
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Navigating Software Development

Methodologies: A Comparative Analysis and

Recommendation of Software Process Models

Purvi Sankhe1, Dr. Mukesh Dixit2
1.Research Scholar, Sanjeev Agrawal Global Educational University, Bhopal, Madhya Pradesh, India.

Email:purvisankhe@gmail.com
2. Associate Professor, Sanjeev Agrawal Global Educational University, Bhopal, Madhya Pradesh, India.

Email: mukesh.d@sageuniversity.edu.in

Abstract

As software moves through the phases of system design, development, testing, and

deployment, the Software Development Life Cycle (SDLC) is crucial for guaranteeing its

operation and quality. This study explores the critical elements that establish the best

software development process for various software applications. Within the two main

paradigms of agile development and traditional development, it assesses six development

process models. It also suggests a new model that makes use of machine learning to

suggest the best course of action for a certain project. Prototyping, Spiral, Scrum, Extreme

Programming (XP), Rapid Application Development (RAD), and Feature-Driven

Development (FDD) are just a few of the software development approaches that are

analyzed and contrasted in this study. The suggested model uses a two-step procedure for

making recommendations: Choosing a Holistic method: The first step includes deciding

on a suitable software development method in accordance with project data parameters,

including project kind, complexity, and team makeup. Enhanced technique Selection: In

the second phase, the model enhances the technique selection within the selected

development approach by taking into account the particular project scope, schedule

limitations, stakeholder preferences, and required flexibility. The goal of the paper is to

give developers a methodical framework for choosing software development approaches

that are in line with project specifications and limitations all along the It provides a data-

driven approach to method selection by incorporating machine learning into the

recommendation model, increasing the probability of successful project execution and

desired results. The ultimate goal of this study's findings is to help software development

projects succeed by promoting well-informed decision-making and efficient resource

allocation. Selecting a software development technique has advanced significantly with

the help of the suggested recommendation model. Through the use of machine learning

algorithms, it helps developers make decisions that improve the effectiveness and success

of their projects.

Keywords: Development, Project, Recommend, Process, Methodology

1. Introduction

Choosing the right software development technique is essential to the success of an IT project in the field

of project management. Systems analysts are responsible for determining the best option to follow for each

project while managing it and comprehending the needs of the business. This research examines six

different approaches within the main software development paradigms and suggests a machine learning

model to suggest the best software development methodology for certain projects. Through methodical

planning, development, testing, and system rollout, the software development life cycle (SDLC) is

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

http://www.nano-ntp.com/
mailto:purvisankhe@gmail.com
mailto:Email:%20mukesh.d@sageuniversity.edu.in

 Navigating Software Development Purvi Sankhe 2

Nanotechnology Perceptions 20 No. S15(2024) 1-31

essential to guaranteeing software functionality and fulfilling user requirements [1][2]. Within the SDLC

spectrum, there are several strategies that range from the iterative and adaptive agile approaches to the

sequential, plan-driven waterfall method [3]. The spiral paradigm, for example, combines the iterative

flexibility of agile with structured phases similar to waterfall. The best SDLC method depends on a number

of variables, including team preferences, resource availability, project complexity, and project size. The

SDLC is essential to efficient project management, which includes adhering to budgets, schedules, and

quality standards. In addition, the SDLC guarantees that user and stakeholder needs are satisfied and assists

in managing project risks [4]. Notably, many software development methodologies— such as Extreme

Programming (XP), Scrum, Rapid Application Development (RAD), and prototyping— offer unique

benefits and limitations that make them appropriate for projects with differing time constraints and

communication needs [5][6].

The purpose of this study is to present an in-depth analysis of software development methodologies in

relation to important data factors. Prior studies demonstrate the existence of recommendation systems

designed to assist in choosing technologies and techniques for software requirement elicitation for the

software development life cycle (SDLC) [7]. Still, there are gaps in creating a coherent recommender model

that incorporates these insights for choosing a software development process.

Motivated by these gaps, this research suggests a two-stage recommender model in response to these

deficiencies. IT professionals can choose the best software development technique in the initial step by

considering factors like project complexity, scope, resource availability, and team dynamics. Subsequently,

the model takes stakeholder preferences, project scale, timetable, and desired flexibility into account when

fine-tuning methodology choices within the selected approach.

