite Desigh (FCCCD) was employed to systematically
investigate the effects of FDM process parameters on the mechanical properties of the
manufactured parts. Using the settings outlined in Table 1, the FCCCD method allowed for a
comprehensive analysis by incorporating the three levels of each parameter i.e. low, middle,
and high.

Table 1 FDM process parameters with their settings and levels

FDM Process parameters Units Levels

-1 0 +1
Nozzle Temperature °C 230 240 250
Layer Thickness mm 0.12 0.21 0.30
Part Orientation °C 0 45 90
Raster Orientation °C 0 45 90

This approach facilitated the exploration of the interactions between nozzle temperature,
layer thickness, part orientation, and raster orientation, providing a robust framework for
optimizing the FDM process. The design enabled the assessment of both linear and nonlinear
effects, offering a detailed understanding of how variations in these parameters impact the
overall quality and performance of the printed parts. Table 2 mentioned the FCCCD schema
for the present work to study effect of FDM process parameters on mechanical properties.

Table 2 FCCCD schema for mechanical properties measurement

Run Nozzle Temperature (°C) Layer Thickness (mm) | Part Orientation (°C) (R%s;er Orientation
1 250 0.3 90 90
2 230 0.12 90 45
3 230 0.3 90 0
4 240 0.21 90 0
5 240 0.21 45 0
6 250 0.3 0 90
7 250 0.12 0 90
8 240 0.21 45 0
9 250 0.21 45 0
10 230 0.12 0 45
11 250 0.12 0 45
12 240 0.21 45 45
13 230 0.12 0 45
14 230 0.12 90 0
15 230 0.21 45 90
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16 240 0.21 45 0

17 240 0.21 45 90
18 240 0.12 45 90
19 250 0.3 90 45
20 230 0.3 0 45
21 240 0.3 45 45
22 250 0.12 90 0

23 230 0.3 90 45
24 250 0.12 90 90
25 230 0.3 0 90
26 240 0.21 45 45
27 240 0.21 0 45
28 250 0.3 0 0

29 240 0.21 45 45
30 240 0.21 0 90

Mechanical properties testing

In the present work, two types of mechanical testing are carried out during the present work
i.e., tensile strength (as per ASTMDG638) and flexural strength (as per ASTMD790). Tensile
strength testing is a crucial method for evaluating the mechanical properties of materials,
particularly plastics and composites. In the present work. This test measures the material's
ability to withstand tension and provides important data regarding its strength and ductility.
The ASTM D638 standard specifies the method for tensile testing of plastic materials,
focusing on the Type | specimen, which is widely used for its representative characteristics.
This methodology outlines the procedures and considerations for conducting tensile strength
testing according to ASTM D638 Type I. Figure.2 illustrates into detail drawing mentioned
as per ASTM D638.
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Figure. 2 Detail Drawing of Tensile Test Specimen as per ASTM D638 type-I

In the present work, flexural strength specimens are fabricated as mentioned in Figure 9.
Flexural Strength is a crucial mechanical property for materials used in structural
applications. ASTM D790 is a standard test method for determining the flexural properties
of unreinforced and reinforced plastics, including high-modulus composites. Fig.3 illustrates
into detail drawing mentioned as per ASTM D790.
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Figure. 3 Detail Drawing of Flexural Test Specimen as per ASTM D790

In the present work. To predict the mechanical properties expert system is designed using
machine learning approaches i.e. Fuzzy Logic System, Artificial Neural Network and
Adaptive Neuro Fuzzy Interface System (ANFIS).

In this study, a fuzzy logic system was utilized to explore and examine the surface roughness
of components produced through fused filament fabrication (FFF). Fuzzy logic serves as a
computational framework that facilitates the representation and manipulation of imprecise or
uncertain information. It provides a more adaptable and nuanced approach to decision-
making and reasoning by incorporating degrees of membership and linguistic variables. The
fuzzy logic system applied in this research comprised linguistic rules and membership
functions. Linguistic rules delineate the relationships between the input variables (nozzle
temperature, raster orientation, part orientation, and layer thickness) and the output variable
(tensile strength and flexural strength). These rules were formulated based on expert
knowledge and insights specific to the domain. Membership functions were employed to
quantify the degree of membership of an input variable to a particular linguistic term (e.g.,
low, medium, high). These functions empowered the fuzzy logic system to manage
imprecise or ambiguous information and make decisions grounded in fuzzy sets and fuzzy
logic operations, such as fuzzy inference and fuzzy reasoning. By integrating the fuzzy logic
system into the analysis of FFF surface roughness, the objective of this research was to
capture the intricacies and uncertainties associated with the manufacturing process. The
fuzzy logic system provided a robust framework to model and predict the surface roughness
based on the input parameters, allowing for more accurate and comprehensive understanding
of the relationship between process parameters and surface quality.

