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The research focuses on developing an expert system to predict the mechanical 
properties  of  specimens  manufactured  using  Fused  Deposition  Modeling

(FDM),  utilizing  advanced  artificial  intelligence  approaches.  A  comparative 
analysis was conducted between experimental data and predictions made by two 
different  models:  a  Fuzzy  Logic  System  and  an  Artificial  Neural  Network

(ANN).  The  study  involved  30  samples,  with  experimental  measurements  of 
tensile and flexural strengths serving as the benchmark. The Fuzzy Logic model 
provided  estimates  with  a  tendency  to  slightly  underestimate  the  tensile  and 
flexural strengths, particularly in lower-strength samples. In contrast, the ANN 
demonstrated  a  closer  alignment  with  the  experimental  values,  particularly  in 
higher strength ranges. The findings suggest that both models can be useful in 
predicting  the  mechanical  properties  of  FDM-manufactured  specimens,  with 
ANN  showing  greater  accuracy.  The  results  indicate  that  the  Fuzzy  Logic 
System  generally  underestimated  tensile  and  flexural  strengths  compared  to 
experimental  values,  with  a  notable  discrepancy  observed  for  lower  strength 
samples.  For  instance,  the  experimental  tensile  and  flexural  strengths  were 
21.34 MPa and 25.56 MPa, respectively measured for respective samples, while 
the  Fuzzy  Logic  System predicted  20.46 MPa  and  24.99  MPa.  In contrast, the 
ANN  model  demonstrated  a  higher  accuracy  in  predicting  these  properties,  as 
evidenced  by its  closer approximations to the  experimental  data.  For the  same 
sample,  the  ANN  predicted  tensile  and  flexural  strengths  of  20.58  MPa  and 
25.03 MPa, respectively, highlighting the superior predictive capabilities of the

ANN  model.  This  research  underscores  the  potential  for  AI-driven  models  to
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streamline material testing processes, providing a computationally efficient 

means of estimating material properties and highlighting areas for model 

refinement to enhance predictive accuracy across a broader spectrum of material 

strengths. The study's implications extend to the design and analysis of 

composite materials, where precise property prediction is critical for 

performance assessment and reliability. 

Keywords: FDM; Fuzzy Logic; ANN; ANFIS; 3D Printing; AI; ML.  

 

 

1. Introduction 

Additive Manufacturing (AM), commonly known as 3D printing, is a transformative 

technology that constructs objects layer by layer, directly from digital models. This approach 

contrasts sharply with traditional subtractive manufacturing techniques, which involve 

cutting away material to shape a final product. AM encompasses a variety of processes that 

offer unique benefits, such as material efficiency, design flexibility, and the ability to 

produce complex geometries [1-3]. The technology has found applications across numerous 

industries, including aerospace, automotive, healthcare, and consumer goods, where it has 

become a pivotal tool for rapid prototyping and manufacturing [4-6]. One of the most 

prevalent AM techniques is Fused Deposition Modeling (FDM). As shown in Fig. 1, FDM 

works by extruding thermoplastic materials through a heated nozzle, depositing the material 

layer by layer to form the desired object. This method is popular due to its relative 

simplicity, affordability, and the wide range of compatible materials, including ABS, PLA, 

and composites [7-9]. The versatility of FDM has made popular choice for prototyping, 

tooling, and even the production of functional end-use parts, enabling designers and 

engineers to create intricate and customized components efficiently [10-12]. 

 

 

Figure. 1 Schematic diagram of Fused Deposition Modeling (FDM) Process 
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Fused Deposition Modeling (FDM) is one of the most widely used additive manufacturing 

techniques due to its versatility and cost-effectiveness. It involves the extrusion of 

thermoplastic materials to build parts layer by layer, offering significant advantages in 

prototyping and small-scale production. The mechanical properties of FDM-fabricated parts 

are influenced by a variety of process parameters, such as layer height, print speed, extrusion 

temperature, and infill density. Understanding the impact of these parameters is crucial for 

optimizing the mechanical performance and dimensional accuracy of FDM parts. Research 

on the influence of process parameters on FDM parts has been extensive. For instance, 

studies have shown that layer height significantly affects the surface roughness and 

mechanical strength of parts [12]. Smaller layer heights generally lead to improved surface 

finish and strength but at the cost of longer print times. Additionally, print speed and 

extrusion temperature are critical in determining the bond strength between layers, which 

directly impacts the overall mechanical integrity of the printed objects [13-15]. Infill density 

and pattern also play a vital role; higher infill densities usually result in stronger parts, 

though they require more material and longer printing durations [16-18]. Recent 

advancements in FDM technology have expanded the range of materials that can be used, 

including composites and high-performance polymers. This has led to further investigations 

into how varying process parameters affect the mechanical properties of these advanced 

materials. Studies have demonstrated that optimizing parameters such as nozzle temperature 

and cooling rate can significantly enhance the mechanical properties of parts made from 

materials like carbon fiber-reinforced polymers [19-22]. Moreover, the orientation of parts 

during printing has been found to influence the anisotropy in mechanical properties, 

highlighting the need for careful consideration of part orientation during the design phase 

[23-25]. In the context of composite materials, the dispersion and alignment of reinforcing 

fibers are additional factors that are influenced by process parameters. The nozzle 

temperature, print speed, and layer height can all affect the distribution of fibers within the 

matrix, which in turn impacts the mechanical properties of the final part [26-29]. 

