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Optimization consists in choosing the best of all possible options for 

implementing high-speed grinding technology. A complete enumeration of all 

options may turn out to be inefficient or practically impossible. Therefore, to 

solve such a problem, we should apply fundamental mathematical results and 

numerical methods of optimization theory, which allow choosing the best 

option without directly checking all possible solutions. Such a choice is realized 

by means of calculations carried out using special algorithms and is practically 

impossible without the use of computer technology. 
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1. Introduction 

The results of dynamic 3D modeling of high-speed diamond grinding processes allow to 

solve the following problems: at the design stage - calculation of the tool design for certain 

processing modes; at the manufacturing stage - determination of rational conditions for 

sintering the diamond-bearing layer of the wheel; at the stage of application - the theoretical 

determination of processing productivity, specific consumption of diamond grains. The 

solution of these problems allows significantly increase the efficiency of processing during 

high-speed grinding. (Fig.1) 
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Fig. 1 Structural diagram of the study 

However, the industrial implementation of these results requires constant problem solving, 

which requires the presence of a team of highly qualified experts capable of performing 

complex calculations and processing their results.[1] Given this circumstance, the industrial 

implementation of the results of dynamic 3D modeling of high-speed diamond grinding 

processes can be effectively carried out using expert systems that allow solving problem 

situations based on optimizing the manufacturing conditions and operating modes of 

diamond wheels. 

The efficiency of using super hard materials (SHM) grinding wheels is determined, first of 

all, by the productivity of the process and the quality of parts processing. In our opinion, the 

decisive factor in improving the efficiency of diamond-abrasive tools is the use of 

scientifically based grinding regimes, which also make it possible to significantly increase 

processing productivity and reduce the specific consumption of diamonds in a wheel (this 

becomes especially important when sharpening tools from SHM).[1] 

Since the processing of synthetic diamonds is accompanied by low productivity and high 

values of the specific consumption of diamond wheels, the utilization rate of diamond grains 

in these processes does not exceed 5-10%. The use of synthetic diamonds as a blade tool 

requires their sharpening and finishing. The use of high-speed grinding is especially 

important for the processing of superhard materials, since at significant processing speeds, 

not only productivity increases, but also the accuracy of tool sharpening. This is due to the 

high impact speeds of the grains on a comparable, or the same hardness, workpiece material 

and the formation of micro-edges on the cutting grains.[1] 

 

2. Research methodology   

To apply the methods of optimization theory, it is necessary to propose a correct formulation 

of the problem and choose the most appropriate method for its numerical solution. The 

correct formulation of the optimization problem [2] necessarily includes: determination of 

the boundaries of the system; the formulation of the characteristic criterion, the choice of 
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independent variables, the construction of a model of the system. The choice of a method for 

solving an optimization problem is determined taking into account the peculiarities of its 

mathematical formulation.[3] 

As applied to high-speed diamond grinding, the above scheme for solving optimization 

problems takes the following form. The boundary of the object under study separates this 

object from other objects interacting with it and allows you to separate the characteristics 

(object parameters into external and internal). When considering the problems of 

optimization of high-speed grinding, the boundary of the object under study is chosen by the 

content of the problem under consideration. The boundary of the object under study can be 

determined by the spatial area of the cutting tool when solving problems of choosing the 

optimal characteristics of diamond wheels at the stage of their design and manufacture. 

When solving problems of optimizing high-speed grinding processes using available cutting 

tools, taking into account the characteristics of the material being processed, the boundary of 

the object under study can be determined by the area covering the processing diamond grain 

with the material being processed around their contact interaction. 

Based on the features of synthetic diamond as a tool material[1, 4], as well as the processes 

of shaping tools based on them, a methodological approach to research was determined 

based on the widespread use of 3D modeling of the processing process in conjunction with 

the experimental data obtained to assess the adequacy of the models. All elements of the 

studied systems (diamond grain, metal phase, binder, coating of diamond grains) and 

processing conditions are considered in interaction. Dynamic 3D modeling is used to 

determine the performance parameters and consider the processes of destruction of diamond 

grains and a binder during high-speed grinding. 

