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The rise of machine learning (ML) in the Internet of Things (IoT), both at the 

edge and in the cloud, is driving advancements in areas such as environmental 

monitoring and industrial automation. However, integrating ML in IoT also 

introduces significant security challenges. Adversaries can manipulate sensor 

data to alter training datasets, leading to what is known as poisoning attacks. 

These attacks can embed "backdoors" and "neural trojans" into models, causing 

targeted misclassifications, malicious actions, and significant degradation in 

performance. Using recently advanced provenance frameworks this study 

suggests a methodology for detecting harmful data by using contextual 

information about the handling and origin of data points in the training set. This 

method works both with and without a reliable test set. By relying on accurate 

provenance information, our method can effectively identify and mitigate 

poisoning threats in IoT environments, ensuring the integrity and reliability of 

machine learning systems. 

Keywords: Machine Learning, Internet of things, poison case, smart grid 

model. 

 

 

1. Introduction 

Rapid advancements in machine learning (ML) and its connection to the Internet of Things 

(IoT) have occurred in recent years. These days edge sensors can gather the data needed to 

train machine learning models. These learned models can anticipate events and keep an eye 

on sensor data in real-time causing linked devices to take particular actions. To ensure safety 

an ML model can for instance automatically engage the vehicle's braking system when it 

detects a stop sign. However, deploying ML within IoT frameworks introduces specific 

security vulnerabilities, as malicious actors may exploit the training data by manipulating 

sensors. Poisoning attacks enable adversaries to introduce backdoors and neural trojans, 

provoke intentional misclassification or erroneous behavior, and substantially degrade 

overall system performance. One well-known instance of a poisoning attack that happened 
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outside of the Internet of Things was when Microsoft trained its chatbot Tay to write tweets 

that resembled those of a person. When some individuals started tweeting harsh words, Tay 

responded by sending out tweets that were also offensive [1]. After just sixteen hours, 

Microsoft was compelled to take down the bot. Similar assaults, such as those intended to 

evade environmental control, are conceivable in IoT applications. 

 

Current methods for locating toxic data points concentrate on studying the training set.  But 

provenance data often exists, especially in IoT systems, and this information can help 

identify harmful data points. The term "provenance data" describes the genealogy or meta-

information associated with a data element elucidates the methodologies engaged in its 

creation, provenance, and evolution. This may encompass specifics regaing the apparatus 

that generated the data, including the firmware iteration, user identification, and temporal 

marker. [2] In this study, scholars present a preemptive strategy to detect harmful data. 

before deploying models by utilising data provenance. This technique divides the untrusted 

data into categories based on a high correlation between sample-to-sample poisoning 

likelihood within each group using provenance meta-data. After the training data has been 

suitably divided into segments, the efficacy of the classifier developed with and without that 

specific group is evaluated to determine. the data points in each segment collectively [3]. To 

our knowledge, this approach is the first defence tactic that filters unreliable data metrics and 

mitigates contamination threats through the application of data lineage. 

 

The Method of Probability of Sufficiency (MPS) and Reject on Negative Impact (RONI) 

method are two previous techniques that identify toxic data by assessing how each individual 

data point affects the trained model's performance. These two approaches compare the 

efficacy of the model assessed on a robust data set in order to assess it. This is how our 

system also assesses performance when a reliable data set is provided [4]. However, our 

strategy amplifies the influence of hazardous data and allows for improved detection rates by 

examining all of the segment data collectively. A significant benefit given the massive 

volumes a notable advantage of data gathered across various Internet of Things (IoT) 

contexts is that the detection methodology exhibits enhanced scalability, as it reduces the 

frequency with which the model must undergo retraining to a minimal fraction of the overall 

quantity of unreliable data points. [5]. Ultimately, demonstrating how provenance 

information, a topic overlooked by both RONI and PS, is addressed, allows our method to 

identify toxic data in situations where trusted data is not available. 

The following are the contributions made by this paper:  

1) To develop a generalized supervised learning model suitable for Internet of Things 

contexts, suggest a novel approach for identifying and screening toxic data. 

Specifically, this approach takes advantage of data provenance to find sets of data 

that have a strong correlation in their likelihood of being contaminated [6].  

2) Two versions of our provenance-based defense are offered to address situations 

where datasets that are entirely untrusted and partially trusted are accessible.  

3) Assess our method's performance in identifying toxic data produced by and discover 

that models trained on both fully untrusted and partially trusted data sets perform 

much better when our defense is used as a filter before training.  Further 

demonstrates that, on average, our technique performs faster and more efficiently 
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than RONI [7].  

