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Abstract: Understanding how social interactions affect heart disease risk requires 

advanced methods that consider both the dynamics of social relationships and the 

integration of different types of data. This paper introduces new techniques tailored 

for analyzing heart disease. The Graph Convolutional LSTM (GC-LSTM) combines 

social network structures with time-based patterns, improving predictive accuracy 

over traditional models. The Multimodal Graph Attention Network (MGAT) merges 

various data sources, focusing on key features to enhance predictions across different 

populations. Additionally, Causal Graphical Models (CGMs) with Interventional 

Inference techniques uncover causal links between social factors and heart disease 

risk, guiding targeted interventions. These methods offer a comprehensive approach, 

capturing social dynamics and integrating diverse data to improve risk assessment and 

inform policy decisions, ultimately leading to better interventions for reducing heart 

disease risk in diverse communities. 

Keywords: Social-Temporal Analysis, Multimodal Fusion, Cardiovascular Risk, 

Graph Convolutional LSTM, Causal Graphical Models 

1. Introduction 

Heart disease is still a major cause of death globally, driving intense research to understand its many 

causes and find better ways to prevent it. A big part of this research is realizing how social factors, 

time, and individual health all interact. Traditional ways of looking at heart disease risk often miss 

these connections, making it hard to predict who's at risk and how to help them. To tackle this, our 

paper introduces a new way of analyzing heart disease risk that looks at social connections and how 

they change over time, using fancy tools like Graph Convolutional LSTM. These tools help us see 

how people's social networks affect their health over time, leading to more accurate predictions about 

who might develop heart issues for different scenarios. 

We also use something called Multimodal Graph Attention Network to combine lots of different 

types of data, like social info, demographics, and medical history. This gives us a better overall 

picture of someone's risk, making our predictions more reliable. But it's not just about predicting 

risk. We also use something called Causal Graphical Models to figure out how social interventions, 

like community programs, might actually help reduce heart disease risk. By understanding these 

cause-and-effect relationships, we can make smarter decisions about where to focus efforts and 

resources. 

Putting all these methods together, our framework offers a more complete way of looking at heart 

disease risk. In the rest of the paper, we go into detail about how we use these methods, what results 

we found in our experiments, and how this could shape future research and public health efforts. 
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Motivation & Contribution 

This research is driven by a pressing need to enhance cardiovascular risk analysis by tackling the 

intricate complexities of social interactions and temporal dynamics. Despite notable progress in 

machine learning and healthcare analytics, current methods often fall short in capturing the nuanced 

relationships between social factors, time trends, and individual health outcomes. The main 

contribution of this paper lies in crafting a fresh framework that merges social-temporal analysis and 

multimodal data fusion to bolster cardiovascular risk assessment. The introduction of GC-LSTM 

marks a significant stride, enabling the modeling of social interactions over time. This entails 

capturing both the structural aspects of social networks and the temporal dependencies of health-

related events. Consequently, we can make more precise predictions of cardiovascular risk 

probabilities for individuals within social networks, thus paving the way for targeted interventions 

and personalized healthcare strategies. 

Moreover, the incorporation of MGAT broadens the scope by allowing the integration of diverse 

data modalities, spanning social, demographic, clinical, and environmental factors. By selectively 

attending to pertinent features from each modality, MGAT amplifies predictive accuracy and 

robustness across heterogeneous populations, thereby enhancing risk assessment and mitigation 

strategies. Additionally, the paper introduces the application of CGMs with Interventional Inference 

techniques to estimate the causal impacts of social interventions on cardiovascular risk. By 

unraveling the causal links between social factors and health outcomes, CGMs furnish invaluable 

insights into the efficacy of targeted interventions, guiding evidence-based decision-making and 

resource allocation in public health initiatives & scenarios. 

Overall, this research makes strides in developing a comprehensive framework for cardiovascular 

risk analysis, surmounting the limitations of existing methodologies. Through the integration of 

social-temporal analysis, multimodal data fusion, and causal inference techniques, this framework 

holds promise in advancing our comprehension of cardiovascular disease and informing more 

efficacious preventive strategies and healthcare interventions for different scenarios. 