The utilization of a fuzzy logic system in this research paper enhances the predictive
capabilities and decision-making process in relation to surface roughness optimization for
FFF parts. It offers a valuable tool for process control and quality assurance, enabling
manufacturers to improve product outcomes and customer satisfaction by effectively
managing surface roughness in FFF manufacturing.
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Figure. 4 Fuzzy interface system in MATLAB

The configuration of a three-input-one-output fuzzy logic unit is depicted in Fig.4. As
illustrated in the figure, a fuzzy logic unit comprises a fuzzifier, knowledge base (consisting
of membership functions and a fuzzy rule base), fuzzy inference system, and a defuzzifier.
Each of these components is elaborated below:

i. Fuzzifier: The actual input to the fuzzy system is fed into the fuzzifier. In fuzzy
literature, this input is termed as crisp input, as it provides precise information about a
specific parameter. The fuzzifier transforms this precise quantity into an imprecise form,
such as 'small,’ 'medium,’ 'large," etc., along with a degree of membership, typically ranging
from0to 1.

ii. Knowledge Base: The pivotal part of the fuzzy system is the knowledge base,
encompassing both the rule base and the database. The database outlines the membership
functions of the fuzzy sets used in the fuzzy rules, while the rule base contains several fuzzy
if-then rules.

iii. Fuzzy Inference System: The fuzzy inference system, also known as the inference
system or decision-making unit, executes inference operations on the rules. It governs how
the rules are amalgamated.

iv. Defuzzifier: The output produced by the inference block is inherently fuzzy. A real-
world system necessitates converting the fuzzy output into a crisp one. The role of the
defuzzifier is to receive the fuzzy input and yield a real output. In operation, it functions in
the opposite manner to the input block.

In this study, a Mamdani fuzzy system was utilized to evaluate a multi-response performance
index by assessing multiple performance characteristics. The system, depicted in the
accompanying figure, operates as a multi-input, single-output model to estimate complex
performance indices even if some input conditions were not explicitly covered during model
development. The model development involved several key steps:
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i Selection of Input and Output Variables: Inputs such as Layer Thickness, Nozzle
Temperature, Raster Orientation, and Part Orientation were selected, with output variables
being Tensile Strength and Flexural Strength. These variables were represented linguistically
with categories like {small, medium, large} for inputs and outputs, allowing for fuzzy logic
application.

ii. Selection of Membership Functions: Triangular membership functions were chosen
due to their computational efficiency. These functions transform linguistic values into a
normalized range between 0 and 1, facilitating simple and effective calculations.

iii. Formation of Linguistic Rule Base: A comprehensive rule base was developed to
establish relationships between input variables and the desired output. This base,
incorporating expert knowledge, used if-then rules to correlate input variables (each with
three triangular membership functions) with the output variable. The system generated 15
rules using the max-min inference method.

iv. Defuzzification: The final step involved converting fuzzy outputs into a crisp result
using the center of gravity method. This process computed the multi-response performance
index (MRPI) by averaging the weighted outputs, providing a precise, actionable result from
the fuzzy system.