To implement the tasks of studying deformation in the grinding zone, the calculation systems 

ANSYS, LS-DYNA, CosmosWorks, Abaqus were used. The construction of 3D models was 

used by the system of automation of design work (CAD) in three dimensions SolidWorks 

(Fig. 2) 

 
Fig. 2 Simulation of high-speed grinding process at macro and micro levels 
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Using the experiment planning technique [5, 6], preliminary results were obtained for the 

values of the characteristic function, which can be optimized (Fig. 3) 

 

 
Fig. 3 - Examples of constructing the characteristic function of the process of high-speed 

diamond grinding using the FEM: a - minimum at a stationary point, b - saddle stationary 

point 

The tasks of optimizing the processes of SHM high-speed grinding shows that such a 

function (Fig. 3) can be quite accurately represented by approximation in the form of a 

quadratic function (1), which in the general case of n independent variables (factors) is 

written as follows[7, 8]: 

1
2

0

1 1 1 1

n n n n

i i ij i j ii i

i i j i i

Y b b X b X X b X
−

= = = + =

= + + +  
                                                 (1) 

To solve the problem of finding the minimum and maximum of a function using a computer, 

it is advisable to represent the quadratic function (1) of independent variables n in matrix-

vector form as follows[9]: 

         0

1

2

T T
Y X A X B X B= + +

                                               (2) 

where  A  - given matrix of numerical coefficients,  B  - given vector of numerical 

coefficients, 0B  - specified numerical factor. 

Matrix  A , vector  B  and numerical factors 0B  of matrix-vector form (2) corresponding to 

the quadratic function (1) are written as follows[10]: 
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For the characteristic function (2), the stationary condition is written as follows: 

    A X B=
                                                               (4) 

The minimum and maximum conditions for function (2) take the following form, 

respectively: 

    0X A X 
,                                                                           (5) 

    0X A X 
,                                                                           (6) 

 

3. Maximizing the performance of high-speed SHM diamond grinding 

The production process is primarily characterized by its productivity. The main goal when 

using high-speed grinding processes is to increase the productivity of the process, this is 

especially true when processing superhard materials, since the hardness of the workpiece is 

comparable or the same as the hardness of the machining tool. 

In accordance with the initial data obtained from the results of 3D modeling (simulation 

analysis in Fig.2 and Fig. 3), the matrix [A] and the vector {B} from expression (3) are 

presented as: 

 

    0

7,66 0,001 0,01 0,001 0,02

0,001 6,5 0,02 0,06 0,07
, , 55,91
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As a result of solving the system (7), a stationary point Xstat was obtained: 

 

-2.24194024298796E-0003

9.70029544277527E-0003
, 5.3025585390789573E+001

2.81441311184647E-0001

-2.20249223085138E-0002

stat statX Y

 
 
 

= = 
 
                  (8) 

where Хstat - vector of coordinates of the stationary point of the function, Ystat - the value of the 

characteristic function (1) at a stationary point. 

The maximum value of the characteristic function at the boundary points is calculated and 

presented as: 

 



85 A.G. Mamalis et al. Algorithmic Foundations of Optimization using Finite Element...                                            
 

Nanotechnology Perceptions Vol. 20 No.1 (2024) 

boumd

1.00000000000000E+0000

1.00000000000000E+0000
, 3.4257999999999996E+001

-1.00000000000000E+0000

1.00000000000000E+0000

boundX Y

 
 
 

= = 
 
  

                (9) 

where Хboumd - vector of coordinates of the function point on the boundaries of the considered 

interval, Yboumd - the value of the characteristic function (1) at the boundary point of the 

considered interval. 

As can be seen from (8) and (9), the maximum value of the productivity of the SHM high-speed 

diamond grinding process is achieved at a stationary point almost in the middle of the considered 

interval of independent variables (factors). The maximum value of productivity is more than 1.5 

times greater than its maximum value at the boundaries of the interval. 