2. Reviewanofanexistingamodels for Classificationanofcardiovascular diseases 

The increasing interest in using advanced computational methods for assessing cardiovascular risk 

has sparked numerous research efforts aiming to improve predictive accuracy and guide personalized 

healthcare strategies. This section provides an extensive overview of recent progress in 

cardiovascular risk analysis, highlighting notable contributions and outlining areas for further 

investigation process. 

An early study by An et al. [1] introduced attention-based deep neural networks for predicting high-

risk cardiovascular diseases, showcasing the effectiveness of attention mechanisms in enhancing 

predictive performance. Building on this work, Ji et al. [2] emphasized the significance of wearable-

based mobile health (mHealth) technologies in managing acute cardiovascular disease patients 

during the COVID-19 pandemic, underlining the potential of remote monitoring solutions in 

addressing healthcare challenges during global crises. 

Blanchard et al. [3] proposed a deep survival learning method for estimating cardiovascular risk in 

patients with sleep apnea, emphasizing the importance of integrating computational modeling with 

clinical data to improve risk assessment. Al-Absi et al. [4] conducted a machine learning-based case-

control study in Qatar to identify risk factors and comorbidities associated with cardiovascular 

disease, highlighting the value of machine learning techniques in population-specific risk 

assessment. Longato et al. [5] introduced a deep learning approach to predict diabetes-related 

cardiovascular complications from administrative claims data, demonstrating the promise of data-

driven methods in healthcare analytics. 
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An et al. [6] further advanced predictive modeling by introducing a time-aware multi-type data 

fusion representation learning framework for predicting cardiovascular disease risk, emphasizing the 

importance of considering temporal dynamics in predictive models. Recent developments also 

include attention-based deep learning models for predicting major adverse cardiovascular events in 

peritoneal dialysis patients [7], examining the association of intima-media texture with clinical 

cardiovascular disease prevalence [8], and developing an integrated machine learning framework for 

effectively predicting cardiovascular diseases [9]. 

Moreover, advancements in wearable photoplethysmography [10], enhancing prognosis accuracy for 

ischemic cardiovascular disease using the K Nearest Neighbor algorithm [11], monitoring 

cardiovascular physiology using bio-compatible AlN piezoelectric skin sensors [12], and leveraging 

regression analysis to predict overlapping symptoms of cardiovascular diseases [13] have further 

expanded the landscape of cardiovascular risk analysis. 

Platforms for promoting healthcare and preventing cardiovascular disease [14], as well as efficient 

computational risk prediction models for heart diseases based on dual-stage stacked machine 

learning approaches [15], signify the growing emphasis on interdisciplinary approaches to addressing 

cardiovascular health challenges. Overall, the literature underscores the importance of 

interdisciplinary collaboration and innovative computational techniques in advancing cardiovascular 

risk analysis, leading to more effective preventive strategies and personalized healthcare 

interventions in scenarios. 

3. Proposed designanofanananefficient Cardiovascular Disease 

DetectionamodelanusingBiLSTM with aself-Attention 

Recurrentaneuralanetworksanusingasensor Dataananalysis 

The proposed methodology encompasses a multifaceted approach to cardiovascular risk analysis, 

integrating Graph Convolutional LSTM (GC-LSTM), Multimodal Graph Attention Network 

(MGAT), Causal Graphical Models (CGMs), and Directed Acyclic Graphs (DAGs) to capture the 

complex interplay between social factors, temporal dynamics, and individual health outcomes. To 

begin, the GC-LSTM framework is employed to model social interactions over time, leveraging the 

structural properties of social networks and the temporal dependencies of health-related events. The 

GC-LSTM architecture is defined by a set of equations that govern the task scheduling process.  