An Artificial Neural Network (ANN) is a computational model inspired by the way
biological neural networks in the human brain process information. ANNs consist of
interconnected groups of artificial neurons that work together to solve specific problems. In
the present work, Artificial Neural Networks (ANNSs) implemented through MATLAB's
specialized tools offer a powerful approach for creating expert systems aimed at predicting
material properties. In this context, we delve into the methodology involved in utilizing
MATLAB's ANN tools to construct a Backpropagation Neural Network (BPNN) based
expert system tailored to predict Tensile Strength and Flexural Strength of materials, with
input variables including Layer Thickness, Nozzle Temperature, Raster Orientation, and Part
Orientation. The first crucial step in utilizing MATLAB's ANN tools for developing the
BPNN-based expert system is data pre-processing. This involves acquiring a comprehensive
dataset that includes a diverse range of values for each input variable along with
corresponding Tensile Strength and Flexural Strength measurements. MATLAB provides
various functions and toolboxes for efficient data pre-processing, including functions for
data normalization or standardization to ensure that input variables are appropriately scaled.
Proper pre-processing is essential for enhancing the convergence of the BPNN during
training and improving the accuracy of material property predictions. Once the data pre-
processing is completed, the next step is to design and implement the BPNN architecture
using MATLAB's ANN tools. MATLAB offers a user-friendly environment with built-in
functions and toolboxes specifically designed for creating, training, and evaluating neural
networks. The BPNN architecture typically consists of an input layer, one or more hidden
layers, and an output layer. MATLAB's ANN tools provide functions for defining the
network structure, selecting activation functions, and initializing network parameters.
Additionally, MATLAB's graphical user interface (GUI) facilitates the visualization of the
network architecture, allowing for easy customization and optimization based on specific
requirements. After designing the BPNN architecture, the next step is to train the network
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using the prepared dataset. MATLAB's ANN tools offer a variety of training algorithms,
including backpropagation with different optimization techniques such as gradient descent or
Levenberg-Marquardt. The dataset is typically partitioned into training, validation, and
testing subsets to evaluate the network's performance and prevent overfitting. MATLAB's
ANN tools provide functions for partitioning datasets and monitoring training progress
through graphical representations such as training curves and performance metrics. Once the
BPNN is trained and validated, it can be integrated into the expert system to predict Tensile
Strength and Flexural Strength based on input variables, thereby providing valuable insights
into material behavior and aiding in process optimization and product design.

The present research work investigates the potential of Artificial Neural Networks (ANNS)
to enhance expert system design. To analyze the surface roughness pattern, an Atrtificial
Neural Network (ANN) was implemented using MATLAB® 2021. The ANN utilized a
supervised learning approach with three input variables: layer thickness, nozzle temperature,
and part orientation, and one output variable representing the surface roughness as shown in
Figure 5. Present work approach focuses on leveraging the strengths of both techniques to
create a robust and adaptable intelligent system. Following steps are considered to design to
design an expert system using ANN approach:

Step 1: Knowledge Acquisition and Pre-processing:

o Domain experts will be consulted to identify the key problem domain and the factors
influencing the decision-making process.

o This knowledge will be translated into a structured format suitable for training the
ANN. This may involve data collection from past cases, feature engineering to extract
relevant information, and data cleaning to ensure quality.

Step 2: Neural Network Architecture and Training:

. Based on the problem domain and the characteristics of the data, a suitable ANN
architecture will be selected. This could involve choosing the appropriate network type (e.g.,
Multi-Layer Perceptron, Convolutional Neural Network), determining the number of hidden
layers and neurons, and selecting activation functions.

o A training dataset will be prepared, consisting of past cases with well-defined inputs
(features) and corresponding desired outputs (expert decisions). The system will be trained
using a suitable learning algorithm (e.g., Backpropagation) to identify complex patterns
within the data.

Nanotechnology Perceptions Vol. 20 No.6 (2024)



Mechanical Characterization of Additive.... Kalpesh Patel et al. 2690

Hidden Nodes

Where

A1 = Nozzle Temperature
A2 = Layer Thickness
A3 = Part Orientation

A4 = Raster Orientation
B1 = Tensile Strength

B2 = Flexural Strangth

Input Nodes 4 Output Nodes
| Al N " 61
(A2 )¢ X < : » B2 )
[ A3 K

Al 1€

Figure. 5 ANN Architecture with 3 input nodes and 1 output nodes
Step 3: Integration and Evaluation:

o The trained ANN will be integrated into the expert system framework. This may
involve developing a mechanism for the expert system to interact with the ANN, providing
context and receiving its recommendations.

o The performance of the hybrid system will be evaluated using various metrics
relevant to the specific application. This could include accuracy, precision, recall, and F1
score for classification tasks, or mean squared error for regression tasks. Additionally, expert
feedback will be solicited to assess the system's reasoning capabilities and the alignment
with domain knowledge.

