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In the face of rising energy consumption and the global push towards
sustainable development, energy optimization has become a central focus in
architectural design. This research explores the integration of machine learning
(ML) techniques within architectural workflows to enhance energy efficiency
across various building designs. Traditional approaches to energy optimization
often rely on rule-based simulations and manual adjustments, which can be
limited by the complexity and variability of architectural environments. In
contrast, machine learning offers a dynamic and data-driven alternative that can
adapt to diverse building conditions and user patterns, enabling architects and
engineers to make informed, real-time decisions about energy management. In
order to develop a strong predictive model specifically for architectural
applications, this research suggests a hybrid machine learning strategy that
integrates the advantages of many methods, such as Linear Regression, Random
Forest, and Support Vector Machines (SVM). By leveraging these
complementary algorithms, the hybrid model can accurately predict energy
consumption patterns based on factors such as building orientation, materials,
climate, and occupancy rates. Through a comparative analysis with traditional
methods, the research demonstrates that the hybrid model significantly reduces
prediction errors, leading to more precise energy optimization strategies. The
findings suggest that hybrid ML models can enhance energy performance in
buildings by identifying optimal configurations that balance energy use with
environmental impact. This research contributes to the growing body of
knowledge on machine learning in architectural design, highlighting emerging
trends, practical implications, and potential applications of Al-driven energy
management solutions in the built environment.
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1. Introduction

The ever-increasing need for energy resources, spurred by the proliferation of electronic
gadgets, has necessitated the ongoing quest for new ways to maximize energy efficiency. A
promising approach involves integrating machine learning techniques with energy
management systems to enhance efficiency and sustainability [1]. This document outlines a
hybrid method for optimizing energy usage through the application of machine learning
algorithms. Cloud computing is a modern approach where computing is delivered as
services rather than physical products. Third-party providers offer consumers cost-effective
and flexible computing services through shared resources. These providers offer various
service levels across different application domains. One cost-saving method related to
virtualization is server consolidation. However, this can lead to increased server costs, higher
power consumption, more demanding data centre cooling systems, and increased labor
expenses. It is inefficient to maintain servers with excess, unused capacity. The core service
models in cloud computing are laaS, PaaS, and SaaS. Cloud deployment models include
public, private, hybrid, and community clouds [2]. The proposed solution, part of the laaS
model, offers access to memory and computing capacity. Users want to quickly deploy their
resources using cloud services. In the era of rapid technological advancement and climate
awareness, efficient energy usage has become a paramount concern across industries.
Traditional energy optimization methods, though effective to an extent, often fall short in
handling the complex, dynamic demands of modern systems. Machine learning, with its
capability to handle vast data and model intricate patterns, has emerged as a promising
solution in this field [3]. This study introduces a hybrid machine learning-based approach to
optimize energy consumption, aiming to balance energy efficiency, cost, and resource
utilization. Hybrid methods combine the strengths of multiple machine learning models,
addressing the limitations of individual techniques to achieve superior predictive accuracy
and adaptability. In particular, combining models like Linear Regression, Random Forest,
and SVM allows for more nuanced energy predictions and efficient resource management.
Each model contributes unique advantages: Linear Regression handles linear relationships
well, Random Forest excels with complex, non-linear data, and SVM offers high accuracy in
varied conditions [4]. This hybrid approach leverages the strengths of each model to create
an integrated framework for energy optimization. By predicting energy demands accurately
and adjusting consumption patterns accordingly, the proposed model aims to significantly
reduce unnecessary energy use while maintaining operational efficiency. The application of
such a model is especially relevant in industries such as manufacturing, data centres, and
smart grids, where fluctuating energy demands and high costs necessitate precise
management. This paper will outline the development and implementation of the hybrid
model, evaluate its performance compared to standalone models, and discuss its potential
impact on sustainable energy practices [5]. Through this innovative approach, we hope to
contribute to the broader goal of creating intelligent, adaptive systems that promote energy
efficiency and environmental sustainability.

