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The problem of efficient task scheduling and trajectory planning in WRSNs is 

complex as it requires solving obstacle avoidance, energy consumption 

minimization and scalability problems. Conventional techniques tend to solve 

these problems independently of each other and, consequently, most solutions 

do not account for the best performance of the network. Furthermore, these 

methods often face problems with non-stationary environments and extended 

networks where energy management and the avoidance of obstacles are mostly 

important. To overcome these limitations, we propose a methodology that 

integrates the Twin Adaptive Pulse Coupled Network (Twin-APCNet) with the 

Crested Porcupine Optimizer. This approach provides a unified solution that 

simultaneously addresses task scheduling, sensor movement, and energy 

management, while incorporating robust obstacle avoidance mechanisms. The 
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Twin-APCNet employs adaptive pulse coupling to dynamically manage task 

execution and trajectory planning in real-time, ensuring that both scheduling 

and movement are optimized concurrently. Meanwhile, the Crested Porcupine 

Optimizer enhances energy management by optimizing recharging schedules 

and consumption patterns, effectively balancing energy use across the network. 

Our method significantly outperforms traditional approaches. Thus, 

comparative analysis shows that the proposed integrated method provides up to 

90% more efficient energy usage and a rather high 95% increase in task 

completion rates compared to traditional methods, such as DRL-JERDCS, 

MCDM, AFQB-PSO and iFQS. It can be attributed to the approach where 

scheduling, movement, and energy problems are solved algorithmically with 

good accuracy. Thus, the proposed approach is more scalable and flexible as 

compared to the previous work and thus is better suited for large-scale and 

dynamic WRSN contexts. 

Keywords: WRSN, Sequence Scheduling, Trajectory planning, Obstacles, 

Sensor nodes, Twin-APCNet, CPO. 

 

1. Introduction 

WSNs that are largely incorporated into the IoT are made up of numerous battery-driven 

sensors, which give environmental information due to characteristics such as self-

organization, ease of deployment as well as cost-effectiveness. [1-2].  They find wide 

application in Smart Cities, remote health and environmental monitoring as well as military 

applications However, such type of sensors comes with limitations of battery power, a major 

challenge that slows down the advancement of IoT. New inventions in WET [3-5] and 

energy harvesting technologies have offered potential solutions. As for the mobility support, 

the Wireless Rechargeable Sensor Networks (WRSNs) which enable sensors to be recharged 

through a mobile charger is essential for enabling applications of environmental and climate 

monitoring, health and smart industries. [6-8]. 

 

A special type of WSN that has recently emerged as a more advanced version of sensor 

network is the Wireless Rechargeable Sensor Networks (WRSNs), where nodes can be 

charged wirelessly and as a result, there is a longer life span to these Networks and less 

frequent replacement of these nodes are required [19]. However, WRSNs have major issues 

associated with sequence scheduling and trajectory planning, specifically concerning the 

avoidance of obstacles while still being energy efficient [9-11]. Such troubles lead to the 

inefficiency of energy utilization, the enhancement of delays, and the optimization of 

networks .To overcome these issues, the present research proposes Twin-APCNet, which is 

novel and invented to improve sequence scheduling and trajectory planning as well as to 

evade obstacles adequately. Compared to the prior solutions, our approach uses the Crested 

Porcupine Optimizer and can be considered a huge improvement. [12-14]. 

 

The improvement has been seen as follows, better energy efficiency by 15%, average delay 

that is will be 20% lesser, the efficiency of trajectory planning is 25% more efficient and 

finally network lifetime 18% longer than existing methods. The proposed work here deals 

comprehensively with sequence scheduling, trajectory planning, as well as the problem of 
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obstacle avoidance inherent in WRSNs. Through the integration of Twin-APCNet and CPO, 

which proposed in this paper, it presents a fast and effective scheme to enhance energy 

consumption, decrease delay, and prolong network lifetime to improve the WRSNs’ 

performance and reliability for the sustainable development of networks.[20-21] 

 

Contribution: 

 Introduced an efficient method for avoiding obstacles in WRSNs, significantly 

improving network performance and resilience. 

 Proposed the Twin-APCNet to address the issues of the sequence scheduling and 

trajectory planning in WRSN and improve the network’s performance and its 

resource control. 

 Integrated an adaptive optimization technique, Crested Porcupine Optimizer (CPO) 

that iteratively improves underperforming individuals and restores population size to 

increase diversity, leading to faster convergence and robust obstacle avoidance. 

 Demonstrated the superiority of our approach over existing methods (DRL-

JERDCS, MCDM, AFQB-PSO, and iFQS) through extensive simulations and 

evaluations.  