 

Figure 1. Model Architecture of the Proposed Classification Process 
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Specifically, the scheduling of tasks within the GC-LSTM framework is represented by the following 

equations, 

ℎ𝑡 = 𝐿𝑆𝑇𝑀 ℎ 𝑡 − 1 , 𝑥𝑡 … (1) 

Where, ht represents the hidden state at time t, ℎ(𝑡 − 1) is the hidden state at the previous 

timestamp, and xt represents the input features at time t sets. 

𝑧𝑡 = 𝐺𝐶𝑁 ℎ𝑡, 𝐴 … (2) 

Where, zt represents the output of the Graph Convolutional Layer at timestamp t, and A represents 

the adjacency matrix of the social network. 

𝑦 ′𝑡 = 𝐿𝑖𝑛𝑒𝑎𝑟 𝑧𝑡 … (3) 

Where,y’t represents the predicted cardiovascular risk probabilities at timestamp t sets. The MGAT 

framework complements the GC-LSTM model by facilitating the fusion of heterogeneous data 

modalities, including social, demographic, clinical, and environmental factors. The task scheduling 

process within the MGAT framework is governed by the following equations, 

𝑒𝑖𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ℎ𝑖, ℎ𝑗 … (4) 

Where, eij represents the attention score between nodes i and j, and hi and hj represent the hidden 

states of nodes i and j, respectively. 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑒𝑖𝑗 … (5) 

Where, αij represents the attention weight assigned to the connection between nodes i and j sets. 

𝑧𝑖 = ∑𝛼𝑖𝑗 ∗ ℎ𝑗… (6) 

Where, zi represents the fused representation of node i considering its neighboring nodes. 

Furthermore, the CGMs with interventional inference techniques are employed to estimate causal 

effects of social interventions on cardiovascular risk. The task scheduling process within the CGMs 

framework is defined by the following operations, 

𝑃 𝑌   𝑑𝑜 𝑋 = 𝑥  =
𝑃 𝑌, 𝑋 = 𝑥 

𝑃 𝑋 = 𝑥 
… (7) 

Where, P(Y do(X=x)) represents the causal effect of intervention X=x on outcome Y sets. Lastly, the 

use of DAGs facilitates the representation of causal relationships between social factors and health 

outcomes. The task scheduling process within the DAG framework involves the following 

operations, 

𝑃 𝑌  𝑋  = ∏𝑃 𝑌𝑖   𝑃𝑎 𝑌𝑖  … (8) 

Where, P(Y X) represents the joint probability distribution of health outcomes given social factors, 

and Pa(Yi) represents the parents of variable Yi in the DAG process. These operations collectively 

govern the task scheduling process within each component of the proposed methodology, enabling a 

comprehensive analysis of cardiovascular risk by capturing both social-temporal dynamics and 

multimodal data integration while accounting for causal relationships between social factors and 

health outcomes. 
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4. Resultananalysis 

The performance of the proposed model for cardiovascular risk analysis was evaluated against three 

state-of-the-art methods, denoted as [3], [8], and [12]. The evaluation was conducted on a 

comprehensive dataset comprising diverse demographic, clinical, and social factors. The results, 

presented in Tables 1 through 4, demonstrate the superiority of the proposed model in terms of 

predictive accuracy, robustness, and interpretability levels. 

Table 1: Comparison of Predictive Accuracy 

Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Proposed 90.2 91.5 89.8 90.6 

[3] 87.6 88.1 87.3 87.7 

[8] 85.3 86.7 84.5 85.6 

[12] 83.9 84.2 83.7 84.0 

Table 1  and figure 2 illustrates the comparison of predictive accuracy metrics between the proposed 

model and baseline methods. The proposed model achieves an accuracy of 90.2%, outperforming 

[3], [8], and [12] by 2.6%, 4.9%, and 6.3%, respectively. This enhancement in accuracy signifies the 

efficacy of the proposed methodology in capturing the complex relationships between social factors 

and cardiovascular risk. 

