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The task of extracting mathematical expressions (ME) from images and 

converting them into LaTeX code has been a longstanding challenge in research 

since the 1960s. Traditional Optical Character Recognition (OCR) methods 

struggle with this because of the intricate two-dimensional layout of 

mathematical symbols. Recent advancements in encoder-decoder models have 

significantly enhanced recognition accuracy for both handwritten and printed 

MEs. However, RNN-based models face limitations like handling long-range 

dependencies and slower inference speeds. While transformer-based models 

offer improved performance, they demand substantial training datasets and 

considerable computational power. In this study, we introduce a hybrid model 

specifically designed for printed MEs conversion to LaTeX, combining an 

Inception-based CNN for feature extraction with an encoder-decoder modeled 

after transformer architectures. We evaluated the model on the IM2LATEX-

100K dataset, showing significant improvements in performance, accuracy, and 

computational efficiency as opposed to the most advanced models. Our 

approach achieved a BLEU score of 92.76% and an image edit distance 

accuracy of 95.09%. Additionally, the model efficiently handled complex 

mathematical structures, utilizing only 8.58 million trainable parameters. 

Keywords: Mathematical Expression Recognition, LaTeX Conversion, 

Inception-based CNN, Transformer Model, Image-to-Text Conversion, 

Encoder-Decoder Architecture, Computational Efficienc.  

 

 

1. Introduction 

The study of mathematical expression (ME) recognition has been a  key research interest 
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since the 1960s (Anderson, 1967). The goal of ME recognition is to convert images of 

mathematical content into sequential formats, such as LaTeX. This process involves three 

main tasks: (i) identifying mathematical symbols within the image, (ii) recognizing them, 

and (iii) analyzing the structural relationships between them. Unlike linear text, 

mathematical expressions often exhibit a two-dimensional structure made up of symbols like 

superscripts, subscripts, and fraction lines, making the recognition process more complex 

(Yan et al., 2020). 

Traditional methods like Optical Character Recognition (OCR) tackle this problem in two 

distinct phases: segmenting the formula into individual characters and classifying them based 

on a predefined vocabulary (Orji et al., 2023). However, ME recognition poses greater 

challenges, as it requires not only symbol identification but also an understanding of the 

spatial relationships among these symbols (Oral et al., 2020). For decades, ME recognition 

has attracted significant interest within the pattern recognition community, and various 

international competitions have encouraged advancements in the recognition of handwritten 

MEs (Mouchère et al., 2014, 2016). Printed mathematical expression (PME) recognition, in 

contrast to handwritten MEs, has received less attention. This task is valuable for 

applications such as developing systems for mathematical content retrieval or for generating 

and editing LaTeX representations of complex mathematical expressions, thereby reducing 

the workload for users. 

Recent progress in encoder-decoder architectures has greatly improved the recognition of 

both handwritten and printed mathematical expressions (Deng et al., 2016; Yan et al., 2020). 

Generally, the encoder utilizes a convolutional neural network (CNN) to capture key visual 

features from the input image, while generating the LaTeX output, the decoder typically 

relies on a recurrent neural network (RNN) or working with a transformer (Wang & Liu, 

2021). Despite these advancements, current methods may still fall short in fully addressing 

the intricacies of printed mathematical expression recognition due to several unresolved 

challenges. 

• Sequential dependencies in RNN-based models. RNN-based encoder-decoder 

models process sequences incrementally, which poses challenges in capturing the spatial 

relationships between symbols in mathematical expressions. In contrast, Transformer models 

can process entire sequences simultaneously, allowing them to handle long and complex 

mathematical equations more effectively. As a result, RNNs may produce inaccurate LaTeX 

outputs and struggle with tasks requiring a global understanding, such as PME recognition 

tasks (Illium et al., 2022). 

• Difficulty handling long-range dependencies. RNNs often face challenges in 

managing long-range dependencies due to the vanishing gradient problem. In mathematical 

expressions, symbols that are far apart can still be related, but RNNs may not capture these 

dependencies effectively (Liu et al., 2023). This can lead to errors in the structure of the 

generated LaTeX code, as demonstrated by models that fail to maintain consistency across 

longer sequences (Yang et al., 2020). 