The proposed system aims at assisting IT developers in choosing software development methodologies that

correspond with project requirements and limitations, guaranteeing efficient project management and

intended results. This paper makes a significant contribution by providing a methodical approach to

methodologically sound decision-making when choosing a software development technique.The remainder

of this paper is structured as follows: The relevant literature on software development methodologies and

choosing a software development technique is reviewed in Section II. The methods used to create the

recommender model is presented in Section III. Section IV describes the model's results obtained in depth.

Section V highlights discussion on comparison of proposed system and existing system whereas section VI

concludes by discussing the findings, consequences, and potential future directions of this study. IT

developers will acquire the knowledge required to properly manage the software development lifecycle

through the use of this methodical approach.

2. Literature Review

This article [8] covers Waterfall, V-Model, Iterative, Agile, and Hybrid techniques in detail, as well as

industry approaches for managing information system projects throughout their lifecycles. It explores how

decision support matrices help choose the optimal course of action and contrasts Agile and conventional

methods. The intention is to help project managers and information system practitioners make well-

informed decisions specific to their initiatives. The article demonstrates the distinct benefits of several

SDLC approaches, including Waterfall, Agile, Scrum, Kanban, and Iterative models. By contrasting Agile

with conventional techniques—conventional methods stressing structure, while Agile methods emphasize

flexibility and client involvement—one can see how adaptability and systematic planning may coexist in

harmony. The best project management approach is chosen depending on the particulars of the project with

the use of decision support matrices. The correct development approach is essential for effective IS project

management since it entails choosing and modifying strategies that use innovation, teamwork, and

technology to accomplish organizational objectives.

Kendra E. Risener (2022) [9] discusses six methodologies in software development: waterfall, agile, spiral

model, extreme programming, SCRUM, and Kanban. The paper explores the benefits and drawbacks of

each methodology and contrasts them to determine the most suitable for IT companies. The research

identifies a gap in understanding methodologies in software engineering to enhance development efficiency,

avoid financial and time losses, and reduce developer frustration. By focusing on common

 3 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

characteristics of development frameworks, this study aims to promote interest in effective development

approaches that can save crucial resources: money and time.

3. In order to improve software security, a wide range of concepts and software development methodologies

have been examined in this paper by authors [10] Any gaps or weaknesses in these approaches have also

been noted. A brief analysis of various software development methodologies is provided to highlight their

unique contributions to the development process as a whole. The rationale behind giving software security

top priority is discussed, including a look at common threats. Furthermore, the theory of software security

is examined in terms of its practical applications and basic principles. Additionally, approaches to detecting

and resolving security vulnerabilities are discussed. The analysis shows that developing secure software

requires a comprehensive and proactive approach. Establishing secure design principles and incorporating

security requirements from the outset of development marks the beginning of this process. By implementing

security measures from the outset of the design process, implementing secure coding practices, carrying out

regular security testing, and following secure configuration and patching procedures, organizations can

significantly lower the risk of security vulnerabilities. Gap identified is: To ensure that security is

incorporated into the software development process from the beginning to the end, more investigation is

required. While there are tools available for detecting errors in the code, their precision and efficiency could

be improved. Our main goal should be to improve these tools' automatic code-checking capabilities.

Furthermore, in order to improve software's defense against contemporary threats and issues, we must

investigate novel approaches to its design.

The goal of this study [11] is to examine how well Agile approaches may be implemented in software

projects as a more efficient substitute for the conventional waterfall methodology. Finding the critical

elements that guarantee software is continuously delivered to the market at the predetermined quality level

and timetable is the main goal. Scrum and Kanban, two well-known Agile implementation techniques, are

assessed in this study. These techniques are evaluated according to variables including complexity,

practicability, and predictability. Through this assessment, the study hopes to draw attention to the benefits

and drawbacks of each methodology and offer insights into project characteristics that might help choose

the best methodology for a particular project. Of all the Agile implementation techniques examined, Scrum

turned out to be the most basic and reliable. This structure makes it easier to release software products on

a regular basis, which empowers teams to handle challenging issues and quickly adjust to shifting market

conditions. The study's limitation is that, despite thoroughly analyzing the characteristics and methods of

both agile and traditional methodologies, data parameters for the selection of development methodologies

have not been provided. Additionally, specific recommendations regarding the methodology to be chosen

for software product development under different conditions have not been made.