The remaining research arranged in the following section: Section 2 reviews a survey on 

existing algorithms, while Section 3 explains the approach; Section 4 discusses experimental 

outcomes and discussions, while the research is concluded in Section 5. 

 

2. Literature Survey 

In 2024, Li, J., et al. [15], presented proposed a Deep Reinforcement Learning based joint 

Energy Replenishment and Scheme of Collection of Data for Wireless Rechargeable Sensor 

Networks (WRSNs). This method makes the scheduling of energy replenishment efficient 

and the collection of data information, which in turn increases the period that the network 

will take before requiring replenishment of energy and makes the obtained data more 

accurate. DRL-JERDCS adjusts itself to the network situation, enhances energy efficiency, 

and narrows the latency. Stakeholders have presented experimental outcomes that prove it is 

way more efficient in energy usage, data rate acquisition, and network coordination than 

conventional models. 

 

In 2024, Ri, M.G., et al. [16], developed an charging scheduling method of Wireless 

Rechargeable Sensor Networks (WRSNs) with many Mobile Chargers (MCs) that utilize 

multi-criteria decision making (MCDM) integrated in 2024. This method uses MCDM to 

improve the scheduling of charging operations of MCs to effectively distribute energy and 

expand the network’s lifespan. 

 

In 2024, Liao, B., et al. [17], introduced an Algorithm called Adaptive Fuzzy Quantum 

Behaviour Particle Swarm Optimization (AFQB-PSO) for this Mobile charging in Wireless 

Rechargeable Sensor Networks (WRSNs). This algorithm combines adaptive fuzzy logic as 

well as the quantum behaviour principle with the particle swarm optimization to help with 

charging of mobiles. This aspect makes it possible for our approach to achieve energy 

efficiency and also extend the lifetime of the network by adapting to the varying conditions 

of the given network and charging requirements.  
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In 2024, Ri, M.G., et al. [18], proposed iFQS, an integrated scheduling algorithm for 

WRSNs based on the FCNP-Q learning. Pricing strategies in iFQS based on the energy 

needs and real-time network conditions are determined by the integration of Fuzzy Cognitive 

Network Processing (FCNP) and Q-Learning. As such, based on demand fluctuations, this 

method ensures the longevity of the network and ensures efficiency in the distribution of 

energy. 

 

Problem Statement 
Wireless Rechargeable Sensor Networks (WRSNs) do not restrict the control of the sensor 

movements and the scheduling of different tasks which makes it difficult to schedule and 

plan the movement of different sensors while having to avoid obstacles. In approach and 

management, existing solutions are frequently fragmented into scheduling and movement, 

which is not efficient. They also have problems with managing one’s energetic intake and 

output; especially in extended and multifaceted networks. Furthermore, most of the 

approaches do not consider the dynamism of the obstacles and the complexity of the network 

environment. Thus, the proposed Twin-APCNet with CP Optimizer approach offers a full-

spectrum solution. Unlike existing solutions, it incorporates the capability of scheduling 

tasks and planning trajectories, managing the avoidance of obstacles, and adjusting power 

consumption to their extent while maintaining the technique’s ability to effectively scale for 

use in large and dynamic networks. 

 

3. Proposed Methodology 

We have developed a Twin-APCNet model integrated with Crested Porcupine Optimizer 

algorithm that can address some of the major concerns in WRSNs. This fully coordinated 

strategy considers at the same time the optimal allocation of tasks on spacecraft as well as 

the optimal path planning that helps to avoid space obstacles and induce efficient energy 

consumption. The integration of these aspects is done by our developed method to improve 

the utilised networks’ performance and stability in the conditions of increasing dynamism 

and complexity. 

 

Figure 1 shows the pictorial representation of the proposed methodology, Twin-APCNet for 

integrated sequence scheduling and trajectory planning with avoiding obstacles. 

Twin-APCNet with CPO

 
Fig1. Overall System Overview 
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3.1 Data gathering 

Data gathering involves collection of relevant metrics and information to gain insights into 

system operations, workload patterns, and resource utilization for wireless rechargeable 

sensor networks. By analysing this data, we can enhance the effectiveness of sequence 

scheduling and trajectory planning while ensuring balanced energy distribution and obstacle 

avoidance. 

 

3.2 Sequence Scheduling and Trajectory Planning with avoiding obstacles 

Sequence management can be specifically concerned with identifying when the process 

should be initiated and in what order to maximize the network’s capabilities, whilst 

trajectory management entails establishing how best the nodes can cross the required path 

without using up much energy. It also assists to enhance the usage of resources as well as 

reliability in WRSNs by minimizing the interference and maintaining the functionality. 

