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With an emphasis on COVID-19 identification and classification from chest CT and MRI images, 

this research offers a comparative comparison of deep learning algorithms. We use PyTorch and 

Google Colab to build models like Inception-v3, ResNet-50, VGG-16, 3D-CNN, VGG-19, and 

DenseNet-169. Our suggested models beat state-of-the-art designs in computing efficiency, 

sensitivity, accuracy, and F1-score by using MRI and CT images. More specifically, 98.6% 

accuracy was attained by the VGG-19 model and 98% by the 3D-CNN model. By highlighting the 

possibilities of deep learning to improve radiological diagnoses, this study helps forward the 

creation of efficient and practical diagnostic tools for COVID-19.  

Keywords: COVID-19 detection, CNN models, CT scans, MRI imaging, VGG-19, 3D-CNN, 

ResNet-50, Inception-v3, deep learning, medical image analysis. 

 

 

1. Introduction 

As a direct consequence of the COVID-19 pandemic, there is an immediate and pressing need 

for trustworthy diagnostic instruments. Imaging technologies such as magnetic resonance 

imaging (MRI) and computed tomography (CT) of the chest have become valuable diagnostic 

tools, especially in regions with limited resources. This is despite the fact that real-time 

polymerase chain reaction (RT-PCR) is still the method of choice. The ability to automatically 

recognise COVID-19 in x-ray images has been made possible by robots that have been taught 

using convolutional neural networks (CNNs) and other deep learning models. The purpose of 

this study is to find COVID-19 by comparing and contrasting a number of CNN architectures, 

including VGG-19, 3D-CNN, and other cutting-edge models. 

1.1 Implementation 

Using PyTorch and Google Collab, we have developed our models, including the first 

suggested model (VGG-19) and the second (3D-CNN). “The following components were used 

in the system implementation: Windows 10 Home 64-bit English operating system, 16GB 

DDR4 3200MHz RAM, AMD Ryzen R7 5800H (8-Core, 20MB Total Cache, up to 4.4GHz 

Max Boost Clock) CPU, and NVIDIA® GeForce RTXTM 3060 6GB GDDR6 GPU. 

http://www.nano-ntp.com/


                                                             A Comparative Analysis of CNN-Based… Kirtika et al. 2254  
 

Nanotechnology Perceptions Vol. 20 No. S13 (2024) 

Performance Measures 

We tested our first two models, VGG19 and 3D-CNN, using the metrics provided in Table 1. 

Table 1 - Performance Measures 

Measures Measures Description 

 

 

 

 

Confusion Matrix 

True Positives (TP): There are situations in which we have forecast yes (they have the 

disease) 

True Negatives (TN):we have projected no, and they have no illness  

False Positives (FP): We expected yes, yet currently they don't have the disorder. (Also 

called a 'Mistake Type I.') 

False Negatives (FN): We have expected no, however  the  disorder  is  indeed.  

(Alternatively referred to as “Type II error”) 

Accuracy (TP + FN)/ (TP + TN+ FP + FN) 

Sensitivity TP/ (TP + FN) 

Specificity TN/ (TN + FP) 

Precision TP/ (TP + FP) 

F1-Score 2* (Precision * Recall)/ (Precision + Recall) 

Recall TP/ (TP + FN) 

Algorithm Complexity It is the measure of how long an algorithm would take to 

complete given an input of size n. 

Computational Time It is the length of time required to perform a computational process. 

Memory Utilization It is the average utilization derived from the percent of 

available memory in use at a given moment.” 

 

2. Existing Models 

VGG-16, an abbreviation for "visual geometry group 16 convolutional neural network," was 

fed the input pictures on a 150 x 150 x 3 scale. The system has five blocks and nineteen levels. 

There are three or five layers overall, and five layers in every block, culminating in a soft-max 

and an FC layer that is fully related. Additionally, we used a sigmoid layer to improve the soft-

max layer's binary classification capabilities. Our goal in creating this model was to find a way 

to keep the learning rate parameter at 2e - 5 for 30 epochs (RMSPROP).Additionally, we have 

used the same format to train the picture expansion for 100 epochs. Karen Simonyan et al. 