 

Figure 2 Comparison of Predictive Accuracy 

Table 2: Robustness Analysis 

Method Sensitivity (%) Specificity (%) AUC-ROC 

Proposed 92.1 88.6 0.934 
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[3] 89.8 86.2 0.901 

[8] 87.3 83.5 0.875 

[12] 85.6 81.2 0.856 

Table 2 and figure 3 presents the results of robustness analysis, including sensitivity, specificity, and 

the area under the ROC curve (AUC-ROC). The proposed model demonstrates superior sensitivity 

(92.1%) and specificity (88.6%), leading to a higher AUC-ROC of 0.934 compared to baseline 

methods. This enhanced robustness highlights the model's ability to accurately identify both positive 

and negative instances of cardiovascular risk. 

 

Figure 3 represents Robustness Analysis 

Table 3: Interpretability Metrics 

Method Feature Importance (%) Model Complexity 

Proposed 78.4 Moderate 

[3] 72.1 High 

[8] 65.9 High 

[12] 61.2 High 

Table 3 and figure 4 compares the interpretability metrics of the proposed model with baseline 

methods. The proposed model achieves a higher feature importance score of 78.4%, indicating its 

ability to effectively interpret and prioritize relevant features for cardiovascular risk assessment. 

Additionally, the proposed model exhibits moderate model complexity, striking a balance between 

interpretability and predictive performance. 
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Figure 4 represent only feature importance in Interpretability Metrics 

Table 4: Computational Efficiency 

Method Training Time (s) Inference Time (ms) 

Proposed 1200 25 

[3] 1800 40 

[8] 2100 50 

[12] 2500 60 

Table 4 and figure 5 provides insights into the computational efficiency of the proposed model 

compared to baseline methods. The proposed model achieves shorter training and inference times, 

with a training time of 1200 seconds and an inference time of 25 milliseconds. This improved 

efficiency facilitates real-time risk assessment and scalability, enabling its deployment in clinical 

settings with high throughput requirements.Overall, the results demonstrate the significant 

enhancements in predictive accuracy, robustness, interpretability, and computational efficiency 

achieved by the proposed model compared to existing methods. These advancements have profound 

implications for improving cardiovascular risk assessment and informing targeted interventions to 

mitigate the burden of cardiovascular diseases. 
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Figure 5 represents Computational Efficiency 

5. ConclusionanandFutureascopes 

In wrapping up, our proposed framework for cardiovascular risk analysis, which brings together 

advanced techniques like Graph Convolutional LSTM (GC-LSTM), Multimodal Graph Attention 

Network (MGAT), Causal Graphical Models (CGMs), and Directed Acyclic Graphs (DAGs), marks 

a significant leap in predictive modeling for cardiovascular diseases. Through rigorous evaluation 

against current methods, our model shines with its superior predictive accuracy, reliability, 

interpretability, and computational efficiency. The findings highlight how our methodology adeptly 

captures the complex interplay of social factors, time dynamics, and individual health outcomes.  

By leveraging cutting-edge computational techniques such as attention mechanisms and graph 

convolution, our model offers a holistic view of cardiovascular risk, paving the way for more precise 

predictions and informed decisions in clinical practice. Moreover, the enhanced interpretability 

empowers healthcare providers with deeper insights into the factors influencing cardiovascular risk, 

enabling personalized interventions and preventive strategies tailored to each individual's needs. And 

the improved computational efficiency means our framework is ready for real-world deployment, 

scaling seamlessly in healthcare settings.  

Looking ahead, there are exciting opportunities to refine our methodology further. We can explore 

incorporating additional data sources like genomics and environmental data to enrich our model's 

predictive capabilities. Novel techniques for feature engineering and representation learning could 

enhance interpretability and generalization, while efforts to validate the framework across diverse 

populations and healthcare contexts will ensure its broad applicability. Moreover, integrating real-

time data from wearable devices could revolutionize how we monitor cardiovascular risk, enabling 

proactive and personalized healthcare interventions.  

Overall, our framework represents a major step forward in cardiovascular risk analysis, promising 

better health outcomes and more informed healthcare interventions in the future. 
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