In accordance with project management industry standards, this study [12] use a six-pointed star framework

to carefully examine several software development process models (PMBOK). The study comprises:

choosing well-known software development methodologies such as RAD, Spiral, Agile, Z, and AZ, or

waterfall, iterative, and Z.

creating a survey to assess these models using the six-pointed star framework's requirements. giving the

survey to seasoned people in the software sector in order to get their input. use statistical techniques to

analyse the survey data and evaluate each model's performance with varying project sizes and variables.

assessing and contrasting lightweight and heavyweight approaches to ascertain which models are best suited

for particular project objectives and scopes. Research gaps stated: Limited participant diversity and possible

prejudice towards more seasoned users of software industry. Survey replies that are subjective affect

objectivity. Concentrate on well-established models, sometimes ignoring cutting-edge approaches.

Restricted applicability of the results. absence of qualitative understanding in addition to quantitative

analysis. Filling in these gaps can improve the study's relevance for scholars and practitioners of software

development.

 Navigating Software Development Purvi Sankhe 4

Nanotechnology Perceptions 20 No. S15(2024) 1-31

This paper [13] has discussed 11 methodologies namely – waterfall, agile, prototype method, pragmatic

programming, spiral model, RAD model, dynamic system development model, extreme programming,

SCRUM, v-model and iterative and incremental model. Methodology in this paper focuses on The two

practices that make up software development methodologies are heavyweight and lightweight. Applying

heavyweight methodologies is worthwhile for projects with well-defined requirements that don't require

modifications. One of the heavyweight approaches. The project owner is clearly involved in the phases of

planning and research. Lightweight approaches are suitable for projects with changing requirements and

unstable specifications as a result of internal or external development project factors. gaps identified in this

research states: It claims that it lacks a methodology to meet all the needs and produce an ideal finished

product. With the assistance of seasoned team members and project managers, the optimal and appropriate

methodology should be chosen after taking into account all the variables. For the development process to

produce better results, a combination of software methodologies could be chosen as opposed to just one.

This study [14] explores into a comprehensive analysis of several software development processes and

tools, exploring their individual merits and downsides in detail. The purpose of this study is to provide

project owners with useful documentation that will help them choose the best software development

approach for their needs. In actuality, no single methodology is ideal in every situation involving a project.

Skilled project teams use a mix of approaches according to the particular requirements of the project.

Through the effective application of the best-fitting approaches, this adaptive approach optimizes software

development outcomes for a variety of project situations. research gap identified is that this study provides

document based on study of methodologies no any experimental analysis is done to suggest development

methodology.

In order to investigate the fundamental justifications for software developers' adoption and application of

Software Development Methods (SDMs), this study [15] reviewed the literature on the subject. Studies that

analyzed the rational, irrational, and/or non-rational reasoning behind SDM behaviors were categorized

using an analytical framework derived on Weber's work on social acts [16]. 28 of the 111 empirical studies

on SDM acceptance and use that were found explicitly looked at the reasoning of software engineers. Of

them, 14 studies dealt with the adoption of SDM and 14 with its use. The results show that a significant

portion of the body of knowledge already in existence involves study on the reasoning of software

developers. Furthermore, the analysis indicates that the majority of research currently in circulation favours

adopting and using SDM primarily from the perspective of logical decision-making.

This paper [17] Includes guidelines to teach students about various process models. Paper is focusing

mainly on Waterfall Model, Incremental Model, Agile Mode (Extreme Programming). also includes

explanation of the process models and how artifacts are created in different process models to the students

using the game SimSE. One of the main reasons SimSE is used in the classroom is to explain how different

software engineering tasks are completed in various process models. Because most tasks in all models are

similar., Gap identified states, it can occasionally be very challenging to theoretically explain about

selection of appropriate software process model for the development of project.

This study [18] examines a number of well-liked software development approaches, with a focus on project-

characteristic-based selection. It talks about the difficulties in implementing new techniques and suggests

ways to get beyond them. The document also describes best practices for developing software products.

Nevertheless, only extreme values are taken into consideration for the project characteristics, and not all

accessible approaches are included in the assessment and selection procedure in this work. A broad range

of software development approaches would provide more reliable outcomes, giving developers more

choices and improving the process of selection accuracy. The study's identified research gap calls for a

review, the incorporation of new approaches, and the provision of a more thorough chart to help with the

selection process.