Step 4: Iterative Refinement:

o Following evaluation, the system will undergo an iterative refinement process.
Based on the results, the ANN architecture and training parameters might be adjusted.
Additionally, the expert system's knowledge base could be enhanced with insights gained
from the ANN's performance. This cyclical process aims to continuously improve the
system's accuracy, robustness, and generalizability.

In the present work, three input nodes i.e. layer thickness, nozzle temperature and part
orientation and one input node i.e. surface roughness are considered. ANN emphasizes the
collaborative nature of the approach. By combining human expertise with the learning power
of ANNs, we aim to create an intelligent system that leverages the strengths of both
paradigms.
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The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that
combines the learning capabilities of neural networks with the fuzzy logic reasoning of fuzzy
inference systems. This integration leverages the strengths of both paradigms, allowing
ANFIS to handle imprecise information and adaptively learn from data. Utilizing
MATLAB's Adaptive Neuro-Fuzzy Inference System (ANFIS) tools presents a robust
approach for constructing expert systems aimed at predicting material properties. In
this context, we explore the methodology involved in leveraging MATLAB's ANFIS
tools to develop an ANFIS-based expert system tailored to predict Tensile Strength and
Flexural Strength of materials, with input variables including Layer Thickness, Nozzle
Temperature, Raster Orientation, and Part Orientation. The initial step in employing
MATLAB's ANFIS tools for building the expert system involves data pre-processing.
This entails gathering a comprehensive dataset containing a diverse range of values for
each input variable, alongside corresponding Tensile Strength and Flexural Strength
measurements. MATLAB offers a suite of functions and toolboxes for efficient data
pre-processing, facilitating tasks such as data normalization or standardization to
ensure that input variables are appropriately scaled. Effective pre-processing enhances
the convergence of the ANFIS during training and enhances the accuracy of material
property predictions. Once data pre-processing is completed, the subsequent step is
designing and implementing the ANFIS architecture using MATLAB's ANFIS tools.
MATLAB provides a user-friendly environment equipped with built-in functions and
toolboxes specifically tailored for creating, training, and evaluating ANFIS models.
The ANFIS architecture typically comprises fuzzy inference systems combined with
adaptive techniques, allowing for the modeling of complex relationships between
inputs and outputs. MATLAB's ANFIS tools enable users to define the structure of the
fuzzy inference system, select appropriate membership functions, and adjust
parameters to optimize model performance. Additionally, MATLAB's graphical user
interface simplifies the visualization of the ANFIS architecture, facilitating
customization and optimization based on specific requirements. Following the design
of the ANFIS architecture, the subsequent step is training the model using the prepared
dataset. MATLAB's ANFIS tools offer various training algorithms, including hybrid
optimization techniques that combine gradient-based methods with evolutionary
algorithms. The dataset is partitioned into training, validation, and testing subsets to
assess the model's performance and prevent overfitting. MATLAB's ANFIS tools
provide functions for partitioning datasets and monitoring training progress through
graphical representations such as learning curves and performance metrics. Once the
ANFIS model is trained and validated, it can be integrated into the expert system to
predict Tensile Strength and Flexural Strength based on input variables, thereby
offering valuable insights into material behaviour and supporting process optimization
and product design.

3. Results and Discussions

The data in Table 3 compares experimental and Fuzzy Logic predictions of tensile and
flexural strength for 30 composite material samples. The experimental values provide critical
insights into material behavior under load, while the Fuzzy Logic predictions estimate these
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properties based on various inputs. For instance, Sample 1's experimental tensile strength is
21.34 MPa, with the Fuzzy Logic model predicting 20.4604 MPa. Similar trends are
observed with flexural strength, where the model slightly underestimates the experimental
results. As samples progress, the model's predictions show a closer alignment with
experimental data for higher strength materials, such as in Sample 6, which has an
experimental tensile strength of 26.89 MPa and a predicted strength of 26.0104 MPa.
However, lower strength samples, like Sample 3, show more significant discrepancies,
indicating the model's limitations in accurately predicting lower strength metrics. Overall,
the Fuzzy Logic model tends to underestimate tensile strength in lower strength samples
while providing closer approximations for higher strength samples, suggesting a need for
refinement or additional parameters to better capture material behavior across a range of
strengths.