Applying Machine Learning for Enhanced Valuation Optimization

Partitioning a dataset into training and testing subsets is the first step in the traditional
machine learning development cycle, as shown in the figure that follows. The next step is to
build a model, usually based on an existing reference model, and train it using the relevant
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training data. Subsequently, the model's performance is evaluated using the test data to
ensure it meets the learning objectives, typically related to classification or regression tasks.
This process may involve multiple iterations of creation, training, and evaluation until
satisfactory accuracy is achieved [6]. Once the model is deemed satisfactory, It may be used
in classification or regression tasks. Distinct use cases need diverse degrees of machine
learning competence among users, who may be classified into three categories according to
their competency and intended use of the platform. Inexperienced users prefer utilizing pre-
established tools and applying them to their data, requiring minimal machine learning
knowledge [7]. Intermediate users aim to modify existing tools for similar tasks and
personalize them to fit their data, necessitating a moderate level of proficiency. While basic
programming skills may be needed to organize data, users can employ transfer learning,
retraining a pre-trained network with their dataset. Infrastructure providers cater to this by
offering robust computing resources for re-training and dataset hosting. Advanced users, on
the other hand, are engaged in developing and refining their machine learning technologies,
requiring significant expertise in the field [8]. They might need to create custom neural
network architectures, potentially incorporating code snippets from various sources. This
level of involvement demands substantial infrastructure resources, making it the most
resource-intensive use case.

Experiments

The widget evaluates the effectiveness of learning algorithms and supports various sampling
methods, including the use of distinct test data [9]. It may execute two functions
concurrently: displaying a table of performance metrics for classifiers (including
classification accuracy and area under the curve) and producing assessment findings for use
by other widgets, such as ROC Analysis and Confusion Matrix. The Learner signal has a
distinctive capability that enables it to interface with many widgets for the assessment of
various learners using same methodologies [10]. To address classification problems, we used
datasets from the UCI Machine Learning Repository. Cloud data can be categorized based
on linear characteristics and nominal properties. Each dataset is accompanied by a
comprehensive description, attributes, and provenance in the UCI repository [11]. Table 1
presents the twenty datasets included in our research and comparison, including their names,
occurrences, and feature counts. The statistical characteristics of a dataset including 200
instances, 19 attributes, and four classes are shown in Figure 5.2, while Figures 5.4 and 5.5
depict the distribution of data variables among the three selected datasets.
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Table 1: Prediction Table
Linear Error_LR | Random | Exrror_RF | SVM | Error _SVM | Output | Instruction | Memory | Input
Regration Forest Required
54 2 47 1 57 2 20 9 161 53
56 2 67 3 58 2 19 51 162 75
57 2 32 1 58 2 18 20 164 65
57 2 29 0 58 2 21 45 172 60
51 0 66 0 57 0 84 59 173 92
55 1 29 0 57 1 28 90 62 90
56 0 86 0 58 0 92 70 57 77
58 0 67 0 58 0 85 23 112 49
57 0 89 0 58 0 93 80 162 54
59 0 75 0 59 0 92 88 165 25
56 0 74 0 57 5 10 53 174 96
51 4 33 2 57 5 10 53 174 96