(2015) from the Visual Geometry Team at Oxford University introduced VGG Net, a widely 

used Deep CNN architecture, at ILSVRC 2014 for object localization and classification 

challenges, where it placed first and second, respectively. The underlying assumption of this 

engineering was that Computer Vision tasks might be completed more accurately by 

increasing the CNN designs' depth and replacing large sections with multiple smaller ones. In 

the realm of clinical imaging in particular, variants of VGG Net are still used extensively for 

some Computer Vision tasks involving the extraction of deep picture characteristics for further 

processing. The architecture of VGG-16 is shown in Figure 1. 
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Figure 1 Architecture of VGG-16 

Inception-v3: The image goal was kept at 224:224:3 using Inception V3. Layer 1 (L1) was 

introduced with 1000 neurons and layer 2 (L2) with 500 neurons, both of which were tightly 

regulated at 0.01. Also, 224 pp224 pp3 remained the ResNet-50 aim. Fifty layers of it were 

dropping. There was no top layer in this model. To address the issue of drastic changes to the 

field of the viable image's critical components, the main concept behind Inception-V3 designs 

has been to "extend" the network by allowing it to include diverse sorts of components at the 

same stage. This shared level of thinking across different parts is being picked up by the so-

called Initiation modules. According to Google.net, this central idea proposed the core 

Inception-V1. After that, models Inception-V2 and Inception-V3 were introduced; these 

improved upon the Inception-V1 engineering framework by adding bunch criteria for 

assistant's groupings and parts factorization, respectively, and thus resolved the main issues 

with illustrated bottleneck and assistant classifications. For ILSVRC 2015, this InceptionV3 

model was the pioneer. Figure 2 Shows the Inception V3 Architecture. 

 

Figure 2 Architecture of Inception v3 
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Res-Net: By using known "shortcuts," residual neural networks are able to bypass certain ANN 

layers. They do this by mimicking well-known structures seen in pyramidal cells of the 

cerebral cortex while making use of skip connections or shortcuts. The majority of ResNet 

models use batch normalisation between layers that include nonlinearities (ReLU) and double 

or triple-layer skips. To learn the skip weights, one may utilise what are called Highway Net 

models, which employ an extra weight matrix. Plain networks, which are often used in residual 

neural networks, are an example of non-residual networks. Avoiding the vanishing gradients 

issue or mitigating the degradation (saturation) problem—where adding layers to a suitably 

deep model increases training error—are the two primary motivations for adding skip 

connections. Training a sharing network with just upstream layer weights updated is a frequent 

practice, but keeping the upstream layer weights unchanged is also an option. At its most basic, 

training only involves modifying the upstream layer's weights. Depending on the case, we may 

have to traverse only one nonlinear layer or encounter just linear intermediate levels. An 

explicit weight matrix (a Highway Net) should be learned in the event that the intermediate 

layers are non-linear. Skipping basically streamlines the network by using fewer levels in the 

beginning phases, hence lowering the amount of layers to be transmitted. As a result, vanishing 

gradient propagation is mitigated as fewer layers are needed. The network progressively adds 

back the layers that were skipped as it gains knowledge of the feature space. By the time 

training is almost complete and all layers have been stretched, the network is learning quicker 

since it remains closer to the manifold. In order to learn more efficiently and quickly, the 

network progressively recovers the skipped levels. The network returns to the original 

manifold when training nears completion, even after all layers have been enlarged. Eliminating 

leftover components from neural networks allows for a more thorough exploration of a feature 

space. The Res Net Architecture is Shown in Figure 3. Because of this, it is more likely to be 

removed off the manifold by disturbances. It needs more training data to get back on its feet. 