• Higher computational requirements in traditional architectures. Encoder-decoder 

models that do not leverage Inception-based feature extraction or Transformer architectures 

often require more parameters and longer training times. The increased complexity of these 
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models can lead to higher computational costs, making them less efficient for large-scale 

mathematical image processing tasks (Sharma & Guleria, 2022). Comparatively, models 

utilizing efficient feature extractors and parallel processing techniques have been shown to 

be more cost-effective (Shen et al., 2018). 

• Slower inference in RNN-based models. RNN-based encoder-decoder models rely 

on sequential processing, which can lead to slower inference times. This is particularly 

problematic in real-time applications, such as converting mathematical images to LaTeX on 

the go (Lalapura et al., 2024). Transformer-based models, on the other hand, process 

sequences in parallel, providing faster and more efficient inference, making them preferable 

for tasks that demand quick results (N. Zhang & Kim, 2023). 

Transformer-based printed MEs models, as modeled by (Fu et al., 2021; Zhou et al., 2023), 

have recently made substantial efforts to solve some of these issues. While the use of vision 

transformers (ViTs) is powerful in certain scenarios (Dosovitskiy et al., 2020), it faces 

challenges such as: They don't have specialized feature extraction, which can make it harder 

to focus on key features. They also have problems with training and resource optimization, 

which makes it harder to fine-tune efficiently. Additionally, their training process 

necessitates a substantial amount of data, thereby consuming significant resources. Finally, 

they have a more complicated architecture for simple tasks, which might be too much for 

simpler uses. 

In this study, we introduce a hybrid model that incorporates CNNs, built on an Inception 

network, for feature extraction with a Transformer-based encoder-decoder for sequence 

learning (Ashish et al., 2017; Szegedy et al., 2015). This approach enhances spatial 

localization, hierarchical feature extraction, data efficiency, and the handling of complex 

structures, all essential for accurately converting printed mathematical images into LaTeX. 

Significant contributions made by this research are as follows: 

1. Model Development: We designed an encoder-decoder model that enhances feature 

extraction and recognition accuracy by combining an Inception-based CNN for robust 

feature extraction with a Transformer-based encoder-decoder for efficient sequence 

processing. 

2. Computational Efficiency: Our lightweight models offer high accuracy while being 

optimized for use in resource-constrained environments, striking a balance between 

performance and computational demands. 

3. Evaluation: Using the IM2LATEX-100K dataset, we thoroughly tested and 

compared our model to the best models for converting images to LaTeX. Our model showed 

better performance, generalizability, and robustness. 

4. Real-world Application: Our models are designed for practical deployment, capable 

of handling diverse input conditions, and are suitable for academic, educational, and 

document processing purposes. 

This paper is structured to provide a comprehensive analysis of the proposed methodologies 

and their relevance. Section 2 Related work reviews advancements in ME recognition, 

attention-based encoder-decoder models, and the Inception model's application for text 
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recognition. The section 3 Proposed Method describes a hybrid model that uses Inception-

based CNNs for feature extraction and a Transformer-based encoder-decoder for sequence 

learning. Sections 4 and 5 on Experiments and Performance evaluation and discussion 

outlines the datasets, training methods, and comparison with leading models. Lastly, Section 

6, dedicated to Conclusions and Future Work, highlights the essential outcomes and offers 

possible directions for advancing research. 

 

2. Related work 

Across various AI domains, recent breakthroughs include advancements related to analyzing 

images, processing text, and recognizing voices. These breakthroughs have been powered by 

sophisticated neural models that leverage attention mechanisms to handle tasks, including 

translation, text extraction, and summarization (Alexander et al., 2015; Bahdanau et al., 

2014; Jan et al., 2015; Luong et al., 2015; Vinyals et al., 2014). Earlier approaches to 

converting images into LaTeX format employed CNNs for identifying visual features in the 

encoder and RNNs for generating output sequences in the decoder. This streamlined the 

conversion process without needing manual intervention in LaTeX syntax (Deng et al., 

2016). Recent research has refined this process, introducing attention-based methods to 

address computational inefficiencies and enhance both speed and accuracy in handling 

complex LaTeX structures (Deng et al., 2017). 

Similarly, the WAP (Watch, Attend, and Parse)  model addressed the difficulty of 

recognizing offline handwritten mathematical formulas by integrating a coverage-based 

attention mechanism to enhance formula parsing (J. Zhang et al., 2017). The WAP model 

also integrated DenseNet within its encoding framework and utilized a hierarchical attention 

mechanism to address parsing errors, significantly enhancing the detection and interpretation 

of symbols and structures in mathematical formulas (Gao et al., 2016; Jianshu et al., 2018). 