With a focus on their function in software development management, this study [19] examines software

development life cycle models and the related approaches. It highlights the distinctions between

approaches, how they affect project success, and how to compare them. The article examines current two-

 5 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

and single-criteria classification techniques, pointing out their drawbacks and suggesting fresh single-

criteria classification strategies to overcome them. A unique four-criteria multi-criteria categorization

system is also presented, offering a thorough hierarchical foundation for software development processes

and life cycle models. Along with discussing current approaches, the study presents a novel strategy based

on machine learning and retrospective analysis techniques for choosing a software development style. In

order to be in line with the Sustainable Development Goals (SDGs). One of the gap identified here is that

it doesn't offer a recommendation system to assist developers in choosing a particular methodology for

creating software projects of better quality.

3. Methods

The traditional software development methodology and the agile software development approach are the

two primary methods available for the development of software products [20] [21]. Additionally, the Agile

software development technique is classified into Scrum, Extreme Programming (XP), and Feature Driven

Development models, while the traditional software development approach is divided into Rapid

Application Development (RAD), Prototyping, and Spiral Model [22].

3.1 Traditional software development approach

The conventional software development technique is a popular approach that is recognized for its

methodical and structured nature. It progresses in distinct stages, each of which depends on the success of

the preceding one [23]. This approach works well for projects whose requirements are well-defined and

stable and where frequent changes are not expected. Its rigid structure, however, can make it difficult to

adjust when a phase is over [24][25].Methodologies like Rapid Application Development (RAD),

Prototyping Model, and Spiral Model are frequently used under the Waterfall methodology.

3.1.1. RAD Model

With short cycles and element-based building, the Rapid Application Development (RAD) methodology

focuses on producing software quickly. When project scope is constrained and needs are well-defined, its

goal is to swiftly construct working systems [26].

Figure 1 Rapid Application Development Model

RAD uses focus groups or workshops to collect requirements, iterative prototyping with user input,

component reuse, and rigorous deadlines for design improvements. As seen in figure 1, through iterative

development and component reusability, the RAD paradigm comprises phases such as Business Modeling,

Data Modeling, Process Modeling, Application Generation, and Testing to enable quick and effective

software delivery. The Rapid Application Development (RAD) methodology was created to address the

shortcomings of conventional system development techniques, including the waterfall model and its

variations [27].

3.1.2 Prototyping Model

A software development methodology called the Prototyping Model shown in figure 2 places emphasis on

building a working prototype first in order to get user feedback and fine-tune requirements before

 Navigating Software Development Purvi Sankhe 6

Nanotechnology Perceptions 20 No. S15(2024) 1-31

releasing the finished product. It includes making incremental changes to the prototype in response to user

feedback until the intended functionality and design are realized. Ensuring that the software closely aligns

with user expectations and needs is the goal of this model. It is particularly helpful in situations when needs

are ambiguous or prone to change, and when early user participation and validation are crucial. The

Prototyping Model facilitates communication between development teams and stakeholders, which leads

to a more successful and user-friendly final product. Before creating the complete product, prototyping

allows for the affordable testing of a solution concept with actual users [28] [29].

Figure 2 Prototyping Model

3.1.3 Spiral Model

A software development methodology called the Spiral Model combines aspects of the flexible iterative

approaches and the structured Waterfall Model. As seen in figure 3 it divides a project into cycles that are

iterative and comprise phases for planning, risk analysis, engineering, and evaluation. Its emphasis on

proactive risk management, which attempts to recognize and resolve possible problems at every iteration,

is one of its defining characteristics. Large, complicated projects with plenty of unknowns and serious

implications from failure are best suited for this strategy [30]. It makes it possible for customers to be

involved in the process continuously, adjusts easily to changing needs, and guarantees that well-

documented, high-quality software is produced through constant improvement. Owing to these benefits, the

Spiral Model is frequently employed in sectors where safety, dependability, and risk management are

crucial, such as aerospace, defense, and critical systems development. Through developing prototypes,

spiral development reduces development risks during the iterative and incremental process of building a

system [31] [32].

Figure 3 Spiral Model

3.2 Agile software development approach

Agile software development is a process that emphasizes iterative progress and involves autonomous

collaboration amongst cross-functional teams to revise requirements and create solutions [33] [34]. Its

 7 Purvi Sankhe Navigating Software Development

ability to deliver value quickly, improve the level of reliability and quality, and increase adaptation to

changing needs a revolutionary change in development efficiency and responsiveness is its main advantage

[35] [36].