Table 3 Comparison between experimental and Fuzzy Logic system values

Sample Experimental Tensile | Experimental Flexural | Fuzzy Logic based | Fuzzy Logic based
Strength (MPa) Strength (MPa) Tensile Strength | Flexural Strength

No. (MPa) (MPa)
1 21.34 25.56 20.4604 24.9859
2 25.67 28.07 24.7904 27.4959
3 16.9 15.56 16.0204 14.9859
4 21.45 23.34 20.5704 22.7659
5 24.56 26.78 23.6804 26.2059
6 26.89 33.79 26.0104 33.2159
7 2221 26.67 21.3304 26.0959
8 23.98 25.88 23.1004 25.3059
9 35.56 36.46 34.6804 35.8859
10 29.78 27.13 28.9004 26.5559
11 23.44 24.34 22.5604 23.7659
12 30.98 34.88 30.1004 34.3059
13 23.34 22.24 22.4604 21.6659
14 20.89 21.77 20.0104 21.1959
15 28.87 34.77 27.9904 34.1959
16 24.33 25.23 23.4504 24.6559
17 30.78 34.68 29.9004 34.1059
18 32.98 33.88 32.1004 33.3059
19 27.78 29.98 26.9004 29.4059
20 30.98 27.18 30.1004 26.6059
21 3134 3354 30.4604 32.9659
22 30.34 32.09 29.4604 31.5159
23 17.9 19.1 17.0204 18.5259
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24 32.23 33.98 31.3504 33.4059
25 28.89 29.35 28.0104 28.7759
26 30.78 34.98 29.9004 34.4059
27 28.88 30.08 28.0004 29.5059
28 43.44 35.09 42.5604 34,5159
29 29.35 34.01 28.4704 33.4359
30 26.67 31.13 25.7904 30.5559
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Figure. 6 Comparison between Fuzzy System and Experimental obtained (a) Tensile
strength (b) Flexural Strength

Fig.6 shows a graph comparing tensile strength (in MPa) across different sample numbers
using two different methods: a Fuzzy System and Experimental measurements. The tensile
strength values fluctuate across the samples for both methods. Despite these fluctuations, the
data points generally increase and decrease together, indicating a high level of correlation
between the Fuzzy System predictions and the Experimental measurements. Overall, the
graph demonstrates that the Fuzzy System's predictions closely match the Experimental
tensile strength measurements across the range of samples.

The table 4 provided compares the experimental values of tensile and flexural strengths of
various composite samples with those predicted by an Artificial Neural Network (ANN)
model. This comparison helps in assessing the accuracy and reliability of the ANN model in
predicting the mechanical properties of composite materials. For Sample 1, the experimental
tensile strength is 21.34 MPa, while the ANN predicted value is slightly lower at 20.5821
MPa. Similarly, the experimental flexural strength is 25.56 MPa, with the ANN prediction at
25.0264 MPa. The ANN model demonstrates effective prediction capabilities for both tensile
and flexural strengths across various samples. For instance, Sample 2 shows experimental
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values of 25.67 MPa (tensile) and 28.07 MPa (flexural), with ANN predictions of 25.7027
MPa and 29.0739 MPa, respectively, indicating a close match. Sample 3 reveals a slight
discrepancy in flexural strength, with experimental and predicted values of 15.56 MPa and
20.1326 MPa, respectively. Notably, Sample 9 exhibits the highest tensile strength of 35.56
MPa, closely matched by the ANN prediction of 35.5571 MPa. However, some samples, like
Sample 13, show significant variations in predictions, suggesting areas for model refinement.
Overall, the ANN model provides reasonably accurate predictions, evidenced by high R-
values (0.99998 for tensile strength and 0.98847 for flexural strength), indicating strong
linear relationships between predicted and actual values. This demonstrates the model's
robustness and its potential as a valuable tool for predicting the mechanical properties of
composite materials.

