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The rise of machine learning (ML) in the Internet of Things (loT), both at the
edge and in the cloud, is driving advancements in areas such as environmental
monitoring and industrial automation. However, integrating ML in 10T also
introduces significant security challenges. Adversaries can manipulate sensor
data to alter training datasets, leading to what is known as poisoning attacks.
These attacks can embed "backdoors™ and "neural trojans” into models, causing
targeted misclassifications, malicious actions, and significant degradation in
performance. Using recently advanced provenance frameworks this study
suggests a methodology for detecting harmful data by using contextual
information about the handling and origin of data points in the training set. This
method works both with and without a reliable test set. By relying on accurate
provenance information, our method can effectively identify and mitigate
poisoning threats in 10T environments, ensuring the integrity and reliability of
machine learning systems.

Keywords: Machine Learning, Internet of things, poison case, smart grid
model.

1. Introduction

Rapid advancements in machine learning (ML) and its connection to the Internet of Things
(1oT) have occurred in recent years. These days edge sensors can gather the data needed to
train machine learning models. These learned models can anticipate events and keep an eye
on sensor data in real-time causing linked devices to take particular actions. To ensure safety
an ML model can for instance automatically engage the vehicle's braking system when it
detects a stop sign. However, deploying ML within 10T frameworks introduces specific
security vulnerabilities, as malicious actors may exploit the training data by manipulating
sensors. Poisoning attacks enable adversaries to introduce backdoors and neural trojans,
provoke intentional misclassification or erroneous behavior, and substantially degrade
overall system performance. One well-known instance of a poisoning attack that happened
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outside of the Internet of Things was when Microsoft trained its chatbot Tay to write tweets
that resembled those of a person. When some individuals started tweeting harsh words, Tay
responded by sending out tweets that were also offensive [1]. After just sixteen hours,
Microsoft was compelled to take down the bot. Similar assaults, such as those intended to
evade environmental control, are conceivable in l0oT applications.

Current methods for locating toxic data points concentrate on studying the training set. But
provenance data often exists, especially in 10T systems, and this information can help
identify harmful data points. The term "provenance data” describes the genealogy or meta-
information associated with a data element elucidates the methodologies engaged in its
creation, provenance, and evolution. This may encompass specifics regaing the apparatus
that generated the data, including the firmware iteration, user identification, and temporal
marker. [2] In this study, scholars present a preemptive strategy to detect harmful data.
before deploying models by utilising data provenance. This technique divides the untrusted
data into categories based on a high correlation between sample-to-sample poisoning
likelihood within each group using provenance meta-data. After the training data has been
suitably divided into segments, the efficacy of the classifier developed with and without that
specific group is evaluated to determine. the data points in each segment collectively [3]. To
our knowledge, this approach is the first defence tactic that filters unreliable data metrics and
mitigates contamination threats through the application of data lineage.

The Method of Probability of Sufficiency (MPS) and Reject on Negative Impact (RONI)
method are two previous techniques that identify toxic data by assessing how each individual
data point affects the trained model's performance. These two approaches compare the
efficacy of the model assessed on a robust data set in order to assess it. This is how our
system also assesses performance when a reliable data set is provided [4]. However, our
strategy amplifies the influence of hazardous data and allows for improved detection rates by
examining all of the segment data collectively. A significant benefit given the massive
volumes a notable advantage of data gathered across various Internet of Things (loT)
contexts is that the detection methodology exhibits enhanced scalability, as it reduces the
frequency with which the model must undergo retraining to a minimal fraction of the overall
guantity of unreliable data points. [5]. Ultimately, demonstrating how provenance
information, a topic overlooked by both RONI and PS, is addressed, allows our method to
identify toxic data in situations where trusted data is not available.

The following are the contributions made by this paper:

1) To develop a generalized supervised learning model suitable for Internet of Things
contexts, suggest a novel approach for identifying and screening toxic data.
Specifically, this approach takes advantage of data provenance to find sets of data
that have a strong correlation in their likelihood of being contaminated [6].

2) Two versions of our provenance-based defense are offered to address situations
where datasets that are entirely untrusted and partially trusted are accessible.

3) Assess our method's performance in identifying toxic data produced by and discover
that models trained on both fully untrusted and partially trusted data sets perform
much better when our defense is used as a filter before training. Further
demonstrates that, on average, our technique performs faster and more efficiently
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than RONI [7].