Furthermore, post-processing treatments, such as annealing, have been explored to improve 

the mechanical properties of FDM parts, although these treatments introduce additional 

complexities and costs [30-32]. Despite these advancements, there remain challenges in fully 

understanding and optimizing the effects of process parameters on FDM parts. Variability in 

material properties, machine calibration, and environmental conditions can lead to 

inconsistencies in part quality. Therefore, ongoing research is focused on developing more 

robust models and control systems to predict and manage these variations [33-35]. The 

development of Additive Manufacturing (AM), particularly Fused Deposition Modeling 

(FDM), has revolutionized the production of complex and customized parts. FDM's layer-by-

layer deposition process allows for the creation of intricate geometries and rapid prototyping, 

making it a preferred method in various industries, including aerospace, automotive, and 

biomedical engineering. The quality and mechanical properties of parts manufactured by 

FDM are significantly influenced by various process parameters, such as layer thickness, 

print speed, infill density, and nozzle temperature [36]. Understanding the relationship 

between these parameters and the resulting part properties is crucial for optimizing the FDM 

process. In recent years, machine learning (ML) methods have gained prominence in 

studying and predicting the effects of FDM process parameters. ML techniques such as 

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Decision Trees 
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have been employed to model the complex relationships between process parameters and 

part properties. These methods enable the analysis of large datasets and the identification of 

patterns that may not be evident through traditional statistical methods [37]. For instance, 

ANNs have been used to predict tensile strength and surface roughness of FDM-

manufactured parts, demonstrating their potential to enhance process control and quality 

assurance [38]. The integration of ML techniques into the study of FDM processes offers 

several advantages, including improved accuracy in predictions and the ability to handle 

non-linear relationships between variables. Studies have shown that ML models can 

outperform traditional empirical models in predicting mechanical properties such as tensile 

strength, flexural strength, and impact resistance [39-40]. Additionally, the use of machine 

learning in FDM can facilitate the optimization of process parameters, leading to reduced 

material waste, shorter production times, and improved part quality [41-42]. Despite the 

advancements in this field, challenges remain in the widespread adoption of ML techniques 

in FDM research. These include the need for large, high-quality datasets and the complexity 

of model selection and training [43]. Furthermore, the generalizability of ML models across 

different materials and printer types is a critical area of ongoing research [44]. As the field 

continues to evolve, there is a growing interest in exploring hybrid approaches that combine 

machine learning with traditional simulation methods, such as finite element analysis (FEA), 

to achieve more comprehensive and accurate predictions [45]. To bridge the same, present 

work aims to developed an expert system using three artificial intelligence approaches i.e. 

fuzzy logic, artificial neural network and adaptive neuro fuzzy interface system.  

 

2. Materials and Methodologies 

To investigate the impact of FDM process parameters on the mechanical properties of the 

manufactured parts, a series of experiments were conducted. For Fabrication of specimens 

Tevo Tarantula 3D Printer is used with Bagasse natural filament. The parameters considered 

in this study included nozzle temperature, layer thickness, part orientation, and raster 

orientation. Each parameter was tested at three distinct levels to comprehensively understand 

their influence on the final properties of the parts. The details about the selected process 

parameters are as: 

• Nozzle Temperature (°C): The nozzle temperature was varied at three levels: 230°C, 

240°C, and 250°C. This range was chosen to study the influence of different temperatures on 

the material's melting and flow properties, which can significantly affect the bonding 

between layers and overall mechanical strength. 

• Layer Thickness (mm): The layer thickness was set at 0.12 mm, 0.21 mm, and 0.30 

mm. This parameter influences the surface finish and dimensional accuracy of the parts, as 

well as the mechanical properties, by altering the amount of material deposited in each layer. 

• Part Orientation (°): The orientation of the parts during printing was varied between 

0°, 45°, and 90°. Part orientation affects the distribution of stresses and the overall 

mechanical behavior of the printed parts, as the layer bonding strength varies with 

orientation. 
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• Raster Orientation (°): The raster orientation, or the angle at which the material is 

laid down, was set at 0°, 45°, and 90°. This parameter plays a crucial role in determining the 

internal structure and mechanical properties of the printed parts, particularly in relation to 

tensile and flexural strengths. 

Each experimental run involved printing test specimens with a unique combination of the 

specified parameters, adhering to the levels mentioned in Table 1. The specimens were then 

subjected to mechanical testing to evaluate the effects of the different settings on tensile 

strength, flexural strength, and other relevant properties. The results from these tests 

provided valuable insights into the optimal settings for achieving desired mechanical 

properties in FDM-manufactured parts and also helps to developed an expert system.  In this 

study, a Face-Centered Central Composite Design (FCCCD) was employed to systematically 

investigate the effects of FDM process parameters on the mechanical properties of the 

manufactured parts. Using the settings outlined in Table 1, the FCCCD method allowed for a 

comprehensive analysis by incorporating the three levels of each parameter i.e. low, middle, 

and high. 