Table 4 Comparison between experimental and ANN values

Sample No. Experimental Tensile | Experimental Flexural | ANN based Tensile | ANN based Flexural
Strength (MPa) Strength (MPa) Strength (MPa) Strength (MPa)
1 21.34 25.56 20.5821 25.0264
2 25.67 28.07 25.7027 29.0739
3 16.9 15.56 16.9014 20.1326
4 21.45 23.34 21.454 24.9898
5 24.56 26.78 24.0274 25.7619
6 26.89 33.79 26.8855 33.9508
7 2221 26.67 23.0651 26.879
8 23.98 25.88 24.0274 25.7619
9 35.56 36.46 35.5571 35.249
10 29.78 27.13 29.7625 25.575
11 23.44 24.34 23.4347 24.9908
12 30.98 34.88 27.1603 34.1208
13 23.34 22.24 29.7625 25.575
14 20.89 21.77 21.64 29.041
15 28.87 34.77 28.8408 34.0543
16 24.33 25.23 24.0274 25.7619
17 30.78 34.68 29.8308 35.4393
18 32.98 33.88 32.9583 35.4633
19 27.78 29.98 27.8508 30.8156
20 30.98 27.18 30.9566 24.7188
21 31.34 33.54 31.3422 33.0129
22 30.34 32.09 30.27 31.7927
23 17.9 19.1 17.897 22.3519
24 32.23 33.98 32.2142 33.6758
25 28.89 29.35 28.8801 29.3917
26 30.78 34.98 30.12 35.21
27 28.88 30.08 28.54 30.01
28 43.44 35.09 43.21 34.99
29 29.35 34.01 29.54 34.51
30 26.67 31.13 26.21 31.35

Table 5 outlines the ANN training parameters for predicting tensile strength. The
showWindow parameter is set to true, enabling a graphical display of training progress. The
showCommandLine parameter is false, so details are not shown in the command line. The
show parameter updates the training status every 25 epochs, aiding in performance tracking.
The training runs for up to 1000 epochs (epochs), with no time limit (time set to Inf). The
goal parameter is 0, indicating no specific error target. Training stops if the performance
gradient falls below 1e-07 (min_grad), or if there are 100 consecutive validation failures
(max_fail). The Levenberg-Marquardt optimization uses mu parameters: mu starts at 0.001,
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decreases by 0.1 (mu_dec) when performance improves, increases by 10 (mu_inc) when
performance worsens, and can reach a maximum of 10710 (mu_max). These settings balance
gradient descent and Gauss-Newton methods, optimizing training stability and efficiency.

Table 5 Training Parameters settings for tensile strength prediction in ANN

showWindow true min_grad le-07
showCommandLine false max_fail 100

show 25 mu 0.001

epochs 1000 mu_dec 0.1

time Inf mu_inc 10

goal 0 mu_max 10000000000

Table 6 outlines the training parameters for predicting flexural strength using an Artificial
Neural Network (ANN). The showWindow parameter is set to true, enabling a graphical
interface to display training progress. The showCommandLine is false, limiting detailed
outputs and focusing on essential updates. The show parameter, set at 25, controls the
frequency of progress updates, occurring every 25 epochs. Training is capped at 1000 epochs
(epochs), ensuring the process does not run indefinitely.