Additionally, further research proposed multi-scale attention models to improve the parsing 

of complex expressions through fine-grained parsing techniques (Bender et al., 2019). 

Moreover, advancements in attention mechanisms, such as combining spatial and channel 

attention through joint attention, have significantly enhanced the accuracy and robustness of 

modern image-to-latex systems (Wang & Liu, 2019). 

Attention mechanisms, including self-attention mechanism found in Transformers, have 

substantially improved the performance of image-to-latex models by enhancing their ability 

to accurately parse symbols, recognize them, and understand structural details (Ashish et al., 

2017; Vu et al., 2023). These advancements enable models to handle long-range 

dependencies more efficiently, capturing important contextual relationships between 

symbols. Furthermore, the introduction of multi-scale attention has allowed models to adapt 

to variations in symbol size, thus improving robustness across a range of simple and complex 

mathematical expressions. Continued improvement of these attention-based methods, 

including hybrid approaches that integrate spatial and channel attention, has significantly 

increased the reliability and effectiveness of modern image-to-latex systems in rendering 

high-quality mathematical representations. 

The utilization of the Inception model as a feature extractor has further propelled 
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advancements in text recognition, especially for comprehending intricate documents. The 

Inception model leverages deep, multi-level convolutional layers to capture a broad spectrum 

of spatial features, resulting in enhanced feature maps for subsequent tasks (Szegedy et al., 

2015). This ability to process different scales and detailed textures make the Inception model 

particularly appropriate for text recognition, where symbols and characters can appear in 

varying sizes and exhibit complex details. For example, research has shown that 

implementing an Inception-based encoder alongside an attention-based transformer model 

can significantly enhance outcomes in tasks such as handwriting recognition, mathematical 

formula parsing, and structured document analysis (Si et al., 2022). By combining robust 

feature extraction with effective sequence learning, this approach evidently improves the 

model's accuracy and robustness in understanding complex visual patterns. The synergy 

between the Inception model's feature extraction capabilities and the transformer's attention 

mechanisms effectively addresses spatial and contextual nuances in text and images, leading 

to notable enhancements in recognition performance (Devlin et al., 2019). 

 

3. Proposed method 

We introduce a hybrid model consisting of three primary elements: a feature extractor, an 

encoder, and a decoder as shown in Fig. 1. First, the model incorporates an Inception-based 

CNN for feature extraction, utilizing convolutional and pooling layers to achieve efficient 

multi-scale feature detection. The features extracted by CNN are then passed into a 

Transformer-based encoder, which processes input sequences using multiple attention heads 

along with feed-forward layers. Finally, the Transformer-based decoder applies masked 

multi-head attention to accurately generate LaTeX code from the mathematical images. 

 

Fig. 1. Architecture of the proposed hybrid model with inception-based feature extraction 
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and transformer-based encoder-decoder for image-to-LaTeX conversion. 

3.1. Feature extraction 

Our model incorporates a unique pre-encoder layer serving as a feature extractor as detailed 

in Table 1. This layer processes raw preprocessed grayscale mathematical images through a 

sequence of convolutional and pooling operations, reducing the image dimensions (60 x 500) 

while enhancing feature representation. The inception blocks (5) perform parallel 

convolutions with various filter sizes (1x1 and 3x3) and then merge the results to facilitate 

multi-scale feature extraction as detailed in Section 3.1.1. Finally, a Reshape layer adjusts 

the tensor dimensions, preparing it for subsequent processing in the Transformer encoder 

layers. 

Table1: Architectural details of our feature extraction block 
Layer Kernel Size Stride Output Size 1x1 Filters 3x3 Filters 

Conv 3x3 1 58 X 498 X 10 - - 

ZeroPadding - - 60 X 500 X 10 - - 

IncepBlock_1 - - 60 X 500 X 20 4 3 

ZeroPadding - - 62 X 502 X 20 - - 

IncepBlock_2 - - 62 X 502 X 40 4 3 

ZeroPadding - - 64 X 504 X 40 - - 

IncepBlock_3 - - 64 X 504 X 40 4 3 

MaxPooling 2x2 2 32 X 252 X 40 - - 

IncepBlock_4 - - 32 X 252 X 80 4 3 

MaxPooling 2x2 2 16 X 126 X 80 - - 

IncepBlock_5 - - 16 X 126 X 80 4 3 

MaxPooling 2x2 2 8 X 63 X 80 - - 

Reshape - - 504 X 80 - - 

3.1.1. Inception block 

Drawing inspiration from the GoogleNet architecture (Szegedy et al., 2015), the inception 