 

Figure 3 Architecture of Res Net 

Google-Net: In 2014, Google Research (in partnership with other institutions) released a study 

titled "Going deeper with convolutions" that suggested a new architecture called Google Net, 

also known as Inception V1. The ILSVRC 2014 picture categorization competition have 

selected this design. Compared to Alex Net and ZF-Net, the winners of ILSVRC 2012 and 

2013, as well as VGG, the runner-up of ILSVRC 2014, its error rate is much lower. The 1×1 

convolution and global average pooling used by this design constitute a crucial component. 

Khan et al. (2020) is one of the recent papers on malware detection; in it, the authors employ 

two separate algorithms to find the unusual or novel malware. 
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Our team looked into and evaluated the Res Net and Google Net models, which are derived 

from separate platforms: Res Net by Microsoft and Google Net by Google. Two kinds of 

datasets are used for training and model verification. A collection of 10,868 binary records 

obtained from Microsoft is one dataset. Additionally, those records are divided into nine 

categories. There are three thousand innocuous files in the second dataset, which is called the 

considerate dataset. Originally saved as EXE files, they underwent a series of transformations, 

including being transformed to op-codes and finally to pictures. They achieved an accuracy 

rate of 74.5 percent with Google Net and 86.3 percent with Res Net. Their new method for 

malware identification, “IMCFN (Image-based Malware Classification using Fine-tuned 

convolution Neural Network Architecture), is built on a CNN-based deep learning 

architecture. Google Net's Architecture Is Shown in Figure 4.” 

 

Figure 4 Architecture of Google Net 

Alex-Net: Traditional convolutional neural networks are what Alex Net models are. It is 

constructed using thick layers, maximum pooling, and convolutions. Next, the model is fitted 

using grouped convolutions on two GPUs. The following is a synopsis of several current 

malware detection initiatives; as a result, Alex Net has decided to use a data-driven, Deep 

Learning method to malware detection rather than one that relies on domain expertise. By 

comparing the time it takes to produce and infer models with their predictions, we were able 

to determine which convolutional neural networks—including Res Net, Inception, Dense Net, 

VGG, and Alex Net—were most effective at detecting malware. Figure 5 Shows the Alex Net 

Architecture. 

 

Figure 5 Architecture of Alex Net 

Ensemble-Learning: Combining several models, such classifiers or experts, to address a 
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specific issue is what computational intelligence is all about. An ensemble-based system 

integrates many models, or classifiers, to enhance prediction, classification, function 

approximation, and other related tasks. Ensemble systems or multiple classifier systems are 

common names for this kind of setup. In this chapter, we'll look at many examples of why an 

ensemble-based system may be statistically beneficial. We utilise this strategy all the time in 

our everyday lives by consulting several experts before reaching a choice, thus it seems sense 

to examine the psychological context of this otherwise statistically solid argument in order to 

better understand the usage of multiple classifier systems. Example: before consenting to a 

medical operation, we usually get many physicians' opinions; before buying anything, 

especially anything costly, we read user reviews; before employing someone, we check 

references; etc. This article, like all others, goes through a rigorous review process before 

being published. Subsequently, a consensus is reached by integrating the insights of several 

specialists. So, the main objective is to lessen the chances of picking an incompetent person, 

an unnecessary medical treatment, an inferior product, or even badly written articles.) Model 

performance. Ensemble Learning's Architecture is Displayed in Figure 6. 

 

Figure 6 Architecture of Ensemble Learning 

Normal-CNN: One common artificial neural network (ANN) in deep learning for image 

analysis is the convolutional neural network (CNN, often spelt "ConvNet"). When it comes to 

convolution filters, ConvNets are also known as shift-invariant or spatially invariant neural 

networks (SIANNs). These networks employ shared weights to iteratively process input 

features and generate feature maps, which are responses that are translation-equivariant. 

Rather of being invariant, as is commonly believed, convolutional neural networks are 

equivariant when it comes to translation. The following capabilities are possessed by these 

systems: video and image “recognition, recommender systems, image classification and 

segmentation, medical image analysis, financial time series analysis, natural language 

processing, and more. Convolutional neural networks (CNNs) are improved hybrids of 

multilayer perceptrons. Typical implementations of this perceptron style use fully connected 
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networks, whereby all neurons in a given layer are linked to all neurons in the layer above it. 