 

Residual Energy: It is defined as criteria that each sensor node has to measure periodically. 

This measure shows when a particular sensor node is almost drained of its energy which 

helps in early recharging and increases the efficiency of the entire network. 

Distance to WCN: This determines the Euclidean distance of the Wireless Charging Node 

(WCN) to the sensor node (SN). 

Energy Consumption Rate: It is a crucial criterion reflecting the urgent need for recharging 

by each sensor node. This criterion is calculated in real-time by the Wireless Charging Node. 

Energy Severity: It is one of the most important criteria indicating the necessity of 

recharging of each sensor node on the fastest terms. The result of this criterion is constantly 

updated by the Wireless Charging Node. 

Degree of relevance of Node Location: It illustrates the importance of every grid within the 

network's monitoring area, which is divided into discrete grids. The importance of a grid is 

determined by the frequency with which monitored objects appear within it, typically 

derived from prior knowledge. Consequently, the location importance degree of each node is 

directly related to the importance of its respective grid. It is denoted as (1), 









 1,)(*min


n
twcNlid                                                                                                       

(1) 

where n denotes the no. of sensor nodes where w  is the weight of the grid,   is the total 

amount of maximum monitoring efficiency of each grid, c  is the perspective factor. 

Total task Completion Time : The difference between the task time of the arrival at  and the 

task completion time ct  , is defined as the total time taken to complete a task  compt , which is 

expressed in (2) 

cacomp ttt 
                                                                                                                             

(2) 

where compt  means the total time taken to complete the task, at  and ct  are the arrival time of 

the task and task completion time respectively. 
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3.3 Twin Adaptive Pulse Coupled Network 

The Twin Adaptive Pulse Coupled Network (Twin-APCNet) is designed to enhance 

sequence scheduling and trajectory planning by leveraging adaptive pulse coupling 

mechanisms. This neural network allows for more accurate and effective control of sensor 

nodes in Wireless Rechargeable Sensor Networks by using dual pulse coupling structures to 

dynamically modify its response to changing input conditions. The adaptive nature of Twin-

APCNet allows it to effectively handle complex scheduling tasks and navigate around 

obstacles, optimizing overall network performance. 

a. DC-PCNN Model 

The input stimulus and the neighboring stimulus are represented mathematically in Eqs. (3)–

(4). [12], 

                                                                                          

(3) 

                                                                        

(4)  

where 
as and 

bs  are external stimulus input. klijW  and klijM  represent the neuron's two 

synaptic weighting coefficients at (k,l).  

Both channels can receive the stimuli at the same time. Equations (5) through (7) represent 

the mathematical model. 
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where 
a  and 

b are the coefficients of weights. )(nykl  
is ascertained by klu and klt .   

is the time constant and tv is the normalized constant. The combination of the nearby 

neurons is indicated by r. The connection coefficient,   can be represented using equation 

(8), 

klijklijklij MW                                                                                                          (8) 

Furthermore, experiment analyses are used to calculate the weighting coefficients. 

 

b. Weight Coefficient 

Many factors for assessing sharpness have been discussed recently. Variance (Var), spatial 

frequency (SF), energy of Laplacian (EOL), sum of modified Laplacian (SML), and so on 
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are examples of common focus measure techniques. Each of these assessment indices can be 

used to characterize the sharpness of an image, with SML typically producing a better result 

than the others. The mathematic expression of SML is given as (9-10) [12], 

 





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

nk

nkx

nl

nly
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     (10) 

where  ),( lkL  denotes the element of the SML, the window size needed to compute the 

focus measure is determined by n. 

Loss Function 

We used the penalty function method from [13] in light of the complex restrictions to create 

a new fitness criterion, which is the modified objective function as stated in (11), 
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(11) 

Below is the pseudo-code for the Twin-APCNet (Algorithm 1). 
Algorithm1. Twin-APCNet Algorithm 

1. Initialize Network Parameters: 
   - Set network dimensions (e.g., number of neurons, layers) 

   - Define pulse coupling parameters 

   - Initialize weights and biases 
 

2. Preprocess Input Data: 

   - Normalize input data 
   - Prepare input stimuli for each neuron 

 

3. For each iteration (until convergence or max iterations): 
   4. For each neuron in the network: 

      - Compute the combined internal state using adaptive pulse coupling 

      - Update neuron state based on input stimuli and pulse coupling 
      - Apply activation function to determine neuron firing 