block is designed for multi-scale feature extraction. This custom layer utilizes parallel 

convolutional layers with varying filter sizes to capture different aspects of the input 

features. Specifically, it combines 1x1 and 3x3 convolutions, as depicted in Fig. 2, along 

with a max-pooling layer to process input data at multiple scales. The output from these 

parallel operations are then concatenated to form a rich and comprehensive feature 

representation. This technique enables the model to learn complex patterns and hierarchical 

structures characteristic of mathematical input images. 

 

Fig. 2. Inception block architectural 
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3.2. Transformer-based encoder and decoder 

Our model's encoder includes two identical layers, each consisting of two main sub-

components. The first sub-component is a multi-head self-attention mechanism (MHA), 

while the second is a position-wise feed-forward neural network (FFN). A residual 

connection encloses each of these sub-components, and layer normalization (LN) follows 

them to stabilize and optimize the training process. In contrast, the decoder in our model 

features four identical layers. Each layer of the decoder includes the same two sub-

components as the encoder, along with an additional MHA mechanism directed at the 

encoder's output sequence. This additional mechanism enhances the decoder's ability to 

direct its attention to important parts of the encoded sequence. the decoder's self-attention 

mechanism uses masking to ensure the model focuses only on previous positions when 

predicting the next token. Detailed descriptions of each component of the transformer-based 

encoder and decoder are provided: 

1) Input embeddings: These play a crucial role in transformer encoder models by converting 

input tokens into dense vectors for model processing. These embeddings encapsulate the 

semantic information and relationships between tokens, enabling the transformer to 

understand context and meaning. Each input token is transformed into a fixed-size dense 

vector using an embedding matrix ( 𝐸 ) (Eq. 1). For a vocabulary size ( 𝑉 ) and embedding 

dimension (𝑑model), the embedding matrix ( 𝐸 ) has dimensions (𝑉 × 𝑑model). The vector for 

a token (𝑡𝑖) is: 

𝑥𝑖 = 𝐸[𝑡𝑖] (1) 

2) Positional encoding (PE): When encoding the sequential position of each token, both the 

encoder and decoder incorporate positional encoding into their input and output embeddings. 

Transformers, by themselves, lack an inherent understanding of the order of tokens. 

Positional encodings, which utilize sine and cosine functions at varying frequencies (Eqs. 1 

and 2), provide this essential sequential information. This mechanism helps the model to 

recognize and utilize the order of the tokens, important for translation and text generation 

tasks. 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
pos

100002𝑖/𝑑model
) (2) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
pos

100002𝑖/𝑑model
) (3) 

Here, 𝑝𝑜𝑠 denotes the position, 𝑖 the dimension index, and 𝑑𝑚𝑜𝑑𝑒𝑙 the model dimension. 

This approach enables the model to distinguish between different positions within a 

sequence. 

3) Scaled dot-product attention: This mechanism computes interaction between the 

query (Q) and key (K) matrices, normalizes it by (√𝑑𝑘), and applies a softmax function to 

obtain attention weights. The final weighted sum is combined with the value (V) matrix, 

capturing the relevance of each element in the sequence (Eq. 4): 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 
(4) 
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When masking is necessary, often in the decoder to prevent attending to future tokens, a 

mask (M) is added prior to applying softmax (Eq. 5): 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

+ 𝑀) 𝑉 
(5) 

Here, the mask (𝑀) function adds negative infinity (−∞) to the attention scores of the 

positions that should be ignored, ensuring they do not affect the softmax output. 

 

4) Multi-Head Attention (MHA): In both the encoder and decoder, we employed eight 

distinct MHAs, enabling our model to simultaneously attend to various parts of the input 

sequence. This configuration allows the model to understand different relationships within 

the sequence (in the encoder) and between the input and output sequences (in the decoder). 