Since it has "full connectivity," the perceptron may easily overfit. Penalising parameters 

during training (such as weight decay) or trimming connectivity (skipping connections, 

dropouts, etc.) is a common method for regularising or avoiding over fitting.” CNNs use a 

distinct method for regularisation: They build more sophisticated pattern sets by embossing 

tiny, basic patterns into their filters, capitalising on hierarchical trends in data. Therefore, when 

it comes to complexity and connectedness, CNNs are on the lower end of the spectrum. Since 

convolutional networks' connection patterns resemble those of the human visual cortex, they 

are designed to mimic biological processes. The receptive field is a limited area of the visual 

field where each cortical neuron may receive and process data. The whole visual area is 

covered because the receptive fields of different neurons partly overlap. Unlike more 

conventional image classification methods, convolutional neural networks (CNNs) may 

optimise their filters (or kernels) via automatic learning with little pre-processing. This lack of 

dependency on human expertise and involvement is a huge boon to feature extraction. You 

can see the normal CNN architecture in Figure 7. 

 

Figure 7 Architecture of Normal CNN 

 

3. Performance Analysis of Computed Tomography Using CNN-Models 

The routine application of Deep Convolutional Neural Network (CNN) models has been 

shown by recent advancements in Deep Learning, especially in diagnostic imaging. We 

suggest making predictions about a patient's prognosis using models of Convolutional Neural 

Networks. Using certain critical groups and test assessments, we may detect COVID-19 

instances from chest-CT scans and determine whether the patient is impacted or not. The 

model predicts that the patient will remain out of the impacted regions if they test positive. 

Tables 2–6 provide the sample models we employed, which include VGG-19, Inception-V3, 

ResNet-50, DenseNet-169, and VGG-16. A These models provide detailed information on 

people infected with the Corona virus, allowing doctors to identify the source of the illness. 

Our model is unique from other top-tier models, such as VGG-16 DensNet-169, Resnet-50, 

and Inception-V3, and our main focus is to draw out a non-COVID-19/COVID-19 detection.  
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Figure 8 COVID-19 Prediction Using CNN Models for CT Images 

Table 2 - Performance Measures of Confusion Matrix for VGG-16 
Actual Predicted Negative Predicted Positive 

Negative 159 2 

Positive 3 36 

Table 3 - Performance Measures of Confusion Matrix for Inception V3 
Actual Predicted Negative Predicted Positive 

Negative 154 7 

Positive 35 4 

Table 4 - Performance Measures of Confusion Matrix for Dense Net 169 
Actual Predicted Negative Predicted Positive 

Negative 153 2 

Positive 3 31 

“Table 5 - Performance Measures of Confusion Matrix for ResNet50 
Actual Predicted Negative Predicted Positive 

Negative 157 4 

Positive 23 16 

Table 6 - Performance Measures of Confusion Matrix for VGG-19 
Actual Predicted Negative Predicted Positive 

Negative 160 1 

Positive 1 41 
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Table 7 - Comparison of Models with Parameters Such as Accuracy, Specificity, Sensitivity, 

F1 – Score, Precision and Recall. 
Models Accuracy Sensitivity Specificity F1-Score Precision Recall 

VGG-16 0.96 0.92 0.95 0.93 0.93 0.94 

Inception-v3 0.79 0.10 0.95 0.17 0.26 0.16 

DenseNet-169 0.90 0.80 0.85 0.83 0.80 0.81 

RensNet-50 0.86 0.41 0.97 0.54 0.80 0.80 

VGG- 

19(ours) 

0.986 0.97 0.99 0.97 0.97 0.7 

 

Figure 9 Comparative Analyses of Overall Measures 

 

4. Performance Analysis of Magnetic Resonance Imaging Using CNN-Models 

This research presents a new automated method for categorising chest MRI images to 

differentiate between positive and negative COVID-19 instances, which is based on Deep 