Table 1 FDM process parameters with their settings and levels 

FDM Process parameters Units Levels 

-1 0 +1 

Nozzle Temperature C 230 240 250 

Layer Thickness mm 0.12 0.21 0.30 

Part Orientation C 0 45 90 

Raster Orientation C 0 45 90 

This approach facilitated the exploration of the interactions between nozzle temperature, 

layer thickness, part orientation, and raster orientation, providing a robust framework for 

optimizing the FDM process. The design enabled the assessment of both linear and nonlinear 

effects, offering a detailed understanding of how variations in these parameters impact the 

overall quality and performance of the printed parts. Table 2 mentioned the FCCCD schema 

for the present work to study effect of FDM process parameters on mechanical properties. 

Table 2 FCCCD schema for mechanical properties measurement 

Run Nozzle Temperature (C) Layer Thickness (mm) Part Orientation  (C) 
Raster Orientation 

(C) 

1 250 0.3 90 90 

2 230 0.12 90 45 

3 230 0.3 90 0 

4 240 0.21 90 0 

5 240 0.21 45 0 

6 250 0.3 0 90 

7 250 0.12 0 90 

8 240 0.21 45 0 

9 250 0.21 45 0 

10 230 0.12 0 45 

11 250 0.12 0 45 

12 240 0.21 45 45 

13 230 0.12 0 45 

14 230 0.12 90 0 

15 230 0.21 45 90 
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16 240 0.21 45 0 

17 240 0.21 45 90 

18 240 0.12 45 90 

19 250 0.3 90 45 

20 230 0.3 0 45 

21 240 0.3 45 45 

22 250 0.12 90 0 

23 230 0.3 90 45 

24 250 0.12 90 90 

25 230 0.3 0 90 

26 240 0.21 45 45 

27 240 0.21 0 45 

28 250 0.3 0 0 

29 240 0.21 45 45 

30 240 0.21 0 90 

Mechanical properties testing 

In the present work, two types of mechanical testing are carried out during the present work 

i.e., tensile strength (as per ASTMD638) and flexural strength (as per ASTMD790). Tensile 

strength testing is a crucial method for evaluating the mechanical properties of materials, 

particularly plastics and composites. In the present work. This test measures the material's 

ability to withstand tension and provides important data regarding its strength and ductility. 

The ASTM D638 standard specifies the method for tensile testing of plastic materials, 

focusing on the Type I specimen, which is widely used for its representative characteristics. 

This methodology outlines the procedures and considerations for conducting tensile strength 

testing according to ASTM D638 Type I. Figure.2 illustrates into detail drawing mentioned 

as per ASTM D638.  

 

Figure. 2 Detail Drawing of Tensile Test Specimen as per ASTM D638 type-I 

In the present work, flexural strength specimens are fabricated as mentioned in Figure 9.  

Flexural Strength is a crucial mechanical property for materials used in structural 

applications. ASTM D790 is a standard test method for determining the flexural properties 

of unreinforced and reinforced plastics, including high-modulus composites. Fig.3 illustrates 

into detail drawing mentioned as per ASTM D790. 
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Figure. 3 Detail Drawing of Flexural Test Specimen as per ASTM D790 

In the present work. To predict the mechanical properties expert system is designed using 

machine learning approaches i.e. Fuzzy Logic System, Artificial Neural Network and 

Adaptive Neuro Fuzzy Interface System (ANFIS). 

In this study, a fuzzy logic system was utilized to explore and examine the surface roughness 

of components produced through fused filament fabrication (FFF). Fuzzy logic serves as a 

computational framework that facilitates the representation and manipulation of imprecise or 

uncertain information. It provides a more adaptable and nuanced approach to decision-

making and reasoning by incorporating degrees of membership and linguistic variables. The 

fuzzy logic system applied in this research comprised linguistic rules and membership 

functions. Linguistic rules delineate the relationships between the input variables (nozzle 

temperature, raster orientation, part orientation, and layer thickness) and the output variable 

(tensile strength and flexural strength). These rules were formulated based on expert 

knowledge and insights specific to the domain. Membership functions were employed to 

quantify the degree of membership of an input variable to a particular linguistic term (e.g., 

low, medium, high). These functions empowered the fuzzy logic system to manage 

imprecise or ambiguous information and make decisions grounded in fuzzy sets and fuzzy 

logic operations, such as fuzzy inference and fuzzy reasoning. By integrating the fuzzy logic 

system into the analysis of FFF surface roughness, the objective of this research was to 

capture the intricacies and uncertainties associated with the manufacturing process. The 

fuzzy logic system provided a robust framework to model and predict the surface roughness 

based on the input parameters, allowing for more accurate and comprehensive understanding 

of the relationship between process parameters and surface quality.  