4) Then, given a partially trustworthy data set, this provides our provenance defense to
detect toxic data. The next part, will provide an additional methodology to handle
data that is completely untrusted, talk about potential collaboration and targeted
assaults, and present ways to protect against them [8]. Afterward, this analyses our
methods empirically. it wraps up by presenting relevant work.

2. TERMINOLOGY, THREAT MODEL, AND MOTIVATION

As illustrated in Figure 1, this presents a Provenance-based poison detection service in this
study. Our method uses provenance information to remove harmful data from IoT
observations [9]. This leverage recently suggested frameworks to guarantee the immutability
and incapability of provenance data from loT contexts to be altered. Smart grids and
SCADA systems are two further loT scenarios where adversaries can find it advantageous to
contaminate an ML model [10].

This takes into account an opponent in our threat model whose objective is to lower the ML
model's accuracy. For instance, managers of polluting factories can try to make the classifier
worthless by drastically lowering its overall performance. As an alternative, they might work
to prevent the model from learning the negative consequences of a certain chemical, which
would lower the accuracy for a given input [11]. An antagonist typically can manipulate only
a limited array of data sources within operational systems; attaining control over all data
sources may be impractical or excessively costly. For instance, a factory manager is likely
restricted to altering only the sensors present within their facility excluding those located in
other establishments. As a result, erroneous data will usually emanate from specific sensors
and locations. In essence, this contends that the perpetrator can solely amend data elements
that exhibit unique provenance signatures [12].
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Figure 1: Poison detection service Scenario

3. DEFENSE AGAINST DATA OF LIMITED TRUSTWORTHINESS
In this discourse, this elucidates a provenance-oriented countermeasure against data
poisoning in contexts where the acquired information is subject to incomplete trust. By
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"incomplete trust," this indicates that certain segments of the collected data are accepted as
reliable and remain uncorrupted. Incomplete trust in training data can be obtained in real-
world circumstances either via trusted sources of data or by hand curation of the collected
data. To guarantee the accuracy of the information gathered, the regulator might, for
instance, physically keep an eye on a few sensors [13].

The technique is independent of the particular supervised machine learning algorithm
employed and, theoretically, can also be utilized with unsupervised algorithms [14]. To make
it easier to compare in evaluate the efficacy of the trained models, our analysis is confined to
supervised learning methodologies. The ensuing inputs are employed in this approach:

1) a monitored computational learning procedure;

2) a training dataset characterized by a degree of partial trust is segmented into two
components, namely a trusted subset and an untrusted subset, gathered with the intent of
educating the machine learning classifier;

3) a reliable and reputable provenance dataset that encompasses metadata elucidating the
provenance and lineage of every data element within the untrusted segment of the training
dataset;

4) a provenance attribute that signifies the manner in which toxic elements will be grouped
within the unverified segment of the data collection.

The methodology process is shown in Figure 2 complete with pseudocode using the inputs
mentioned above. Each erroneous data point in the training set is first linked to its
provenance record in the process. The untrustworthy dataset is split into segments, each of
which shares a consistent value for the selected provenance attribute to detect and remove
potentially harmful data [15]. One way to divide up the dataset would be to use the original
equipment or location where the data was gathered. Following that classifiers are trained
with and without each segment to examine it for possible data poisoning. If the segment is
deemed contaminated and eliminated the classifier that was trained without it (filtered
model) beats the one that was trained with it (unfiltered model) on the test set.
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Figure 2: A Defense Mechanism for Partially Trusted Data

4. PROTECTION OF SEMI-TRUSTED DATA

In addition, this present a calibration process that attempts to comprehend the impact of
eliminating a valid section from the training set. This allows us to determine the threshold at
which the removal of a segment should degrade the classifier's performance before this
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consider the gadget to be poisonous. The calibration process is carried out through a series of
trials in which:

1) A single portion of data is selected at random from the untrusted collection, while a
distinct portion of validated data is randomly extracted from the trusted collection.

2) Legitimate data is used both when training classifiers and when not.

3) The performance disparity on the remaining reliable data points is recorded.