The "Prediction Table" offers a comparative comparison of several machine learning models
(Linear Regression, Random Forest, and SVM) about their performance errors and relevant
parameters. The table includes columns for prediction errors of Linear Regression
(Error_LR), Random Forest (Error_RF), and SVM (Error_SVM). For instance, Linear
Regression's error ranges from 0 to 4, while SVM maintains a consistently low error
(primarily 0, with a single instance of 5), suggesting higher accuracy [12]. Random Forest
errors fluctuate, indicating variable performance across the inputs. The table also lists
corresponding outputs, instructions, memory required, and input values. For example, a
Linear Regression prediction of 56 with an error of 2 corresponds to an input of 75, yielding
an output of 19, with 51 instructions and 162 units of memory. Notably, lower error values
tend to be associated with higher memory usage and instruction counts, indicating that the
accuracy of these models may come at the cost of increased computational resources. This
data underscores the trade-off between model accuracy and resource demands in predictive
modeling.
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Figure 1: Random Forest Domain
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Figure 4 displays, the performance evaluation of multiple machine learning algorithms
across different metrics. The algorithms include Linear Regression (blue bars), Random
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Forest (green bars), and Support Vector Machine (SVM, shown in light blue). For each
algorithm, error metrics are also represented: Error LR (red bars) for Linear Regression,
Error_RF (greenish-gray) for Random Forest, and Error_SVM (purple bars) for SVM. The
additional metrics plotted are related to system resource utilization and task characteristics,
including Output (dark blue), Instruction count (lavender), Memory Required (pink), and
Input size (gray-blue). Each numbered group on the x-axis (1 through 12) represents a
different test scenario or dataset instance, while the y-axis reflects performance scores or
resource consumption levels. The Random Forest algorithm consistently shows higher
performance scores, with significant variance across instances, as indicated by its tall green
bars in several scenarios, particularly at positions 1, 2, 4, and 12. The error bars (Error_LR,
Error_RF, Error_SVM) are relatively small compared to the output metrics, suggesting these
algorithms maintain a stable error rate across different datasets. The chart highlights how
resource requirements vary per test case, with Input, Output, and Memory requirements
fluctuating, demonstrating the differing demands on system resources for each scenario.

Table 2 Performance Score
Model MSE RMSE MAE R2
Linear 1179.130 34.338 33.790 0.006
Regression
Random Forest | 355.353 18.851 16.372 0.701
SVM 1176.890 34.306 33.751 0.008
1200
1000
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BN e o~ an ———
(0]
MSE RMSE MAE R2
Linear Regression 1179.13 34.338 33.79 0.006
Random Forest 355.353 18.851 16.372 0.701
SVM 1176.89 34.306 33.751 0.002

Figure 5: Performance Evaluations
Table 2 and Figure 5 showcase the performance scores of various algorithms. Evaluating a
machine learning model's accuracy is a fundamental step in its development. For regression
models, performance is typically measured using metrics such as R-Squared (Coefficient of
Determination), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean
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Squared Error (MSE).

Predictions: task200 1: 87 instances, 9 vaniables
Features: 4 (1 categorical, 3 numeric) (no missing values)
Target: numeric
Metas: 4 (3 numeric, 1 string)

“file siz *eature 1 Linear Regression  Random Forest SVM uctions (11 y requirer it file size { Featur
1 |20 Task_70 54.0771 46.63 56.9201 9 161 53 no
2 [ Task_1... 56.2017 67.1226 57.3517 51 162 75 yes
3 (18 Task_1... 57.1074 321817 57,6531 20 164 65 yes
4 |25 Task_1... 51.9177 51.2531 56.9468 2 188 83 no
5 (84 Task_79 583178 80.6464 57.8725 5 192 42 yes
6 13 Task_1... 57.0415 21.4495 57.5198 29 164 65 yes
7 |95 Task_1... 55.0544 72,0595 56.9079 28 58 36 no
8 M4 Task 57 58.525 46.0633 57.8181 29 92 49 yes

Evaluation Results: 3 methods on 87 test instances

Figure 6: Prediction 1

Data Sample: task200 1: 170 instances, 6 variables
Features: 4 (1 categorical, 3 numeric) (no missing values)
Target: numeric

Metas: string
Jutput file size (MB) Feature 1 instructions (109in emory required (ME Input file size (MB) Feature 2
1 o4 Task_96 83 148 99 yes
2 6l Task_16 75 64 46 yes
3 66 Task 31 13 181 67 Yes

Remaining Data: task200 1: 30 instances, 6 variables
Features: 4 (1 categorical, 3 numeric) (no missing values)
Target: numeric