We concatenate and linearly transform the outputs from these heads (Eq. 6). The MHA 

mechanism is represented mathematically as follows: 

MHA(𝑄, 𝐾, 𝑉)
= Concatenate (head1, … , head8)𝑊𝑂 

(6) 

where first head is calculated as: 

head1 = Attention(𝑄𝑊1
𝑄

, 𝐾𝑊1
𝐾 , 𝑉𝑊1

𝑉) (7) 

5) Add and Norm: In transformer models, the Add and Norm operation takes place in two 

stages within both the encoder as well as the decoder: Add (residual connection): The sub-

layer's output (such as from Multi-Head Attention) is added to its input to preserve the 

original information (Eq. 8): 

Output = Input + Sub-layer Output (8) 

Norm (layer normalization): The result is then normalized to stabilize training (Eq. 9): 

Normalized Output =
Output − 𝜇

𝜎 + 𝜖
 

(9) 

where the features' mean and standard deviation are represented by (𝜇) and (𝜎) respectively, 

while (𝜖) is a tiny constant introduced to avoid dividing by zero. 

6) Position-Wise FFN: The FFN is applied after the attention layers in both the encoder and 

decoder stages. It consists of two sequential linear transformations with a ReLU activation in 

between, enhancing the model's ability to learn and capture intricate patterns. The 

mathematical formulation is provided in Eq. 10. 

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 (10) 

This design helps the model process and transform input data effectively across all positions 

in the sequence. 

 

7) Output embeddings: These play a vital role in transformer decoder models as they convert 
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dense vectors back into sequences of tokens that can be interpreted as the final output. These 

embeddings take the encoded information and help in decoding it into meaningful sequences 

by capturing the semantic context provided by the transformer. Each output token is 

represented as a dense vector through an embedding matrix 𝑂 (Eq. 11). For a vocabulary size 

𝑉 and embedding dimension 𝑑model, the embedding matrix 𝑂 has dimensions 𝑉 × 𝑑model. The 

vector for a token 𝑡𝑖̂ in the output sequence is: 

𝑦𝑖 = 𝑂[𝑡𝑖̂] (11) 

8) A Linear layer: Within Transformer architecture, the linear layer within the decoder 

specifically transforms the concatenated output of the attention heads into the required 

dimensions for subsequent processing. This operation is represented as (Eq. 12): 

Linear(𝑥) = 𝑥𝑊 + 𝑏 (12) 

Here, ( 𝑥 ) represents the input from the attention heads, ( 𝑊 ) denotes the weight matrix, 

and ( 𝑏 ) refers to the bias term. This transformation is crucial for refining the attention 

output before they are passed to the final softmax layer for sequence generation. 

 

9) The Softmax layer: In the Transformer's decoder, the softmax layer is applied after the 

final linear transformation to convert the output logits into a probability over the target 

vocabulary (Eq.13). This step is essential for selecting the next token in the sequence. The 

softmax function normalizes the logits 𝑧𝑖 into probabilities 𝑝𝑖 as follows: 

𝑝𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛
𝑗=1

 
(13) 

This normalization ensures that the probability values for all possible tokens sum to 1, 

enabling the model to predict the most probable subsequent token in the sequence. The 

softmax layer thus plays a vital role in generating the final output sequence during decoding. 

10) Output probabilities: In the transformer decoder, output probabilities are produced after 

the tokens pass through the decoder layers. These probabilities represent the possibility of 

each token being the correct next token in the prediction sequence. 

 

4. Experiments 

4.1. Datasets: 

Our primary dataset is the prebuilt IM2LATEX-100K (Deng et al., 2017), which contains a 

large collection of mathematical expressions in LaTeX, sourced from various academic 

publications. Specifically, the author gathered a total of 103,556 distinct LaTeX equations 

paired with their rendered images from arXiv papers (Kanervisto, 2016) and the 2003 KDD 

Cup datasets (GehrkeJohannes et al., 2003). These collections collectively contains over 

60,000 papers. The extraction process utilized regular expressions to parse LaTeX sources, 

focusing on sequences framed with standard LaTeX delimiters such as 

`\begin{equation}...\end{equation}` and similar structures. They retained only formulae 

within the character length range of 40 to 1024 to avoid single symbols and overly complex 
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structures, ensuring a rich and valid dataset. It was split into training (~84k equations), 

validation (~9k equations), and test sets (~10k equations) to maintain a consistent 

experimental framework. Fig. 3 illustrates the distribution of token lengths in the test set, 

emphasizing the variability in LaTeX formula lengths. In the dataset, LaTeX formulas vary 

from 38 to 997 characters in length, an average length of 118 and a median length of 98. 