Table 6 Training Parameters settings for flexural strength prediction in ANN

showWindow true min_grad le-07
showCommandLine false max_fail 100

show 25 mu 0.001
epochs 1000 mu_dec 0.1

time Inf mu_inc 10

goal 0 mu_max 10000000000

The time parameter is set to Inf, allowing training to continue until other criteria, such as the
goal of zero training error, are met. The min_grad is set at 1e-07, stopping training if the
gradient falls below this, indicating a learning plateau. Fig.7 demonstrates the statistical
stability of the proposed ANN model, designed to enhance the accuracy of tensile test
predictions. The model utilizes a 4:10:2 architecture, consisting of an input layer with four
neurons, a hidden layer with ten neurons, and an output layer with two neurons. This
configuration balances complexity and computational efficiency, enabling the network to
capture intricate data relationships without becoming overly complex. The model's
robustness and predictive power were evaluated using the R-value (correlation coefficient), a
statistical measure indicating how well the ANN's predicted values align with the
experimental data. The R-value quantifies the strength and direction of the linear relationship
between predicted and actual values, showcasing the ANN model's effectiveness.
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The comparison between experimental and ANFIS (Adaptive Neuro-Fuzzy Inference
System) values for tensile and flexural strengths across various samples provides insights
into the accuracy and reliability of the ANFIS model in predicting mechanical properties.
Table 7 illustrates the ANFIS outputs. In general, the ANFIS model closely approximates the
experimental tensile and flexural strengths, with slight deviations observed in certain
instances. For tensile strength, the ANFIS predictions are generally in good agreement with
the experimental results as shown in Fig.9. Most samples show minor differences between
the experimental tensile strengths and those predicted by the ANFIS model. For instance,
samples such as 1, 2, 4, and 5 exhibit close alignment between the experimental and ANFIS-
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based tensile strengths, indicating that the model can effectively predict tensile properties
within a reasonable range. However, some samples, like 3 and 13, show more considerable
variations, suggesting areas where the model's predictive capability could be improved. In
terms of flexural strength, the ANFIS model also demonstrates a high degree of accuracy in
predicting values. Similar to tensile strength, the majority of samples show ANFIS
predictions that are very close to the experimental measurements. Samples such as 2, 6, 9,
and 18 exhibit minimal differences between the experimental and predicted flexural
strengths, underscoring the model's reliability. Nevertheless, a few samples, including 3 and
14, show more significant deviations, indicating potential areas for refinement in the model.
Overall, the comparison highlights that while the ANFIS model generally provides accurate
predictions for both tensile and flexural strengths, there are specific instances where the
model's predictions deviate from the experimental values.

Table 7 Comparison between experimental and ANFIS values

Sample No. Experimental Tensile | Experimental Flexural | ANFIS based Tensile | ANFIS based Flexural
Strength (MPa) Strength (MPa) Strength (MPa) Strength (MPa)

1 21.34 25.56 20.5621 25.005
2 25.67 28.07 25.6827 29.0525
3 16.9 15.56 16.8814 20.1112
4 21.45 23.34 21.434 24.9684
5 24.56 26.78 24.0074 25.7405
6 26.89 33.79 26.8655 33.9294
7 22.21 26.67 23.0451 26.8576
8 23.98 25.88 24.0074 25.7405
9 35.56 36.46 35.5371 35.2276
10 29.78 27.13 29.7425 25.5536
11 23.44 24.34 23.4147 24.9694
12 30.98 34.88 27.1403 34.0994
13 23.34 22.24 29.7425 25.5536
14 20.89 21.77 21.62 29.0196
15 28.87 34.77 28.8208 34.0329
16 24.33 25.23 24.0074 25.7405
17 30.78 34.68 29.8108 35.4179
18 32.98 33.88 32.9383 35.4419
19 27.78 29.98 27.8308 30.7942
20 30.98 27.18 30.9366 24.6974
21 3134 33.54 31.3222 32.9915
22 30.34 32.09 30.25 31.7713
23 17.9 19.1 17.877 22.3305
24 32.23 33.98 32.1942 33.6544
25 28.89 29.35 28.8601 29.3703
26 30.78 34.98 30.1 35.1886
27 28.88 30.08 28.52 29.9886
28 43.44 35.09 43.19 34.9686
29 290.35 34.01 29.52 34.4886
30 26.67 31.13 26.19 31.3286
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Figure. 9 Comparison between ANFIS and Experimental obtained (a) Tensile strength (b)
Flexural Strength

4. Conclusion

The application of artificial intelligence, particularly neural networks and fuzzy systems, has
proven to be an effective approach in optimizing FDM (Fused Deposition Modeling) process
parameters. This study utilized the Adaptive Neuro-Fuzzy Inference System (ANFIS) to
predict tensile and flexural strengths of materials with high accuracy. The results indicate
that neural networks and fuzzy systems can model complex relationships between process
parameters and mechanical properties, offering reliable predictions and optimization
strategies. The ANFIS model, in particular, demonstrated strong predictive capabilities,
closely aligning with experimental values. Continuous refinement and incorporation of
additional data can enhance the model's accuracy and reliability. Furthermore, the study
successfully developed an expert system designed to predict the tensile strength of composite
FDM parts. This expert system integrates knowledge from experimental data and Al models,
providing accurate predictions based on input parameters such as fiber orientation, weight,
and FDM process settings. The practical application of this expert system is significant, as it
can be utilized by manufacturers and researchers to optimize FDM processes, enhance
composite material properties, and reduce experimental costs by minimizing the need for
extensive physical testing. This approach not only improves efficiency but also contributes to
the advancement of FDM technology.
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