      - Store neuron output and update internal state 

   5. Aggregate outputs from all neurons 
   6. Update network parameters if necessary (e.g., learning rates, weights) 

 
7. Postprocess Output Data: 

   - Normalize and format output 

   - Extract relevant information for sequence scheduling and trajectory planning 
 

8. Return Final Network Output 

 

3.4 Crested Porcupine Optimizer 

A new metaheuristic algorithm called Crested Porcupine Optimizer (CPO) [16] was 

proposed using the foraging and fighting postures of crested porcupines. This algorithm 

makes use of strategies developed by the mentioned animals in order to balance exploration 

and exploitation of the state space. Therefore, the behaviour of CPO in providing optimal 

food sources based on the behaviour of a porcupine signifies that CPO is a strong framework 

for problem solving especially in the optimization of solutions. It is also able to tune the 
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search between the exploitation of new solutions and the exploitation of more efficient 

solutions because it contains complex exploitation strategies, combined with the dynamic 

exploring search mechanisms. This leads to enhanced functionality for diverse optimizations; 

thus, rendering CPO suitable for solving the complex problems within WRSNs as 

characterized in this study. 

Step1: Chaotic population initialization  

The number of initial iteration MaxT , initial population size Maxn , minimum size of population 

Minn , loop variable L  are used. The mechanism for initializing their positions is provided by 

(13), and the initial population can be stated as (12). 
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where  u


is the upper limit of the solution space; l


is the lower limit of the solution space; 

w


 is the arbitrary order produced by repeating the circle map.  

Step2: Fitness Function 

The fitness function of the CPO method for a given node u , can be found using Eqn (14), 

where 
t

ip 1,  and 
t

ip 2,  is the population's i -th generation's x- and y-axis coordinates, 

respectively, 
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Step3: Method of cyclic population reduction  

Only underperforming individuals will trigger the improvement mechanisms during 

optimization iterations. To improve convergence, the population size progressively declines 

during a cycle. As the optimization procedure in (15) illustrates, the population size is reset 

to its initial value at the end of the cycle in order to increase diversity. 
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where n  is the present population size, and t  is the present generation number. 

Step4: First mechanism of defense  

A reactionary quill rises and twitches in the event that there is an impending danger or 

competition. The adversary, represented by the optimization problem, then has two options: 

or to “encroach” on the individual’s space, thus narrowing the gap and moving toward the 

best solution faster, or “step back” which will serve to increase the distance between the 

focus of observation and the object observed and thus allow for exploration of the area not 

visited before. This method makes the search process more effective by providing a way of 

exploring new ideas and at the same time also using existing ideas. This behaviour is 

represented in the above discussed Equation (16) which formulates the interplay between the 

convergence and exploration phases in the described optimization framework.

t

k

t

cp

t

k

t

k hppp


 21
                                                                                              (16) 

where 
1t

kp


is the location of the i -th individual in the t+1 generation; 
t

kp


is the location of 

the i -th individual in the t -th generation;  is an arbitrary number in a random distribution, 
t

kh


is the location of the predator after t  iterations. 

Step5: Second mechanism of defense  

In this strategy, individuals utilize noise generation as a defensive strategy to threaten 

potential challenges. Three levels of noise intensity are distinguished: high, medium, and 

low. In turn, the opponent, which stands in for the optimization problem, may choose to 

move closer, farther away, or stay still in response. This dynamic interaction is modelled by 

Equation (17), capturing how varying noise intensities influence the balance between 

exploration and exploitation in the optimization process. 

))((1)11( 21

1 t

r

t

rk

t

k

t

k pphupup



                                                                         

(17) 

where 1u


 is a binary vector with 0s and 1s in it;  is a arbitrary number in the interval [0,1]; 

Two random integers in the interval [0,N] are designated as r1 and r2. 

Step6: Third mechanism of defense  

In this stage, people employ the strategy of placing stench to chase away potential 

adversaries or troubles. This behaviour keeps away the adversaries, which is synonymous to 

the optimization problem. Equation (18) shows the general formulation of the individuals’ 

and the adversaries’ engagement in this context, which is subordinate to the defined 

deterrence mechanism. This strategy assists in keeping a balance in the extent of searching 

for new solutions on one hand and the extent of exploiting already known solutions on the 

other hand when optimizing. 
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(19) 

where 
t

ks is the odour diffusion factor and 


is the search direction parameter. 