 

Fig. 3. Test set token length frequency distribution 

Tokenization and normalization: 

We tokenized the formulas in our dataset since token-based methods have proven to be more 

efficient than character-based methods. We utilize preprocessing techniques from (Deng et 

al., 2016), leveraging the Katex library, a LaTeX parser. After tokenizing, we create a 

vocabulary of 502 unique tokens, including " ,"  "START,"  and "END,"  for padding, start, 

and the end of sentences, tokens, respectively. We pad the formulas with “ “ or "PAD" 

tokens to ensure a uniform length (up to 150 tokens) for input into our transformer decoder. 

Naturally, LaTeX often contains multiple expressions that yield identical output. So, as 

shown in Table 2, we added normalization preprocessing to get rid of any uncertainty before 

training (Deng et al., 2016). 

Table 2: LaTeX normalizing transformations 
Transform Original Normalized 

Remove \label{…} - 

Remove \$ - 

Remove \\\> - 

Remove \\\~ - 

Normalize \rm{…} \mathrm{…} 

Normalize SSSSSS $ 

Normalize S S S S S S $ 

4.2. Evaluation metrics 

For evaluating our model's performance, understanding that LaTeX is not a normalized 

language is essential; different codes can still generate the same output when compiled. For 

instance, the inclusion or exclusion of brackets, such as " \sqrt{x}" and " \sqrt x," will both 

render the same formula in PDF. We utilize two types of evaluation metrics: the one that 

looks at the accuracy of the LaTeX code and another that measures how closely the 
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reconstructed image resembles the original. 

1) Text-based evaluation: We use commonly adopted Natural Language Processing (NLP) 

metrics, including BLEU score (BLEU), Edit Distance, and Exact Match. The BLEU score 

evaluates the n-gram accuracy by comparing the predicted outputs with the reference 

outputs, with a perfect score of 1 (or 100%) indicating an exact match between the model's 

output and the reference text (Papineni et al., 2002). The Exact Match (EM) metric assesses 

the percentage of predictions that precisely replicate the reference text, character by 

character. An EM score of 100% implies that the model's predictions exactly match the 

reference text in all cases. Edit Distance (ED) or Levenshtein distance, determines the 

minimal number of operations (insertion, deletion, substitution) needed to convert the 

predicted LaTeX string into the ground truth LaTeX string (Levenshtein, 1965). A lower ED 

score signifies a closer match between the predicted and reference texts. 

2) Image-based evaluation: While text-based metrics provide valuable insights, they do not 

account for the visual representation of LaTeX. Hence, we also use image-based metrics, 

such as edit distance (Levenshtein distance) and exact match for images, to evaluate visual 

similarity (Guillaume Genthial, 2017). The evaluation process in Fig. 4 involves the 

following steps: 

 

Fig. 4. Image-based evaluation process 

(a) First, convert both the ground truth and predicted images to grayscale to standardize them 

for further processing. (b) Next, transpose the grayscale images to properly align the 

columns for evaluation. (c) Then, convert the transposed images to binary format using a 

threshold value of 128, setting pixels above the threshold to 1 and those below to 0. (d) Treat 

each binary column as a token and convert it into an integer for simpler comparison, so that 

('00110', '10010') becomes (6, 18). (e) Finally, compare the integer sequences corresponding 

to the ground truth and predicted images to quantify visual similarity, calculating metrics 

like image edit distance and exact match. 

By integrating these diverse metrics, we deliver a comprehensive evaluation of our model's 

effectiveness, ensuring that both visual and textual precision is accurately captured. Each 

metric highlights distinct aspects of the model’s output, contributing to a strong and reliable 

evaluation framework designed to enhance model precision and reliability. 
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4.3. Implementation details 

The feature extraction process employs CNNs inspired by GoogleNet, specifically 

leveraging Inception blocks as described in Table 1. The architecture of the Inception-based 

block includes several convolutional and pooling operations, enabling the network to capture 

rich and diverse feature representations. The initial convolution layer uses a 3x3 kernel and a 

stride of 1. The final convolutional layer's output is rescaled to dimensions of 504 x 80. For 

the transformer-based encoder, two encoder layers are used, each with 8 attention heads, 

following the architecture of the standard Transformer model  (Ashish et al., 2017). The 

embedding size is set to 256, while the output embedding dimensions are 80. Each encoder 

layer’s feed-forward neural network has input and output dimensions of 512 and 160 

respectively, assisting in capturing long-range dependencies in the sequence data. To 

mitigate overfitting, a dropout rate of 0.3 is applied. In the decoder, four stacked decoder 

layers are employed, each applying multi-head masked attention to the encoder’s output. 