4) Then, given a partially trustworthy data set, this provides our provenance defense to 

detect toxic data. The next part, will provide an additional methodology to handle 

data that is completely untrusted, talk about potential collaboration and targeted 

assaults, and present ways to protect against them [8]. Afterward, this analyses our 

methods empirically. it wraps up by presenting relevant work. 

 

2. TERMINOLOGY, THREAT MODEL, AND MOTIVATION 

As illustrated in Figure 1, this presents a Provenance-based poison detection service in this 

study. Our method uses provenance information to remove harmful data from IoT 

observations [9]. This leverage recently suggested frameworks to guarantee the immutability 

and incapability of provenance data from IoT contexts to be altered. Smart grids and 

SCADA systems are two further IoT scenarios where adversaries can find it advantageous to 

contaminate an ML model [10]. 

 

This takes into account an opponent in our threat model whose objective is to lower the ML 

model's accuracy. For instance, managers of polluting factories can try to make the classifier 

worthless by drastically lowering its overall performance. As an alternative, they might work 

to prevent the model from learning the negative consequences of a certain chemical, which 

would lower the accuracy for a given input [11]. An antagonist typically can manipulate only 

a limited array of data sources within operational systems; attaining control over all data 

sources may be impractical or excessively costly. For instance, a factory manager is likely 

restricted to altering only the sensors present within their facility excluding those located in 

other establishments. As a result, erroneous data will usually emanate from specific sensors 

and locations. In essence, this contends that the perpetrator can solely amend data elements 

that exhibit unique provenance signatures [12]. 

 
Figure 1: Poison detection service Scenario 

 

3. DEFENSE AGAINST DATA OF LIMITED TRUSTWORTHINESS 

In this discourse, this elucidates a provenance-oriented countermeasure against data 

poisoning in contexts where the acquired information is subject to incomplete trust. By 
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"incomplete trust," this indicates that certain segments of the collected data are accepted as 

reliable and remain uncorrupted. Incomplete trust in training data can be obtained in real-

world circumstances either via trusted sources of data or by hand curation of the collected 

data. To guarantee the accuracy of the information gathered, the regulator might, for 

instance, physically keep an eye on a few sensors [13]. 

 

The technique is independent of the particular supervised machine learning algorithm 

employed and, theoretically, can also be utilized with unsupervised algorithms [14]. To make 

it easier to compare in evaluate the efficacy of the trained models, our analysis is confined to 

supervised learning methodologies. The ensuing inputs are employed in this approach: 

1) a monitored computational learning procedure; 

2) a training dataset characterized by a degree of partial trust is segmented into two 

components, namely a trusted subset and an untrusted subset, gathered with the intent of 

educating the machine learning classifier; 

3) a reliable and reputable provenance dataset that encompasses metadata elucidating the 

provenance and lineage of every data element within the untrusted segment of the training 

dataset; 

 4) a provenance attribute that signifies the manner in which toxic elements will be grouped 

within the unverified segment of the data collection. 

The methodology process is shown in Figure 2 complete with pseudocode using the inputs 

mentioned above. Each erroneous data point in the training set is first linked to its 

provenance record in the process. The untrustworthy dataset is split into segments, each of 

which shares a consistent value for the selected provenance attribute to detect and remove 

potentially harmful data [15]. One way to divide up the dataset would be to use the original 

equipment or location where the data was gathered. Following that classifiers are trained 

with and without each segment to examine it for possible data poisoning. If the segment is 

deemed contaminated and eliminated the classifier that was trained without it (filtered 

model) beats the one that was trained with it (unfiltered model) on the test set.  

 
Figure 2: A Defense Mechanism for Partially Trusted Data  

 

4. PROTECTION OF SEMI-TRUSTED DATA 

In addition, this present a calibration process that attempts to comprehend the impact of 

eliminating a valid section from the training set. This allows us to determine the threshold at 

which the removal of a segment should degrade the classifier's performance before this 
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consider the gadget to be poisonous. The calibration process is carried out through a series of 

trials in which:  

1) A single portion of data is selected at random from the untrusted collection, while a 

distinct portion of validated data is randomly extracted from the trusted collection. 

2) Legitimate data is used both when training classifiers and when not. 

3) The performance disparity on the remaining reliable data points is recorded. 