Convolutional Neural Networks (CNNs).” One area where the potential of employing Deep 

CNN structures has been shown is in clinical imaging. We begin by providing a thorough 

evaluation of baseline models. Tables 8–13 illustrate the baselines used, which include VGG-

16, Inception-V3, ResNet-50, Xception, VGG-19, and 3D-CNN. In order to identify the area 

of injury in individuals affected by the Coronavirus, these models provide accurate results. We 

compare our model to other state-of-the-art models including VGG-16 DensNet-169, Resnet-

50, and Inception-V3, and our main goal is to construct a Non-COVID-19/COVID-19 

grouping. Table 14 shows that 3D-CNN outperforms all other techniques when evaluated 

using metrics like accuracy, sensitivity, F-measures, and precision. Figure 10 displays 

COVID-19 predictions made using CNN models for MRI, and Figure 11 displays comparative 
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analyses of overall measures. 

 

Figure 10 COVID-19 Prediction Using CNN models for MRI Images 

Table 8 - Performance Measures of Confusion Matrix for VGG-16 

Actual Predicted Negative Predicted Positive 

Negative 59 12 

Positive 20 142 

Table 9 - Performance Measures of Confusion Matrix for VGG-19 

Actual Predicted Negative Predicted Positive 

Negative 43 21 

Positive 28 136 

Table 10 - Performance Measures of Confusion Matrix for Inception V3 

Actual Predicted Negative Predicted Positive 

Negative 30 38 

Positive 38 120 

Table 11 - Performance Measures of Confusion Matrix for ResNet 50 

Actual Predicted Negative Predicted Positive 



2263 Kirtika et al. A Comparative Analysis of CNN-Based...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S13 (2024) 

Negative 41 27 

Positive 25 132 

Table 12 - Performance Measures of Confusion Matrix for Model-5 

Actual Predicted Negative Predicted Positive 

Negative 70 5 

Positive 7 149 

Table 13 - Performance Measures of Confusion Matrix for 3D-CNN 

Actual Predicted Negative Predicted Positive 

Negative 30 1 

Positive 1 160 

Table 14 - Comparison of Models with Parameters Such as Accuracy, Precision, F-Measure 

and Sensitivity 

Classification Methods Accuracy Sensitivity Precision F-Measure 

VGG-16 91 91.78 94.7 93.71 

VGG-19 71 81.59 82.6 82.09 

Inception-V3 69 78.08 79.17 78.62 

ResNet-50 82 86.6 89.04 87.84 

Model-5 95 977 97.14 96.45 

3D-CNN (Ours) 98 98.5 96.5 98.5 

 

Figure 11 Comparative Analyses of Overall Measures 
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5. Performance Analysis with other Models 

In section 2, we compare the models mentioned with the performance metrics given in section 

1.1 to our suggested models, such as proposed model 1 (VGG-19) and proposed model 2 (3D-

CNN). Table 15 compares our models' accuracy, sensitivity, and specificity scores to those of 

state-of-the-art models. Figures 12, 13, and 14 show the results of a comparison of the models' 

sensitivity, specificity, and accuracy, respectively. Model Comparison for Accuracy, 

Specificity, and Sensitivity (Figure 15), The sensitivity to changes in both accuracy and 

specificity is shown in Table 1 Models with varying degrees of accuracy and sensitivity are 

compared in Figure 16. The accuracy and sensitivity of the models are compared in Figure 17. 