The utilization of a fuzzy logic system in this research paper enhances the predictive 

capabilities and decision-making process in relation to surface roughness optimization for 

FFF parts. It offers a valuable tool for process control and quality assurance, enabling 

manufacturers to improve product outcomes and customer satisfaction by effectively 

managing surface roughness in FFF manufacturing. 
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Figure. 4 Fuzzy interface system in MATLAB 

The configuration of a three-input-one-output fuzzy logic unit is depicted in Fig.4. As 

illustrated in the figure, a fuzzy logic unit comprises a fuzzifier, knowledge base (consisting 

of membership functions and a fuzzy rule base), fuzzy inference system, and a defuzzifier. 

Each of these components is elaborated below: 

i. Fuzzifier: The actual input to the fuzzy system is fed into the fuzzifier. In fuzzy 

literature, this input is termed as crisp input, as it provides precise information about a 

specific parameter. The fuzzifier transforms this precise quantity into an imprecise form, 

such as 'small,' 'medium,' 'large,' etc., along with a degree of membership, typically ranging 

from 0 to 1. 

ii. Knowledge Base: The pivotal part of the fuzzy system is the knowledge base, 

encompassing both the rule base and the database. The database outlines the membership 

functions of the fuzzy sets used in the fuzzy rules, while the rule base contains several fuzzy 

if-then rules. 

iii. Fuzzy Inference System: The fuzzy inference system, also known as the inference 

system or decision-making unit, executes inference operations on the rules. It governs how 

the rules are amalgamated. 

iv. Defuzzifier: The output produced by the inference block is inherently fuzzy. A real-

world system necessitates converting the fuzzy output into a crisp one. The role of the 

defuzzifier is to receive the fuzzy input and yield a real output. In operation, it functions in 

the opposite manner to the input block. 

In this study, a Mamdani fuzzy system was utilized to evaluate a multi-response performance 

index by assessing multiple performance characteristics. The system, depicted in the 

accompanying figure, operates as a multi-input, single-output model to estimate complex 

performance indices even if some input conditions were not explicitly covered during model 

development. The model development involved several key steps: 
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i. Selection of Input and Output Variables: Inputs such as Layer Thickness, Nozzle 

Temperature, Raster Orientation, and Part Orientation were selected, with output variables 

being Tensile Strength and Flexural Strength. These variables were represented linguistically 

with categories like {small, medium, large} for inputs and outputs, allowing for fuzzy logic 

application. 

ii. Selection of Membership Functions: Triangular membership functions were chosen 

due to their computational efficiency. These functions transform linguistic values into a 

normalized range between 0 and 1, facilitating simple and effective calculations. 

iii. Formation of Linguistic Rule Base: A comprehensive rule base was developed to 

establish relationships between input variables and the desired output. This base, 

incorporating expert knowledge, used if-then rules to correlate input variables (each with 

three triangular membership functions) with the output variable. The system generated 15 

rules using the max-min inference method. 

iv. Defuzzification: The final step involved converting fuzzy outputs into a crisp result 

using the center of gravity method. This process computed the multi-response performance 

index (MRPI) by averaging the weighted outputs, providing a precise, actionable result from 

the fuzzy system. 

An Artificial Neural Network (ANN) is a computational model inspired by the way 

biological neural networks in the human brain process information. ANNs consist of 

interconnected groups of artificial neurons that work together to solve specific problems. In 

the present work, Artificial Neural Networks (ANNs) implemented through MATLAB's 

specialized tools offer a powerful approach for creating expert systems aimed at predicting 

material properties. In this context, we delve into the methodology involved in utilizing 

MATLAB's ANN tools to construct a Backpropagation Neural Network (BPNN) based 

expert system tailored to predict Tensile Strength and Flexural Strength of materials, with 

input variables including Layer Thickness, Nozzle Temperature, Raster Orientation, and Part 

Orientation. The first crucial step in utilizing MATLAB's ANN tools for developing the 

BPNN-based expert system is data pre-processing. This involves acquiring a comprehensive 

dataset that includes a diverse range of values for each input variable along with 

corresponding Tensile Strength and Flexural Strength measurements. MATLAB provides 

various functions and toolboxes for efficient data pre-processing, including functions for 

data normalization or standardization to ensure that input variables are appropriately scaled. 

Proper pre-processing is essential for enhancing the convergence of the BPNN during 

training and improving the accuracy of material property predictions. Once the data pre-

processing is completed, the next step is to design and implement the BPNN architecture 

using MATLAB's ANN tools. MATLAB offers a user-friendly environment with built-in 

functions and toolboxes specifically designed for creating, training, and evaluating neural 

networks. The BPNN architecture typically consists of an input layer, one or more hidden 

layers, and an output layer. MATLAB's ANN tools provide functions for defining the 

network structure, selecting activation functions, and initializing network parameters. 

Additionally, MATLAB's graphical user interface (GUI) facilitates the visualization of the 

network architecture, allowing for easy customization and optimization based on specific 

requirements. After designing the BPNN architecture, the next step is to train the network 



2689 Kalpesh Patel et al. Mechanical Characterization of Additive....                                                              
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

using the prepared dataset. MATLAB's ANN tools offer a variety of training algorithms, 

including backpropagation with different optimization techniques such as gradient descent or 

Levenberg-Marquardt. The dataset is typically partitioned into training, validation, and 

testing subsets to evaluate the network's performance and prevent overfitting. MATLAB's 

ANN tools provide functions for partitioning datasets and monitoring training progress 

through graphical representations such as training curves and performance metrics. Once the 

BPNN is trained and validated, it can be integrated into the expert system to predict Tensile 

Strength and Flexural Strength based on input variables, thereby providing valuable insights 

into material behavior and aiding in process optimization and product design. 