 

To get a good idea of the distribution for the performance change, the user should try as 

many times as required. The user can select a threshold based on his or her requirements by 

using this estimate. With these circumstances, this suggests repeating the following 

procedure multiple times while evaluating a particular unreliable section. The first randomly 

selected segments range from 10 to twenty. The model is then trained on both the segment 

being evaluated and the segments that were chosen at random. Following the creation of a 

new model utilizing only the randomly chosen segments, the outcomes are compared. This 

process needs to be carried out many times in order to account for the inherent variability in 

the outcomes. A segment is deemed hazardous and eliminated from the dataset if the mean 

performance change exceeds the designated threshold. 

 

5. PROTECTION OF COMPLETELY UNTRUSTED DATA 

However, achieving a partially trusted data collection may be challenging or impossible due 

to the expense of human data verification and real-time constraints that hinder data 

verification. This presents a procedure to apply our strategy to entirely untrusted data sets. 

1) Based on the chosen provenance attribute, divide the data into segments by signature. 

2) Randomly allocate a segment of the data to the training set while designating the 

remaining segment to the evaluation set for each section. 

For every signature in the chosen provenance feature, perform to develop two distinct 

models, the first model will utilize the entirety of the training dataset, while the second 

model will be constructed by excluding the relevant segment from the training dataset. 

 

5.1 Targeted Attacks 

The previous method prevented compromised devices A and B from directly influencing the 

evaluation of their data points. However, compromised devices can collude by inserting 

elements into the evaluation set that conceal compromised status. Device B can also add data 

points that facilitate the identification of compromised but authentic devices. False Negative 

Attacks occur when device A adds data points to the decision boundary, while device B adds 

points between the original and updated decision boundaries. The model trained without data 

from device A will be less accurate, as points from device B are wrongly classified, giving 

the false impression that despite being harmful, device A supplied valid data. False Positive 

Attacks occur when device B places points slightly outside the decision boundary and farther 

away from the true boundary, producing false positives. 

 

5.2 Experimental Evaluation 

This produced a model to evaluate our strategy that is trained using data points from 

numerous devices in the Internet of Things. The production of poison involves two different 

methods that have been previously suggested in the literature. The goal of both mechanisms 
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is to support vector machines (SVMs). For each type of toxin, this adhered to the protocol 

below.  

 

Initially, the quantity of devices within the system was ascertained and the pertinent 

poisoning process was employed to produce legitimate and hazardous data points. To 

generate provenance data for each data point the number of contributing data points for each 

device was the same. Two defenses, RONI and RONI with calibration, were used to compare 

our method. Since that performed better, this solely presents the Calibrated RONI findings 

and utilizes it as a baseline1. This utilized the same size for the trustworthy set in order to 

compare the two approaches. As a result, the calibration, validation, and baseline portions of 

the trusted set utilized for the Calibrated RONI are divided. 

 

Furthermore, this constructed a separate, autonomous testing dataset comprising 5,000 

genuine data instances that were designated explicitly for benchmarking purposes. This 

assessed the accuracy of four distinct models utilizing this benchmarking dataset: the optimal 

detection model, which was exclusively trained on authentic data instances; the no-defense 

model, which incorporated all data instances submitted to the system; and the provenance 

defense model, which was developed subsequent to the exclusion of data instances identified 

as harmful by our defense mechanisms. 

 

Thereafter, this categorized an untrusted segment as harmful if the performance deviation 

observed during the calibration trials surpassed the average value plus one standard 

deviation. Naturally, this threshold can be adjusted to enhance recall at the potential 

detriment to precision or vice versa. An alternative approach involves employing a cross-

validation dataset to optimize this parameter. Ultimately, the user may also perform 

statistical analyses to corroborate the assertion that an untrusted segment is authentic if they 

can replicate the performance change distribution observed in the calibration trials. The 

generated distribution alongside a p-value could then be utilized to refine the threshold 

parameter. 

 

5.3 Potency in the presence of poison I 

This study's synthetic dataset and methodology which also used to assess our defense against 

the poisoning attack. There are two features and two different classes in the dataset. The 

numbers displayed are based on the average outcomes that were determined. 