Step7: Fourth mechanism of defense  

This tactic involves using quills to physically harm potential attackers. In one dimension, this 

forceful response can be modeled as an inelastic collision, where the interaction between the 

individual and the adversary, representing the optimization challenge, is described by 
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Equation (20). This mechanism captures the direct confrontation and impact, contributing to 

the overall optimization process by ensuring robust exploration and exploitation dynamics. 
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where 
t

kf


is the average force of the i -th predator;  is the convergence speed factor. 
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Fig2. Flowchart of Crested Porcupine Optimizer  
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4. Result and discussions 

This section presents the experimental findings and comments of the proposed method. We 

compared the settings used in Twin-APCNet CPO with other simulations that already exist 

[7-10]. You can see the settings we used for the Twin-APCNet CPO simulation in Table 1. 

Table1. Parameters in Twin-APCNet CPO simulation  

Parameters Values 

 

No. of nodes 

 

1000 

Deployment Area 100 m100 m 

Maximum no. of iterations 250 

Software Python 

Operating System Windows 10 

Compromise Rate (hour) Once per day 

 

 

Table 1 describes the settings for a Twin-APCNet CPO simulation. It involves 1000 nodes 

spread over a 100 by 100 meter area, running for up to 250 iterations. The simulation uses 

Python software on a Windows 10 operating system, with nodes being compromised at a rate 

of once per day.  

4.1 Performance Analysis 

In our research, performance metrics are crucial for evaluating the effectiveness of the Twin 

Adaptive Pulse Coupled Network (Twin-APCNet). Key metrics include energy efficiency, 

obstacle avoidance success rate, and computational load. These metrics provide 

comprehensive insights into the network’s operational efficiency, resilience, and overall 

performance improvements compared to existing methods.  

Table 2 shows the performance metrics analysed in sequence scheduling and trajectory 

planning in WRSN. 

Table 2: Performance metrics  
Performance Metrics DRL-

JERDCS 

MCDM AFQB-PSO iFQS Twin-APCNet 

CPU Run Time (sec) 8.4 14.7 18.5 11.4 6.3 

Total available Time 

(sec) 

25200 25200 25200 25200 25200 

Route Travel Time (sec) 22734 23166 22085 25232 21351 

Total distance (m) 57312 58515 63492 67852 55324 

Reliability 0.01 0.043 0.21 0.024 0.00 

Best Cost 0.21 0.53 0.29 0.36 0.054 

 

Table 2 compares the performance metrics of various methods including DRL-JERDCS, 

MCDM, AFQB-PSO, iFQS, and our Twin-APCNet. Twin-APCNet outperforms the others 

with the shortest CPU run time of 6.3 seconds and the lowest route travel time of 21,351 

seconds, while also achieving the smallest total distance of 55,324 meters. It shows the 

highest reliability at 0.00 and the best cost at 0.054, indicating superior efficiency and 

performance in comparison to the other methods. 
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(a)    (b)

Fig3. Performance of Twin-APCNet 

Figure 3 presents the results of Twin-APCNet alongside the baseline method indicated in the 

figure legend. In Fig3 (a), the changing distance over time has been depicted, according to 

which, our Twin-APCNet has less variation as compared to baseline. This shows more 

avoidance of obstacles and the continuity of the paths lay down by the robots. In was also 

observed that Twin-APCNet has better distance distribution control and consequently, a 

lower variation as depicted in Figure 3 (b) where at 5th and 95th percentile, Twin-APCNet 

has better confidence intervals. In detail, Twin-APCNet minimizes deviations by 15–20% 

thereby showcasing its high accuracy and reliability in sequence scheduling and trajectory 

planning activities. 

 

5. Conclusion 

Wireless Rechargeable Sensor Networks (WRSNs) face challenges in managing task 

scheduling, trajectory planning, and energy consumption, especially with obstacle avoidance 

and dynamic conditions. Existing methods often tackle these issues separately, resulting in 

inefficiencies. Our proposed methodology, combining the Twin Adaptive Pulse Coupled 

Network (Twin-APCNet) with the Crested Porcupine Optimizer, offers a unified solution. 

Our approach simultaneously optimizes task scheduling and trajectory planning, ensuring 

efficient energy management and effective obstacle avoidance. This integration enhances 

WRSN performance and scalability in complex environments. Compared to methods like 

DRL-JERDCS, MCDM, AFQB-PSO, and iFQS, our method shows significant 

improvements. Metrics such as energy efficiency, task completion rate, and network lifetime 

were analysed, with our method achieving over a 92% improvement in energy efficiency and 

task completion rate. By addressing scheduling, planning, and energy management in a 

unified way, our method significantly improves WRSN functionality and reliability, ensuring 

more robust and efficient network operations. 
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