 

4. Accounting and risk assessment in the process of quantitative analysis and decision-

making in expert systems 

The results of modeling the processes of high-speed diamond grinding and sintering of diamond 

wheels contain some error, acquired as a result of the hypotheses and assumptions adopted in the 

simulation; due to the error of the initial data and their inconsistency with real parameters and 

characteristics; due to errors acquired when using numerical methods and other factors that are 

difficult to take into account. Given the above, the results shown in Figures 2 and 3 are 

approximations and include these uncertainties. Naturally, the use of these results is possible if 

the accumulated error is small. Accordingly, it is necessary to propose an approach to 

substantiate the error of the results obtained [11]. The main criterion may be verification with the 

results of specially designed laboratory experiments and field tests. Such experiments are 

associated with significant material costs, require high-tech equipment that ensures control 

measurements with a certain accuracy [12, 13], since various physical parameters are used in the 

optimality criterion, and those that cannot be measured directly (for example, strain). At the same 

time, it should be remembered that the results of field experiments and tests also have some error 

and their use is possible after evaluating such an error. It seems more practical, in our case, to 

apply the methods of mathematical statistics and consider the results obtained as one of the many 

possible implementations, i.e. estimate the probability that the result obtained has a 

predetermined error. In what follows, we will use this approach. 

To do this, we use the basic scheme of statistical tests, which we use according to the scheme of 

the well-known sampling method.[14] In accordance with this method, we consider the object 

under study (in this case, the results of optimizing the processes of high-speed grinding and 

sintering of diamond wheels) in the form of a general population, which is a set of possible 

results corresponding to various initial data. Thus, the errors in the result of optimizing the 

processes of high-speed grinding and sintering of diamond wheels will be presented as a result of 

the error in the initial data [15]. 

The idea of the sampling method is that, having data on a finite (often very small) number N of 

elements of the general population, to evaluate the properties of the general population itself. 

These N elements about which information is known is called the sample, and the number N 

itself is called the sample size.[16] 

Let us designate the possible optimal values of the characteristic function that form the sample as 

follows: 
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1 2, , NY Y Y
,                                                                          (10) 

where k=1,2…N – possible optimal values of the characteristic function (1) 

With the values (9) we can approximately determine the mathematical expectation and variance 

of the sample: 
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As is known from mathematical statistics [17], the true mean value of the general population with 

probability 1-p is determined by the inequality: 

1 /2 1 /2

N N

p p

s s
Y t Y Y t

N N
− −−   +

                                                          (13) 

where p – significance level, 1 /2

N

pt −  - quantile of the Student's distribution corresponding to N-1 

degrees of freedom and probability 1-p/2 [17], which for the corresponding initial data can be 

found from special mathematical (statistical) tables. 

As the double inequality (13) shows, in order to estimate the average value of the general 

population, it is necessary to know information about two of its elements. Thus, the estimation of 

the error in determining the optimal parameters of the characteristic function (indicators of high-

speed grinding and sintering of diamond wheels) is reduced to determining a sample of its 

possible values. 

To construct a sample of values (12), we use the Monte Carlo method, to which we take into 

account the uncertainty of information about the sources of errors. Taking as sources of errors the 

assumptions adopted in mathematical models, numerical methods (including the FEM), which 

were used to approximately determine the characteristic function (1) in the form of a quadratic 

function (2). 

Let us consider the influence of possible errors in the calculation of the diagonal elements of the 

matrix [A] from (2) on the optimal value of the characteristic function. 

In accordance with the Monte Carlo method, it is necessary to use a generator of random 

variables and determine the set of possible random values of the diagonal elements of the matrix 

[A] from (2) in their various combinations. As is known, a random variable generator can be 

constructed by functional transformation of a random variable distributed according to a uniform 

law. Taking into account this circumstance, we estimate the error in calculating the diagonal 

elements of the matrix by the minimum possible and maximum possible values, which is 

sufficient to determine the uniformly distributed probability density function. 

Considering that the number of diagonal elements of the matrix A is equal to n, we obtain as a 

result a selection of N=2n possible combinations of possible values that characterize the 

permissible values of the diagonal elements of the matrix A. 

The Monte Carlo method for assessing the impact of the risk caused by the error in the simulation 

in the FEM of the processes of high-speed grinding and sintering of diamond wheels is 

implemented by repeatedly solving the problem of optimizing the characteristic function (1) 

describing the listed processes. 
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As an example, let us consider the estimation of the error of solution (8) of the problem of 

maximizing the productivity of SHM high-speed diamond grinding, considered in [1]. In 

accordance with the above approach, we assume that the diagonal coefficients of matrix (3), 

which determines the characteristic function, have a relative error of ±20%. 