To get a good idea of the distribution for the performance change, the user should try as
many times as required. The user can select a threshold based on his or her requirements by
using this estimate. With these circumstances, this suggests repeating the following
procedure multiple times while evaluating a particular unreliable section. The first randomly
selected segments range from 10 to twenty. The model is then trained on both the segment
being evaluated and the segments that were chosen at random. Following the creation of a
new model utilizing only the randomly chosen segments, the outcomes are compared. This
process needs to be carried out many times in order to account for the inherent variability in
the outcomes. A segment is deemed hazardous and eliminated from the dataset if the mean
performance change exceeds the designated threshold.

5. PROTECTION OF COMPLETELY UNTRUSTED DATA

However, achieving a partially trusted data collection may be challenging or impossible due
to the expense of human data verification and real-time constraints that hinder data
verification. This presents a procedure to apply our strategy to entirely untrusted data sets.

1) Based on the chosen provenance attribute, divide the data into segments by signature.

2) Randomly allocate a segment of the data to the training set while designating the
remaining segment to the evaluation set for each section.

For every signature in the chosen provenance feature, perform to develop two distinct
models, the first model will utilize the entirety of the training dataset, while the second
model will be constructed by excluding the relevant segment from the training dataset.

5.1 Targeted Attacks

The previous method prevented compromised devices A and B from directly influencing the
evaluation of their data points. However, compromised devices can collude by inserting
elements into the evaluation set that conceal compromised status. Device B can also add data
points that facilitate the identification of compromised but authentic devices. False Negative
Attacks occur when device A adds data points to the decision boundary, while device B adds
points between the original and updated decision boundaries. The model trained without data
from device A will be less accurate, as points from device B are wrongly classified, giving
the false impression that despite being harmful, device A supplied valid data. False Positive
Attacks occur when device B places points slightly outside the decision boundary and farther
away from the true boundary, producing false positives.

5.2 Experimental Evaluation

This produced a model to evaluate our strategy that is trained using data points from
numerous devices in the Internet of Things. The production of poison involves two different
methods that have been previously suggested in the literature. The goal of both mechanisms
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is to support vector machines (SVMs). For each type of toxin, this adhered to the protocol
below.

Initially, the quantity of devices within the system was ascertained and the pertinent
poisoning process was employed to produce legitimate and hazardous data points. To
generate provenance data for each data point the number of contributing data points for each
device was the same. Two defenses, RONI and RONI with calibration, were used to compare
our method. Since that performed better, this solely presents the Calibrated RONI findings
and utilizes it as a baselinel. This utilized the same size for the trustworthy set in order to
compare the two approaches. As a result, the calibration, validation, and baseline portions of
the trusted set utilized for the Calibrated RONI are divided.

Furthermore, this constructed a separate, autonomous testing dataset comprising 5,000
genuine data instances that were designated explicitly for benchmarking purposes. This
assessed the accuracy of four distinct models utilizing this benchmarking dataset: the optimal
detection model, which was exclusively trained on authentic data instances; the no-defense
model, which incorporated all data instances submitted to the system; and the provenance
defense model, which was developed subsequent to the exclusion of data instances identified
as harmful by our defense mechanisms.

Thereafter, this categorized an untrusted segment as harmful if the performance deviation
observed during the calibration trials surpassed the average value plus one standard
deviation. Naturally, this threshold can be adjusted to enhance recall at the potential
detriment to precision or vice versa. An alternative approach involves employing a cross-
validation dataset to optimize this parameter. Ultimately, the user may also perform
statistical analyses to corroborate the assertion that an untrusted segment is authentic if they
can replicate the performance change distribution observed in the calibration trials. The
generated distribution alongside a p-value could then be utilized to refine the threshold
parameter.

5.3 Potency in the presence of poison |

This study's synthetic dataset and methodology which also used to assess our defense against
the poisoning attack. There are two features and two different classes in the dataset. The
numbers displayed are based on the average outcomes that were determined.

5.4 Impact of a trusted set size in contexts with partial trust

In this experiment, the total number of legitimate training instances is 1000, whereas the
aggregate of detrimental training instances amounts to 200. There were merely two and 10
devices in total honest and dishonest, respectively. Figure 3 illustrates the findings, which
indicate that to observe a notable enhancement over the absence of a defense mechanism, the
provenance defense mandates a minimum of 100 data points within the trusted dataset. It
reaches an accuracy that closely approximates perfect detection by the time 380 data points
are utilized. The provenance defense consistently outperforms the baseline.
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Figure 3: Influence of augmenting the dimensions of the reliable subset on the mean
precision attained in the context of poison |

5.5 Impact of increasing poison concentration

The effect of developing the poison concentration in the untrusted group was examined in
this experiment. With the combined contribution of 10 devices, each contributing 100 data
points 1000 training points were obtained. The amount of poison added in each trial was then
adjusted by changing the number of compromised devices from 1 to 7. There was a 300-data
point limit on the reliable dataset. Figure 4 illustrates the results, showing that even as the
proportion of poisoned data nears 70%, our approach consistently improves the final
classifier's performance and generally outperforms the baseline.
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Figure 4: accuracy percentage under poison I.