The present research work investigates the potential of Artificial Neural Networks (ANNs) 

to enhance expert system design. To analyze the surface roughness pattern, an Artificial 

Neural Network (ANN) was implemented using MATLAB© 2021. The ANN utilized a 

supervised learning approach with three input variables: layer thickness, nozzle temperature, 

and part orientation, and one output variable representing the surface roughness as shown in 

Figure 5. Present work approach focuses on leveraging the strengths of both techniques to 

create a robust and adaptable intelligent system. Following steps are considered to design to 

design an expert system using ANN approach: 

Step 1: Knowledge Acquisition and Pre-processing: 

• Domain experts will be consulted to identify the key problem domain and the factors 

influencing the decision-making process. 

• This knowledge will be translated into a structured format suitable for training the 

ANN. This may involve data collection from past cases, feature engineering to extract 

relevant information, and data cleaning to ensure quality. 

Step 2: Neural Network Architecture and Training: 

• Based on the problem domain and the characteristics of the data, a suitable ANN 

architecture will be selected. This could involve choosing the appropriate network type (e.g., 

Multi-Layer Perceptron, Convolutional Neural Network), determining the number of hidden 

layers and neurons, and selecting activation functions. 

• A training dataset will be prepared, consisting of past cases with well-defined inputs 

(features) and corresponding desired outputs (expert decisions). The system will be trained 

using a suitable learning algorithm (e.g., Backpropagation) to identify complex patterns 

within the data. 
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Step 3: Integration and Evaluation: 

• The trained ANN will be integrated into the expert system framework. This may 

involve developing a mechanism for the expert system to interact with the ANN, providing 

context and receiving its recommendations. 

• The performance of the hybrid system will be evaluated using various metrics 

relevant to the specific application. This could include accuracy, precision, recall, and F1 

score for classification tasks, or mean squared error for regression tasks. Additionally, expert 

feedback will be solicited to assess the system's reasoning capabilities and the alignment 

with domain knowledge. 

Step 4: Iterative Refinement: 

• Following evaluation, the system will undergo an iterative refinement process. 

Based on the results, the ANN architecture and training parameters might be adjusted. 

Additionally, the expert system's knowledge base could be enhanced with insights gained 

from the ANN's performance. This cyclical process aims to continuously improve the 

system's accuracy, robustness, and generalizability. 

In the present work, three input nodes i.e. layer thickness, nozzle temperature and part 

orientation and one input node i.e. surface roughness are considered. ANN emphasizes the 

collaborative nature of the approach. By combining human expertise with the learning power 

of ANNs, we aim to create an intelligent system that leverages the strengths of both 

paradigms. 

 

Figure. 5 ANN Architecture with 3 input nodes and 1 output nodes 
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The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid intelligent system that 

combines the learning capabilities of neural networks with the fuzzy logic reasoning of fuzzy 

inference systems. This integration leverages the strengths of both paradigms, allowing 

ANFIS to handle imprecise information and adaptively learn from data.  Utilizing 

MATLAB's Adaptive Neuro-Fuzzy Inference System (ANFIS) tools presents a robust 

approach for constructing expert systems aimed at predicting material properties. In 

this context, we explore the methodology involved in leveraging MATLAB's ANFIS 

tools to develop an ANFIS-based expert system tailored to predict Tensile Strength and 

Flexural Strength of materials, with input variables including Layer Thickness, Nozzle 

Temperature, Raster Orientation, and Part Orientation. The initial step in employing 

MATLAB's ANFIS tools for building the expert system involves data pre-processing. 

This entails gathering a comprehensive dataset containing a diverse range of values for 

each input variable, alongside corresponding Tensile Strength and Flexural Strength 

measurements. MATLAB offers a suite of functions and toolboxes for efficient data 

pre-processing, facilitating tasks such as data normalization or standardization to 

ensure that input variables are appropriately scaled. Effective pre-processing enhances 

the convergence of the ANFIS during training and enhances the accuracy of material 

property predictions. Once data pre-processing is completed, the subsequent step is 

designing and implementing the ANFIS architecture using MATLAB's ANFIS tools. 

MATLAB provides a user-friendly environment equipped with built-in functions and 

toolboxes specifically tailored for creating, training, and evaluating ANFIS models.  