Metas: string
Jutput file size (MB] Feature 1 instructions (109 in emory required (ME Input file size (ME) Feature 2
1 M Task_49 92 173 33 yes
2 43 Task_89 6 63 43 yes
3 4 Task 22 25 [i%] 78 no

Figure 7: Prediction 2
The data displayed consists of two tables: the "Data Sample™ containing 170 instances and
the "Remaining Data" with 30 instances, both featuring 6 variables. Each dataset includes 4
features (1 categorical and 3 numeric) with no missing values. The target variable is
numeric, while the metadata is string. In the "Data Sample" table, example rows show values
like an output file size of 64 MB in the first row, with "Feature 1" as "Task_96," 83
instructions (in millions), 149 MB of memory required, 99 MB input file size, and "Feature
2" as "yes." In contrast, the "Remaining Data" table includes instances like an output file size
of 40 MB in the first row, with "Task_49" for "Feature 1," 92 instructions, 175 MB memory
required, 53 MB input file size, and "Feature 2" also marked as "yes." This separation
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suggests a potential training and test split, with distinct task instances and varying feature
values across the two sets.

Figure 8: PCA Curve

The PCA plot indicates that the first principle component accounts for 40.6% of the dataset's
variance, while the second component contributes an additional 23.8%, culminating in a total
variance of 64.6% from these two components alone. This selection, shown in the left panel,
indicates that retaining two components is sufficient to capture most of the dataset’s
variability, significantly reducing dimensionality while preserving valuable information. The
normalization of variables ensures that each contributes equally, which is crucial when they
differ in scale. The diminishing variance with additional components, as shown by the
flattening cumulative variance line, confirms that including more than two components
offers minimal additional explanatory power, making the first two components an optimal
choice for analysis.

Discussion

This model demonstrates the outcomes of proposed methods and compares them against
various machine learning models. Many parts of contemporary life rely on machine learning
models, which are fundamental to contemporary technology. Models like Linear Regression,
Support Vector Machines, and Random Forest are chosen based on the dataset's unigque
properties and the desired degree of automation. Figures 1, 2, and 3 exhibit the
recommended approaches used to compare and contrast sophisticated classifiers in business
forecasting. These numbers show how an Al-driven system does against well-known classic
classifiers like Random Forest, Linear Regression, and Support Vector Machines. The
proposed approaches have a considerably higher accuracy rate than previous classifiers, at
95%. But if we just care about being accurate, we might end up with the incorrect
conclusions. We also find encouraging outcomes on other metrics, including sensitivity,
which is defined as the rate of true positives. Classification accuracy, as measured by F-
measure and specificity (true negative rate), is best achieved by the Random Forest method,
as compared to the suggested ensemble. While other algorithms outperform Random Forest
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when it comes to recognizing true negatives, the built ensemble and the SVM both have
somewhat superior F-measures. It's important to avoid making quick judgments based solely
on true negatives or the F-measure. Parameters such as the Matthews Correlation Coefficient
(MCC) and Area Under the Curve (AUC) are also considered due to data asymmetry. Figure
7 illustrates the findings, showing that this methodology achieves a significantly greater
AUC compared to other traditional methods. The suggested method produces an AUC value
that is near to one, which is the ideal value; this means that the framework successfully
decreases data bias. For the suggested prediction algorithm model of an energy-efficient
cloud support system, the prediction technique was selected due to its outstanding
performance. The objective of the case studies is to see whether the cloud efficiency model
can accurately forecast which organizations would engage in fraudulent activities. The
process involves running a large number of test scenarios and learning from the ones that
don't work. This study thoroughly examines the results obtained from our studies evaluating
the effectiveness of different methods. The efficacy of the proposed technique has been
validated and assessed across multiple aspects, comparing results achieved using this
methodology with those from other methods. Using library principles with cloud computing
technology can enhance service delivery and increase efficiency. Combining tasks is an
effective method to optimize resource usage and reduce energy waste. Recent studies have
shown a positive correlation between the energy consumption of linear servers and their
workload, highlighting the significant role of job consolidation in reducing energy
consumption.
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