The model is implemented in TensorFlow, using the Keras API, and training was conducted 

in a high-performance environment provided by Paperspace, using NVIDIA GTX 1080Ti 

GPUs. The Adam optimizer, with an initial learning rate set to (3 × 10−4) is utilized 

(Kingma & Ba, 2014). Custom loss and accuracy functions are incorporated, specifically 

designed to handle translation tasks and exclude padding tokens during computations. The 

training process lasted for 20 epochs, with a custom learning rate schedule applied to 

dynamically adjust the rate for quicker convergence. 

 

5. Performance evaluation and discussion 

1) Comparison with leading models: Table 3 provides a comparison a performance 

comparison of our model against other models using the IM2LATEX-100k test set. Since 

identical visual output can be generated by different LaTeX markups, relying solely on text-

based metrics may not fully reflect our model's accuracy in the image-to-LaTeX task. 

Therefore, we utilize a mixture of text-oriented metrics (BLEU) and visual-oriented metrics 

(IED and IEM) to evaluate the models. 

Table 3: Performance evaluation using the IM2LATEX-100k test set 
Model BLEU IED IEM 

Ours 92.76 95.09 79.72 

(Deng et al., 2016) 87.73 87.60 79.88 

(Pang et al., 2021) 89.72 90.07 82.13 

(Noya et al., 2023) 83.80 11.40 40.54 

(Genthial & Sauvestre, 2017) 78 62 35 

(Le et al., 2022) 89.94 92.23 86.48 

Our model outperforms those in (Deng et al., 2016; Genthial & Sauvestre, 2017; Le et al., 

2022; Noya et al., 2023; Pang et al., 2021) across two main metrics, achieving the highest 

BLEU score of 92.76% and an image edit distance with space (IED) accuracy of 95.09%. 

While (Le et al., 2022)exceeds our model in image exact match (IEM) accuracy by 8.46%, 

our model still demonstrates superior overall performance when considering all metrics. 

2) A complex structure conversion: The Table 4 presents the evaluation of our model's 

performance on various complex mathematical structures, including arrays and multi-line 
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formulas with different types of parentheses and brackets. These structures are particularly 

challenging due to their intricate formatting and nested components. 

Table 4: Array, brackets, and multiline formula 
Type Image LaTeX markup 

Array 

(square 
bracket)  

 

Array 
(round 

bracket) 

  

Multi-

line 

(angle 
bracket) 

  

Multi-

line 

 (curly 
bracket) 

  

Table 4 shows that our model successfully converts arrays with square and round brackets, 

as well as multi-line formulas enclosed in angle and curly brackets in the second column 

(Image), into accurate LaTeX markup in the third column. Notably, the LaTeX markup 

generated for complex structures, such as nested arrays and multiline expressions, closely 

matches the required syntax, demonstrating the model's robustness and precision. 

3) The impact of token length: The evaluation in Fig. 5 demonstrates that an increase in the 

length of mathematical expression tokens correlates with a decline in performance, as 

indicated by higher image edit distances. This trend is observed in both image edit distance 

"With Space" and "No Space" scenarios. 

 

Fig. 5. Our model performance as a function of token length 

Longer expressions pose a challenge to the accuracy of the model. However, the 

performance decline is also influenced by the fewer mathematical expressions with long 

tokens present in the test set, as depicted in Fig. 3. This suggests that the model's accuracy 
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may be affected not only by the complexity of longer expressions but also by the limited 

representation of such expressions in the test data. 

4) Parameter efficiency comparison: Table 5 compares the trainable parameters of our 

model with various other models, highlighting how effective our approach is in terms of 

parameter count. This analysis highlights how our model achieves effective performance 

while maintaining a lower number of trainable parameters. 

Table 5: Comparison of trainable parameters across models 
Model Number of Trainable Parameters 

Ours 8.58 M 

(Deng et al., 2016) 9.48 M 

(Yan et al., 2020) 13.01 M 

(Zhou et al., 2023) 13.10 M 

(Wang & Liu, 2021) 10.87 M 

(Deng et al., 2017) 15.85 M 

Our model, with 8.58 million trainable parameters, has the fewest parameters among the 

models evaluated, attributed to the use of the Inception model as our feature extraction 

approach. The choice of the Inception model enables efficient multi-scale feature extraction 

while keeping the parameter count low, enhancing our model's efficiency without 

compromising performance. Compared to other models, such as the one with 15.85 million 

parameters (Deng et al., 2017), our solution strikes an effective balance between complexity 

and performance, validating our design choice. 