The ANFIS architecture typically comprises fuzzy inference systems combined with 

adaptive techniques, allowing for the modeling of complex relationships between 

inputs and outputs. MATLAB's ANFIS tools enable users to define the structure of the 

fuzzy inference system, select appropriate membership functions, and adjust 

parameters to optimize model performance. Additionally, MATLAB's graphical user 

interface simplifies the visualization of the ANFIS architecture, facilitating 

customization and optimization based on specific requirements.  Following the design 

of the ANFIS architecture, the subsequent step is training the model using the prepared 

dataset. MATLAB's ANFIS tools offer various training algorithms, including hybrid 

optimization techniques that combine gradient-based methods with evolutionary 

algorithms. The dataset is partitioned into training, validation, and testing subsets to 

assess the model's performance and prevent overfitting. MATLAB's ANFIS tools 

provide functions for partitioning datasets and monitoring training progress through 

graphical representations such as learning curves and performance metrics. Once the 

ANFIS model is trained and validated, it can be integrated into the expert system to 

predict Tensile Strength and Flexural Strength based on input variables, thereby 

offering valuable insights into material behaviour and supporting process optimization 

and product design. 

 

3. Results and Discussions 

The data in Table 3 compares experimental and Fuzzy Logic predictions of tensile and 

flexural strength for 30 composite material samples. The experimental values provide critical 

insights into material behavior under load, while the Fuzzy Logic predictions estimate these 
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properties based on various inputs. For instance, Sample 1's experimental tensile strength is 

21.34 MPa, with the Fuzzy Logic model predicting 20.4604 MPa. Similar trends are 

observed with flexural strength, where the model slightly underestimates the experimental 

results. As samples progress, the model's predictions show a closer alignment with 

experimental data for higher strength materials, such as in Sample 6, which has an 

experimental tensile strength of 26.89 MPa and a predicted strength of 26.0104 MPa. 

However, lower strength samples, like Sample 3, show more significant discrepancies, 

indicating the model's limitations in accurately predicting lower strength metrics. Overall, 

the Fuzzy Logic model tends to underestimate tensile strength in lower strength samples 

while providing closer approximations for higher strength samples, suggesting a need for 

refinement or additional parameters to better capture material behavior across a range of 

strengths. 

Table 3 Comparison between experimental and Fuzzy Logic system values  

Sample 

No. 

Experimental Tensile 

Strength (MPa) 

Experimental Flexural 

Strength (MPa) 

Fuzzy Logic based 

Tensile Strength 

(MPa) 

Fuzzy Logic based 

Flexural Strength 

(MPa) 

1 21.34 25.56 20.4604 24.9859 

2 25.67 28.07 24.7904 27.4959 

3 16.9 15.56 16.0204 14.9859 

4 21.45 23.34 20.5704 22.7659 

5 24.56 26.78 23.6804 26.2059 

6 26.89 33.79 26.0104 33.2159 

7 22.21 26.67 21.3304 26.0959 

8 23.98 25.88 23.1004 25.3059 

9 35.56 36.46 34.6804 35.8859 

10 29.78 27.13 28.9004 26.5559 

11 23.44 24.34 22.5604 23.7659 

12 30.98 34.88 30.1004 34.3059 

13 23.34 22.24 22.4604 21.6659 

14 20.89 21.77 20.0104 21.1959 

15 28.87 34.77 27.9904 34.1959 

16 24.33 25.23 23.4504 24.6559 

17 30.78 34.68 29.9004 34.1059 

18 32.98 33.88 32.1004 33.3059 

19 27.78 29.98 26.9004 29.4059 

20 30.98 27.18 30.1004 26.6059 

21 31.34 33.54 30.4604 32.9659 

22 30.34 32.09 29.4604 31.5159 

23 17.9 19.1 17.0204 18.5259 
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24 32.23 33.98 31.3504 33.4059 

25 28.89 29.35 28.0104 28.7759 

26 30.78 34.98 29.9004 34.4059 

27 28.88 30.08 28.0004 29.5059 

28 43.44 35.09 42.5604 34.5159 

29 29.35 34.01 28.4704 33.4359 

30 26.67 31.13 25.7904 30.5559 

 

  

(a) (b) 

Figure. 6 Comparison between Fuzzy System and Experimental obtained (a) Tensile 

strength (b) Flexural Strength 

Fig.6 shows a graph comparing tensile strength (in MPa) across different sample numbers 

using two different methods: a Fuzzy System and Experimental measurements. The tensile 

strength values fluctuate across the samples for both methods. Despite these fluctuations, the 

data points generally increase and decrease together, indicating a high level of correlation 

between the Fuzzy System predictions and the Experimental measurements. Overall, the 

graph demonstrates that the Fuzzy System's predictions closely match the Experimental 

tensile strength measurements across the range of samples. 

The table 4 provided compares the experimental values of tensile and flexural strengths of 

various composite samples with those predicted by an Artificial Neural Network (ANN) 

model. This comparison helps in assessing the accuracy and reliability of the ANN model in 

predicting the mechanical properties of composite materials. For Sample 1, the experimental 

tensile strength is 21.34 MPa, while the ANN predicted value is slightly lower at 20.5821 

MPa. Similarly, the experimental flexural strength is 25.56 MPa, with the ANN prediction at 

25.0264 MPa. The ANN model demonstrates effective prediction capabilities for both tensile 

and flexural strengths across various samples. For instance, Sample 2 shows experimental 
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values of 25.67 MPa (tensile) and 28.07 MPa (flexural), with ANN predictions of 25.7027 

MPa and 29.0739 MPa, respectively, indicating a close match. Sample 3 reveals a slight 

discrepancy in flexural strength, with experimental and predicted values of 15.56 MPa and 

20.1326 MPa, respectively. Notably, Sample 9 exhibits the highest tensile strength of 35.56 

MPa, closely matched by the ANN prediction of 35.5571 MPa. However, some samples, like 

Sample 13, show significant variations in predictions, suggesting areas for model refinement. 