 

5.4 Impact of a trusted set size in contexts with partial trust 

In this experiment, the total number of legitimate training instances is 1000, whereas the 

aggregate of detrimental training instances amounts to 200. There were merely two and 10 

devices in total honest and dishonest, respectively. Figure 3 illustrates the findings, which 

indicate that to observe a notable enhancement over the absence of a defense mechanism, the 

provenance defense mandates a minimum of 100 data points within the trusted dataset. It 

reaches an accuracy that closely approximates perfect detection by the time 380 data points 

are utilized. The provenance defense consistently outperforms the baseline. 
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Figure 3: Influence of augmenting the dimensions of the reliable subset on the mean 

precision attained in the context of poison I 

 

5.5 Impact of increasing poison concentration 

The effect of developing the poison concentration in the untrusted group was examined in 

this experiment. With the combined contribution of 10 devices, each contributing 100 data 

points 1000 training points were obtained. The amount of poison added in each trial was then 

adjusted by changing the number of compromised devices from 1 to 7. There was a 300-data 

point limit on the reliable dataset. Figure 4 illustrates the results, showing that even as the 

proportion of poisoned data nears 70%, our approach consistently improves the final 

classifier's performance and generally outperforms the baseline. 

 
Figure 4:  accuracy percentage under poison I. 

 

Runtime: This assertion is valid despite the fact that both the provenance technique and the 

foundational approach possess the capacity for parallel processing. As a result, the 

foundational framework would necessitate O(m) times additional resources, encompassing 

memory and CPU cores, even in scenarios of complete parallelization. Furthermore, it is 

anticipated that the computation time will be O(m) times prolonged in a non-parallelized 

framework. This corroborate this through empirical data obtained from our previous 

experiment, in which this assessed the time intervals required to filter data sets of diverse 

sizes utilizing both the provenance and foundational strategies, while maintaining a constant 

number of devices. The outcomes are depicted in Figure 5. Our results suggest that our 
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approach is more appropriate for the extensive data sets typical of Internet of Things 

applications, as the provenance strategy exhibits a notable speed advantage relative to the 

foundational methodology. 

 
Figure 5: Mean execution duration for semi-trusted techniques as a variable of the quantity 

of training data instances. 

 

5.6 Effectiveness Under Poison II 

The evaluation tested the defense mechanisms against harmful data, focusing on a specific 

attack vector incorporated into a Support Vector Machine (SVM) using gradient ascent. The 

figures represent the average results from five experimental iterations. In these experiments, 

there were only two devices in total—one honest and one compromised. The total number of 

training data points was 120, with 20 being harmful. The reliable dataset consisted of 120 

points, unless noted otherwise. This methodology aims to gauge how well our defense can 

handle such targeted poisoning attacks. 

 

5.7 Impact of a trusted set size in contexts with partial trust 

The impact of raising the trusted set size while maintaining the same values for the other 

parameters is seen in Figure 6. The provenance defence significantly enhances the final 

classifier's performance, even at 90 data points. By contrast, before the baseline can 

outperform no defence, at least 120 data points are required. Our provenance method's 

capacity to increase model accuracy has converged to the point where it performs almost as 

good as perfect detection after 150 data points. 

 
Figure 6: The impact of increasing the size of the trusted set on the average accuracy  
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Impact of poisoning percentage in totally untrusted environments: The evaluation set may 

contain toxic data in completely untrusted situations. Therefore, only a small percentage of 

the gathered data must be toxic for our approach to be able to identify toxic data. In this 

experiment, this measure how well our approach filters toxic data as the untrusted data set 

gets progressively more toxic. 

 

This are unable to use Calibrated RONI as a baseline in completely untrusted situations 

because it depends on a trustworthy set. Rather, this contrast our approach with both no 

defence and flawless detection. The results of adding more poison in a completely untrusted 

context are seen in Figure 7. This are able to successfully improve the final classifier's 

performance when fewer than 25% of the data is contaminated. Nevertheless, our technique 

can no longer outperform no defence if 25% of the data is tainted. 

 
Figure 7: Fully untrusted defense under poison II 

  

6. CONCLUSION 

The integration of machine learning in IoT environments, where data is dynamically 

collected and learned from online, makes these systems highly vulnerable to poisoning 

attacks. Despite extensive documentation of such vulnerabilities, effective countermeasures 

are scarce. This study presents a groundbreaking method for detecting and filtering toxic 

data using data provenance, which tracks the origin and history of data points. This novel 

approach represents the first use of data provenance to counteract poisoning attacks. It 
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explores potential weaknesses, including collusion attacks, and proposes solutions for 

completely untrusted scenarios. Testing with two established poisoning techniques shows 

that this provenance-based defense outperforms baseline methods in both detection accuracy 

and runtime efficiency. 
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Abbreviation 

ML - Machine Learning 

IoT - Internet of Things 

RONI - Reject Negative Impact 

PS - Probability of Sufficiency 

PUF - Physical Unclonable Functions 

EPA - Environmental Protection Agency 
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