Runtime: This assertion is valid despite the fact that both the provenance technique and the
foundational approach possess the capacity for parallel processing. As a result, the
foundational framework would necessitate O(m) times additional resources, encompassing
memory and CPU cores, even in scenarios of complete parallelization. Furthermore, it is
anticipated that the computation time will be O(m) times prolonged in a non-parallelized
framework. This corroborate this through empirical data obtained from our previous
experiment, in which this assessed the time intervals required to filter data sets of diverse
sizes utilizing both the provenance and foundational strategies, while maintaining a constant
number of devices. The outcomes are depicted in Figure 5. Our results suggest that our
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approach is more appropriate for the extensive data sets typical of Internet of Things
applications, as the provenance strategy exhibits a notable speed advantage relative to the

foundational methodology.
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Figure 5: Mean execution duration for semi-trusted techniques as a variable of the quantity
of training data instances.

5.6 Effectiveness Under Poison 11

The evaluation tested the defense mechanisms against harmful data, focusing on a specific
attack vector incorporated into a Support Vector Machine (SVM) using gradient ascent. The
figures represent the average results from five experimental iterations. In these experiments,
there were only two devices in total—one honest and one compromised. The total number of
training data points was 120, with 20 being harmful. The reliable dataset consisted of 120
points, unless noted otherwise. This methodology aims to gauge how well our defense can
handle such targeted poisoning attacks.

5.7 Impact of a trusted set size in contexts with partial trust

The impact of raising the trusted set size while maintaining the same values for the other
parameters is seen in Figure 6. The provenance defence significantly enhances the final
classifier's performance, even at 90 data points. By contrast, before the baseline can
outperform no defence, at least 120 data points are required. Our provenance method's
capacity to increase model accuracy has converged to the point where it performs almost as
good as perfect detection after 150 data points.
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Figure 6: The impact of increasing the size of the trusted set on the average accuracy
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Impact of poisoning percentage in totally untrusted environments: The evaluation set may
contain toxic data in completely untrusted situations. Therefore, only a small percentage of
the gathered data must be toxic for our approach to be able to identify toxic data. In this
experiment, this measure how well our approach filters toxic data as the untrusted data set
gets progressively more toxic.

This are unable to use Calibrated RONI as a baseline in completely untrusted situations
because it depends on a trustworthy set. Rather, this contrast our approach with both no
defence and flawless detection. The results of adding more poison in a completely untrusted
context are seen in Figure 7. This are able to successfully improve the final classifier's
performance when fewer than 25% of the data is contaminated. Nevertheless, our technique
can no longer outperform no defence if 25% of the data is tainted.
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Figure 7: Fully untrusted defense under poison Il

6. CONCLUSION

The integration of machine learning in 10T environments, where data is dynamically
collected and learned from online, makes these systems highly vulnerable to poisoning
attacks. Despite extensive documentation of such vulnerabilities, effective countermeasures
are scarce. This study presents a groundbreaking method for detecting and filtering toxic
data using data provenance, which tracks the origin and history of data points. This novel
approach represents the first use of data provenance to counteract poisoning attacks. It
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explores potential weaknesses, including collusion attacks, and proposes solutions for
completely untrusted scenarios. Testing with two established poisoning techniques shows
that this provenance-based defense outperforms baseline methods in both detection accuracy
and runtime efficiency.
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Abbreviation

ML - Machine Learning

loT - Internet of Things

RONI - Reject Negative Impact

PS - Probability of Sufficiency

PUF - Physical Unclonable Functions

EPA - Environmental Protection Agency

REFERENCE

1. Borgnia, E., Cherepanova, V., Fowl, L., Ghiasi, A., Geiping, J., Goldblum, M., Goldstein, T.,
& Gupta, A. (2021). Strong data augmentation sanitizes poisoning and backdoor attacks
without an accuracy tradeoff. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) pp. 3855-59.
https://doi.org/10.1109/ICASSP39728.2021.9414803.