Overall, the ANN model provides reasonably accurate predictions, evidenced by high R-

values (0.99998 for tensile strength and 0.98847 for flexural strength), indicating strong 

linear relationships between predicted and actual values. This demonstrates the model's 

robustness and its potential as a valuable tool for predicting the mechanical properties of 

composite materials. 

Table 4 Comparison between experimental and ANN values 
Sample No. Experimental Tensile 

Strength (MPa) 

Experimental Flexural 

Strength (MPa) 

ANN based Tensile 

Strength (MPa) 

ANN based Flexural 

Strength (MPa) 

1 21.34 25.56 20.5821 25.0264 

2 25.67 28.07 25.7027 29.0739 

3 16.9 15.56 16.9014 20.1326 

4 21.45 23.34 21.454 24.9898 

5 24.56 26.78 24.0274 25.7619 

6 26.89 33.79 26.8855 33.9508 

7 22.21 26.67 23.0651 26.879 

8 23.98 25.88 24.0274 25.7619 

9 35.56 36.46 35.5571 35.249 

10 29.78 27.13 29.7625 25.575 

11 23.44 24.34 23.4347 24.9908 

12 30.98 34.88 27.1603 34.1208 

13 23.34 22.24 29.7625 25.575 

14 20.89 21.77 21.64 29.041 

15 28.87 34.77 28.8408 34.0543 

16 24.33 25.23 24.0274 25.7619 

17 30.78 34.68 29.8308 35.4393 

18 32.98 33.88 32.9583 35.4633 

19 27.78 29.98 27.8508 30.8156 

20 30.98 27.18 30.9566 24.7188 

21 31.34 33.54 31.3422 33.0129 

22 30.34 32.09 30.27 31.7927 

23 17.9 19.1 17.897 22.3519 

24 32.23 33.98 32.2142 33.6758 

25 28.89 29.35 28.8801 29.3917 

26 30.78 34.98 30.12 35.21 

27 28.88 30.08 28.54 30.01 

28 43.44 35.09 43.21 34.99 

29 29.35 34.01 29.54 34.51 

30 26.67 31.13 26.21 31.35 

Table 5 outlines the ANN training parameters for predicting tensile strength. The 

showWindow parameter is set to true, enabling a graphical display of training progress. The 

showCommandLine parameter is false, so details are not shown in the command line. The 

show parameter updates the training status every 25 epochs, aiding in performance tracking. 

The training runs for up to 1000 epochs (epochs), with no time limit (time set to Inf). The 

goal parameter is 0, indicating no specific error target. Training stops if the performance 

gradient falls below 1e-07 (min_grad), or if there are 100 consecutive validation failures 

(max_fail). The Levenberg-Marquardt optimization uses mu parameters: mu starts at 0.001, 
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decreases by 0.1 (mu_dec) when performance improves, increases by 10 (mu_inc) when 

performance worsens, and can reach a maximum of 10^10 (mu_max). These settings balance 

gradient descent and Gauss-Newton methods, optimizing training stability and efficiency. 

Table 5 Training Parameters settings for tensile strength prediction in ANN 
showWindow true min_grad 1e-07 

showCommandLine false max_fail 100 

show 25 mu 0.001 

epochs 1000 mu_dec 0.1 

time Inf mu_inc 10 

goal 0 mu_max 10000000000 

Table 6 outlines the training parameters for predicting flexural strength using an Artificial 

Neural Network (ANN). The showWindow parameter is set to true, enabling a graphical 

interface to display training progress. The showCommandLine is false, limiting detailed 

outputs and focusing on essential updates. The show parameter, set at 25, controls the 

frequency of progress updates, occurring every 25 epochs. Training is capped at 1000 epochs 

(epochs), ensuring the process does not run indefinitely. 

Table 6 Training Parameters settings for flexural strength prediction in ANN 
showWindow true min_grad 1e-07 

showCommandLine false max_fail 100 

show 25 mu 0.001 

epochs 1000 mu_dec 0.1 

time Inf mu_inc 10 

goal 0 mu_max 10000000000 

The time parameter is set to Inf, allowing training to continue until other criteria, such as the 

goal of zero training error, are met. The min_grad is set at 1e-07, stopping training if the 

gradient falls below this, indicating a learning plateau. Fig.7 demonstrates the statistical 

stability of the proposed ANN model, designed to enhance the accuracy of tensile test 

predictions. The model utilizes a 4:10:2 architecture, consisting of an input layer with four 

neurons, a hidden layer with ten neurons, and an output layer with two neurons. This 

configuration balances complexity and computational efficiency, enabling the network to 

capture intricate data relationships without becoming overly complex. The model's 

robustness and predictive power were evaluated using the R-value (correlation coefficient), a 

statistical measure indicating how well the ANN's predicted values align with the 

experimental data. The R-value quantifies the strength and direction of the linear relationship 

between predicted and actual values, showcasing the ANN model's effectiveness. 
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(a) (b) 

Figure. 7 Statistical stability and relationship in proposed ANN for (a) Tensile Strength (b) 

Flexural Strength 

 
 

(a) (b) 

Figure. 8 Comparison between ANN and Experimental obtained (a) Tensile strength (b) 

Flexural Strength 

The comparison between experimental and ANFIS (Adaptive Neuro-Fuzzy Inference 

System) values for tensile and flexural strengths across various samples provides insights 

into the accuracy and reliability of the ANFIS model in predicting mechanical properties. 