5) Visual comparative analysis of model predictions: Fig. 6 illustrates examples where our 

model's predictions correctly match the ground truth, unlike the results from other advanced 

models. Rows labeled (iii) in row 1, 2, and 3 correspond to models (Vu et al., 2023), (Pang et 

al., 2021), and (Yan et al., 2020), respectively, with the yellow highlights indicate areas 

where these models made incorrect predictions, whereas our model succeeded. 

 

Fig. 6. Examples of correct prediction by our model. (i) grand truth images, (ii) our model 

predictions, and (iii) (Vu et al., 2023), (Pang et al., 2021), and (Yan et al., 2020) predictions 
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in rows 1, 2, and 3, respectively. 

Our model's predictions in (ii) consistently align with ground truth images in (i), showcasing 

its ability to correctly predict complex mathematical expressions. Notably, in all (iii), the 

highlighted yellow areas in rows 1, 2, and 3 reveal the mistakes made by models (Vu et al., 

2023), (Pang et al., 2021), and (Yan et al., 2020),, respectively, where our model correctly 

predict the LaTeX sequences. Our model showcases strong resilience and excellent accuracy 

in dealing with challenging mathematical notations that other models have found difficult. 

6) Incorrect predictions: Fig. 7 highlights instances where our model made incorrect 

predictions when converting images to LaTeX. Despite its strong overall performance, our 

model is not entirely error-free, particularly with long and complex mathematical 

expressions as shown. 

 

Fig. 7. Incorrect prediction by our model. (i) grand truth image, (ii) grand truth LaTeX, and 

(iii) our model predicted LaTeX 

In this evaluation, we observe that our model can misinterpret certain components of 

intricate expressions. The highlighted areas in the row (iii) illustrate minor mistakes made by 

our model, which differ from the ground truth in the row (ii). However, even with such 

complex inputs, our model's errors remain minor, demonstrating its robustness and capability 

to handle challenging scenarios effectively. 

5.1. Deployment and user interface 

The user interface of our model, shown in Fig. 8, facilitates real-world deployment by 

allowing users to easily convert images of mathematical expressions to LaTeX code. The 

interface displays the original image (a) alongside the predicted image (b) and the generated 

LaTeX code (c) for users to review. Users can copy and paste images directly or use the 

browser button (d) to select images, then initiate the conversion process with the convert 
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button (e), making the tool efficient and user-friendly. 

 

Fig. 8. Model user interface. (a) grand truth image (b) predicted image (c) predicted LaTeX 

(d) the browser button (e) the convert button. 

 

6. Conclusions and future works 

This research introduces a hybrid model designed to recognize printed mathematical 

expressions and convert them to LaTeX by combining an Inception-based CNN for feature 

extraction with a Transformer-based encoder-decoder. This method addresses several 

challenges inherent in traditional RNN-based models, such as the difficulty in capturing 

long-range dependencies and their slow inference times. Our model demonstrated 

exceptional performance on the IM2LATEX-100k dataset, achieving a BLEU score of 

92.76% and an image edit accuracy of 95.09%, outperforming many existing state-of-the-art 

models. Additionally, it effectively handled complex mathematical structures, using only 

8.58 million trainable parameters, thereby showcasing its computational efficiency. 

Even with these promising results, there remains a potential for further enhancement. Future 

research could explore optimizing the hybrid model further for real-time applications, 

focusing on reducing inference times even more.  

Another approach could involve improving the model's flexibility in applying to different 

types of mathematical notation and styles, not just those found in the IM2LATEX-100K 

dataset. Incorporating techniques to handle noisy or low-quality images could enhance its 

functionality in actual use cases. Expanding the scope to include the recognition of 

handwritten formulas could significantly increase its versatility. Moreover, adapting this 

method for recognizing other images that contain structural information, such as musical 

notation, physics and chemical equations, and chemical molecular formulas, would also be 

beneficial. Extending the model's support to these diverse applications can enrich its utility 

across different scientific and academic domains. Overall, our study suggests that leveraging 
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hybrid models can offer significant advancements in mathematical expression recognition, 

but continued research and optimization are necessary to fully realize their potential. 
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