2. Chacon, H., Silva, S., & Rad, P. (2019). Deep learning poison data attack detection. In 2019
IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI) pp. 971-78.
https://doi.org/10.1109/ICTAI.2019.00136.

3. Cina, A. E., Grosse, K., Demontis, A., Vascon, S., Zellinger, W., Moser, B. A., Oprea, A.,
Biggio, B., Pelillo, M., & Roli, F. (2023). Wild patterns reloaded: A survey of machine learning
security against training data poisoning. ACM Computing Surveys (CSUR), 55(13), 1-39.
https://doi.org/10.1145/3549763.

4, Dunn, C., Moustafa, N., & Turnbull, B. (2020). Robustness evaluations of sustainable machine
learning models against data poisoning attacks in the Internet of Things. Sustainability:
Science, Practice, and Policy, 12(16), 6434. https://doi.org/10.3390/su12166434.

5. Gao, J., Karbasi, A., & Mahmoody, M. (2021). Learning and certification under instance-
targeted poisoning. In Proceedings of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence pp. 2135-45. https://doi.org/10.48550/arXiv.2102.07020.

6. Jiang, W,, Li, H., Liu, S., Ren, Y., & He, M. (2019). A flexible poisoning attack against
machine learning. In ICC 2019 - 2019 IEEE International Conference on Communications
(ICC) pp. 1-6. https://doi.org/10.1109/1CC.2019.8761822.

7. Lee, T., Edwards, B., Molloy, I., & Su, D. (2019). Defending against neural network model
stealing attacks using deceptive perturbations. In 2019 IEEE Security and Privacy Workshops

Nanotechnology Perceptions Vol. 20 No.6 (2024)



2887 Rajkumar Nirmalan et al. Detection of Poisoning Attacks in Internet of....

10.

11.

12.

13.

14.

15.

(SPW) pp. 43-49. https://doi.org/10.1109/SPW.2019.00019.

Lin, T. (2020). Deep learning for loT. In 2020 IEEE 39th International Performance
Computing and Communications Conference (IPCCC) pp. 1-4.
https://doi.org/10.1109/IPCCC49379.2020.00010.

Mabhloujifar, S., Ghosh, E., & Chase, M. (2022). Property inference from poisoning. In 2022
IEEE Symposium on Security and Privacy (SP) pp. 1120-37.
https://doi.org/10.1109/SP46215.2022.9833618.

Mehra, A., Kailkhura, B., Chen, P.-Y., & Hamm, J. (2021). How robust are randomized
smoothing based defenses to data poisoning? In 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) pp. 13244-53.
https://doi.org/10.1109/CVVPR46437.2021.01302.

Mufioz-Gonzélez, L., Pfitzner, B., Russo, M., Carnerero-Cano, J., & Lupu, E. C. (2019).
Poisoning attacks with generative adversarial nets. arXiv [cs.LG], 22(4), 78-93.
https://doi.org/10.48550/arXiv.1906.07773.

Tian, Z., Cui, L., Liang, J., & Yu, S. (2022). A comprehensive survey on poisoning attacks and
countermeasures in machine learning. ACM Computing Surveys (CSUR), 55(8), 1-35.
https://doi.org/10.1145/3539547.

Truong, L., Jones, C., Hutchinson, B., August, A., Praggastis, B., Jasper, R., Nichols, N., &
Tuor, A. (2020). Systematic evaluation of backdoor data poisoning attacks on image classifiers.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) pp. 788-89. https://doi.org/10.1109/CVVPRW50498.2020.00202.

Xiang, Z., Miller, D. J., & Kesidis, G. (2019). A benchmark study of backdoor data poisoning
defenses for deep neural network classifiers and a novel defense. In 2019 IEEE 29th
International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1-6.
https://doi.org/10.1109/MLSP.2019.8918807.

Zhao, B., & Lao, Y. (2022). CLPA: Clean-label poisoning availability attacks using generative
adversarial nets. In Proceedings of the AAAI Conference on Artificial Intelligence, 36(8),
9162-70. https://doi.org/10.1609/aaai.v36i8.20

Nanotechnology Perceptions Vol. 20 No.6 (2024)


https://doi.org/10.1109/MLSP.2019.8918807