“Table 15 - Comparison of Models with Parameters such as Accuracy, Specificity and 

Sensitivity 

Models Accuracy (%) Specificity (%) Sensitivity (%) 

VGG-16 96 95 92 

Alex Net 81 86 90 

Google Net 85 89 93 

Normal CNN 92 90 84 

Inception v3 79.12 725 83 

Res Net 86 93 95 

Ensemble Learning 87 92 75 

Proposed Model 1 (VGG19) 98.6 99 97 

Proposed model 2 (3D-CNN) 98 98.20 98.5 

 

Figure 12 Comparison of Models with Accuracy 
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Figure 13 Comparison of Models with Specificity 

 

Figure 14 Comparison of Models with Sensitivity 

 

Figure 15 Comparison of Models with Accuracy, Specificity and Sensitivity 
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Figure 16 Comparison of Models with Accuracy and Specificity 

 

Figure 17 Comparison of Models with Accuracy and Sensitivity 

Table 16 displays the results of comparing different models using parameters like recall, 

precision, and F1-score. Figures 18, 19, and 20 demonstrate F1-score, recall, and precision 

comparisons of different models. Model Comparisons with Precision, F1 Score, and Recall, 

as shown in Figure 21. 

Table 16 - Comparison of Various Models with Parameters F1-Score, Precision and Recall 
Models F1-Score Precision (%) Recall (%) 

VGG-16 0.93 94.7 94.10 

Alex Net 0.17 82.6 46.25 

Google Net 0.83 79.17 81.25 

Normal CNN 0.54 89.04 80 

Inception v3 0.65 97.14 86.12 

Res Net 0.751 62 88.22 
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Ensemble Learning 0.91 88.88 68.25 

Proposed Model 1 (VGG19) 0.97 97 785 

Proposed model 2 (3D-CNN) 0.985 96.50 925 

 

Figure 18 Comparison of Various Models with F1-Score 

 

Figure 19 Comparison of Various Models with Precision 
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Figure 20 Comparison of Various Models with Recall 

 

Figure 21 Comparison of Various Models with Precision, Recall and F1-Score 

Models are compared in Figures 22, 23, and 24 according to the amount of time it takes to 

compute, the complexity of the method, and the amount of memory used, respectively. In 

Table 17, we can see how different models stack up in terms of memory use, computational 

time, and algorithm complexity for the parameters. 
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Table 17 - Comparison of Various Models with Parameters Algorithm Complexity, 

Computational Time and Memory Utilization. 
Models Algorithm Complexity Computational Time 

(sec) 
Memory Utilization (%) 

VGG-16 10.25 297.12 78.55 

Alex Net 12.85 6621 84.25 

Google Net 14.01 799.4 60.75 

Normal CNN 13.20 297.31 865 

Inception v3 9.24 768.21 620 

Res Net 11.85 4704 81.25 

Ensemble Learning 12.02 576.38 721 

Proposed Model 1 (VGG19) 6.10 193.39 40.25 

Proposed Model 2 (3D-CNN) 6.22 91.75 425 

 

Figure 22 Comparison of Various Models with Algorithm complexity 

 

Figure 23 Comparison of Various Models with Computational Time 
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Figure 24 Comparison of Various models with Memory Utilization” 

 

6. Conclusion 

This paper presents a comprehensive comparative analysis of CNN-based deep learning 

models, focusing on the detection and classification of COVID-19 using chest CT and MRI 

images. Through the implementation of various architectures, including VGG-19, 3D-CNN, 

ResNet-50, DenseNet-169, and Inception-V3, we demonstrated the effectiveness of these 

models in enhancing diagnostic accuracy for COVID-19. VGG-19 and 3D-CNN emerged as 

the top-performing models, with accuracies of 98.6% and 98%, respectively, outperforming 

several state-of-the-art architectures. Our results highlight the potential of deep learning in 

medical imaging, especially in resource-constrained environments where rapid and accurate 

COVID-19 detection is critical. The proposed models also excelled in sensitivity, specificity, 

and F1-score metrics, showcasing their robustness in handling diverse image datasets. 

Furthermore, the computational efficiency of the models, evaluated in terms of memory 

utilization and computational time, suggests practical applicability in real-world clinical 

settings. These findings underscore the importance of leveraging advanced deep learning 

techniques in medical diagnostics, not only for COVID-19 but also for broader applications in 

disease detection through imaging. This research contributes to the ongoing development of 

AI-driven diagnostic tools, providing a foundation for further exploration and refinement of 

CNN models in healthcare. 
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