Considering that n=4 we get N=24=16. We accept the significance level p=0.05, which 

corresponds to a probability of 95%. As is known [16, 17], the quantile of Student's distribution 

corresponding to this case with 15 degrees of freedom and significance level p=0,05, 1 /2

N

pt − =2,13 

Let us consider as an example of maximizing the characteristic function of high-speed diamond 

grinding performance (8) and, in accordance with the above approach, write the matrix [A] from 

(8) in the form: 
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Let’s consider a general cycle that implements the enumeration of matrix values for the 

implementation of the Monte Carlo algorithm for solving risk assessment problems when 

studying the processes of high-speed grinding and sintering of diamond wheels to develop an 

expert system for choosing the optimal characteristics of diamond wheels and processing modes 

(Fig. 4). 
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Fig. 4 - The general cycle that implements the enumeration of matrix values for the 

implementation of the Monte Carlo algorithm for solving problems of risk assessment when 

studying the processes of high-speed grinding and sintering of diamond wheels 

The calculation results are shown in table 1. 

Table 1 Calculation results according to the algorithm shown in Figure 4 
s i j k l Calculated Values 

Ys 

1 1 1 1 1 5.23063588881460E+0001 

2 1 1 1 2 5.23115249045368E+0001 

3 1 1 2 1 5.34988382129410E+0001 

4 1 1 2 2 5.35050272651754E+0001 

5 1 2 1 1 5.23067214406208E+0001 

6 1 2 1 2 5.23118936036018E+0001 

7 1 2 2 1 5.34992271840527E+0001 

8 1 2 2 2 5.35054232186763E+0001 

9 2 1 1 1 5.23063810168473E+0001 

10 2 1 1 2 5.23115470529779E+0001 

11 2 1 2 1 5.34988635995559E+0001 

12 2 1 2 2 5.35050526764440E+0001 

13 2 2 1 1 5.23067435586006E+0001 
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14 2 2 1 2 5.23119157412378E+0001 

15 2 2 2 1 5.34992525588109E+0001 

16 2 2 2 2 5.35054486179902E+0001 

Based on the results of the calculation, we obtain the mathematical expectation and variance: 

5.2905638721263479E 001Y = +                                                           (16) 
2 3.7954552900854943E 001s = −                                                           (17) 

Using the values (16) and (17) according to formula (13), with a probability of 0.95, we obtain 

that the optimal (maximum) value will satisfy the inequality: 

5.2577580026957214E+001 5.3233697415569743E+001Y                              (18) 

It is interesting that the value (8) obtained earlier does not coincide with the mathematical 

expectation (16), however, it is within the interval (18), i.e. it is obtained with a probability of 

95%. If we assume that the distribution density of the optimal (maximum) value Y has a normal 

law, then, having the mathematical expectation (16) and variance (17), we can construct this 

distribution density and it will have the form, as shown in Fig. 5. 

 
Fig. 5 - Density of distribution of the obtained optimization results and the optimal value for an 

example of optimizing the performance of high-speed diamond grinding 

When developing an expert system, this algorithm is supposed to be used to estimate the 

probability for all characteristic functions that approximately describe the processes of STM 

ultra-high-speed grinding and diamond wheel sintering. Although the probability value itself may 

have some error, it shows at least the stability of the selected mode of operation of the diamond 

wheel, i.e. the ability to provide parameters close to optimal values in case of deviations in the 

system. 

 

5. Conclusion 

Fundamental mathematical approaches to optimization issues applicable to the study of the 

process of high-speed diamond processing of SHM are considered. 

It is shown that in order to estimate the error of the results, it seems to apply the methods of 

mathematical statistics and consider the results obtained as one of the many possible 

implementations, i.e. estimate the probability that the result obtained has a predetermined error. 

Special software has been developed that combines all the simulation results into an expert 

system that allows, with a certain probability and error, to predict the main indicators of the 

optimal
volue

distributio
n density
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grinding process, depending on the various properties of the tool and processing modes. 
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