Table 7 illustrates the ANFIS outputs. In general, the ANFIS model closely approximates the 

experimental tensile and flexural strengths, with slight deviations observed in certain 

instances. For tensile strength, the ANFIS predictions are generally in good agreement with 

the experimental results as shown in Fig.9. Most samples show minor differences between 

the experimental tensile strengths and those predicted by the ANFIS model. For instance, 

samples such as 1, 2, 4, and 5 exhibit close alignment between the experimental and ANFIS-
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based tensile strengths, indicating that the model can effectively predict tensile properties 

within a reasonable range. However, some samples, like 3 and 13, show more considerable 

variations, suggesting areas where the model's predictive capability could be improved. In 

terms of flexural strength, the ANFIS model also demonstrates a high degree of accuracy in 

predicting values. Similar to tensile strength, the majority of samples show ANFIS 

predictions that are very close to the experimental measurements. Samples such as 2, 6, 9, 

and 18 exhibit minimal differences between the experimental and predicted flexural 

strengths, underscoring the model's reliability. Nevertheless, a few samples, including 3 and 

14, show more significant deviations, indicating potential areas for refinement in the model. 

Overall, the comparison highlights that while the ANFIS model generally provides accurate 

predictions for both tensile and flexural strengths, there are specific instances where the 

model's predictions deviate from the experimental values. 

Table 7 Comparison between experimental and ANFIS values 
Sample No. Experimental Tensile 

Strength (MPa) 

Experimental Flexural 

Strength (MPa) 

ANFIS based Tensile 

Strength (MPa) 

ANFIS based Flexural 

Strength (MPa) 

1 21.34 25.56 20.5621 25.005 

2 25.67 28.07 25.6827 29.0525 

3 16.9 15.56 16.8814 20.1112 

4 21.45 23.34 21.434 24.9684 

5 24.56 26.78 24.0074 25.7405 

6 26.89 33.79 26.8655 33.9294 

7 22.21 26.67 23.0451 26.8576 

8 23.98 25.88 24.0074 25.7405 

9 35.56 36.46 35.5371 35.2276 

10 29.78 27.13 29.7425 25.5536 

11 23.44 24.34 23.4147 24.9694 

12 30.98 34.88 27.1403 34.0994 

13 23.34 22.24 29.7425 25.5536 

14 20.89 21.77 21.62 29.0196 

15 28.87 34.77 28.8208 34.0329 

16 24.33 25.23 24.0074 25.7405 

17 30.78 34.68 29.8108 35.4179 

18 32.98 33.88 32.9383 35.4419 

19 27.78 29.98 27.8308 30.7942 

20 30.98 27.18 30.9366 24.6974 

21 31.34 33.54 31.3222 32.9915 

22 30.34 32.09 30.25 31.7713 

23 17.9 19.1 17.877 22.3305 

24 32.23 33.98 32.1942 33.6544 

25 28.89 29.35 28.8601 29.3703 

26 30.78 34.98 30.1 35.1886 

27 28.88 30.08 28.52 29.9886 

28 43.44 35.09 43.19 34.9686 

29 29.35 34.01 29.52 34.4886 

30 26.67 31.13 26.19 31.3286 
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(a) (b) 

Figure. 9 Comparison between ANFIS and Experimental obtained (a) Tensile strength (b) 

Flexural Strength 

 

4. Conclusion 

The application of artificial intelligence, particularly neural networks and fuzzy systems, has 

proven to be an effective approach in optimizing FDM (Fused Deposition Modeling) process 

parameters. This study utilized the Adaptive Neuro-Fuzzy Inference System (ANFIS) to 

predict tensile and flexural strengths of materials with high accuracy. The results indicate 

that neural networks and fuzzy systems can model complex relationships between process 

parameters and mechanical properties, offering reliable predictions and optimization 

strategies. The ANFIS model, in particular, demonstrated strong predictive capabilities, 

closely aligning with experimental values. Continuous refinement and incorporation of 

additional data can enhance the model's accuracy and reliability. Furthermore, the study 

successfully developed an expert system designed to predict the tensile strength of composite 

FDM parts. This expert system integrates knowledge from experimental data and AI models, 

providing accurate predictions based on input parameters such as fiber orientation, weight, 

and FDM process settings. The practical application of this expert system is significant, as it 

can be utilized by manufacturers and researchers to optimize FDM processes, enhance 

composite material properties, and reduce experimental costs by minimizing the need for 

extensive physical testing. This approach not only improves efficiency but also contributes to 

the advancement of FDM technology. 
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