3.2.1 Extreme Programming

Extreme Programming (XP), Scrum, and Feature-Driven Development (FDD) are all agile software

development methodologies that focus on iterative, flexible, and collaborative approaches to software

development. Figure 4 highlights process of extreme programming. XP is a software development

methodology that emphasizes rapid feedback, continuous testing, and continuous integration. XP places a

strong emphasis on customer involvement and team communication, with the goal of delivering high-

quality software that meets the customer's needs. XP also advocates for pair programming, where two

programmers work together at a single computer, to increase code quality and knowledge sharing. Extreme

Programming is a collection of principles, guidelines, and procedures that are applied methodically [37].

Figure 4 Extreme Programming

3.2.2 Scrum

Scrum is another popular agile methodology that emphasizes iterative development, collaboration, and self-

organization. In Scrum, development work is divided into short iterations called sprints, each typically

lasting between one and four weeks [38] [39]. During each sprint, the development team works to deliver

a working product increment that meets the customer's requirements. Scrum also includes a set of roles,

ceremonies, and artifacts, such as the Product Backlog, Sprint Review, and Daily Scrum, to help ensure

effective communication and collaboration within the development team. Figure 5 shows working of scrum

framework for the development of software product [40].

Figure 5 Scrum Framework

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

 Navigating Software Development Purvi Sankhe 8

Nanotechnology Perceptions 20 No. S15(2024) 1-31

3.2.3 FDD

Feature-Driven Development (FDD) is an iterative and incremental software development process that

focuses on delivering small, working software features. FDD starts with a high-level view of the project,

identifying its overall scope and objectives, and then proceeds to break the project down into a set of small,

manageable feature sets. Each feature set is then further broken down into individual features, which are

implemented and tested iteratively. FDD also emphasizes the importance of good design and modeling

practices, such as using UML diagrams and feature- centric design. Due of the large number of software

features accessible today, the FDD model is frequently used in software development. The cluster approach

offers software development problem-solving techniques, one of which is the FDD model, which

concentrates on development projects with several features [41].FDD suffers with inadequate

documentation and a lack of team member and customer communication controls. Additionally, there is a

lot of modeling work and little iteration across the stages and stakeholders in FDD [42].

Figure 6 Feature Driven Development Model
Each of these methodologies has its own unique strengths and weaknesses, and choosing the right one for

a particular project will depend on a variety of factors, such as the project's size, complexity, and team

structure. However, all three methodologies share a common focus on collaboration, flexibility, and

iterative development, which are key principles of agile software development. Comparison between

different software development methodologies is shown in the table 1. It considers various factors like

requirements, user involvement, development team, type of project & risks associated with it.

Table 1 Comparison between software developments models/methodologies

Sr. Parameters RAD Prototyping Spiral Scrum XP FDD

No.

 Model

Requirements of the Project

1

Requirements

are Partially

defined early

in the SDLC

Partially

defined

requirements

Partially defined

requirements

Partially

defined

requirements

Partially

defined

requirements

Partially

defined

requirements

Partially

defined

requirements

2

Requirements

are easily

defined and

understandable

Requirements

are not clear at

the start

Requirements are

not clear at the

start

Requirements

are not clear

at the start

Requirements

are not clear

at the start

Requirements

are not clear

at the start

Requirements

are not clear

at the start

 9 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

3

Requirements

are changed

frequently

Few changes

in requirements

frequent

changes in

requirements

frequent

changes in

requirements

frequent

changes in

requirements

frequent

changes in

requirements

Few changes

in

requirements

4

Change

Management (in

the early

process)

change

management

possible during

early stage

change

management

possible during

each stage

change

management

possible during

each stage

Easily

adaptable to

changes

Easily

adaptable to

changes

Easily

adaptable to

changes

User Involvement

5

User Involvement More

involvement

of user

More

involvement

of user

Average

involvement

of user

More

involvement

of user

More

involvement

of user

More

involvement

of user

Development Team

6

Skilled

developers/ Team

High Need of

Skilled

developers/

Team

Moderate Need

of Skilled

developers/

Team

High Need

Of Skilled

developers/

Team

Moderate

Need of

Skilled

developers/

Team

High Need

Of Skilled

developers/

Team

High Need

Of Skilled

developers/

Team

7

Availability of

Tester /

Testing

Tester requires

After Coding

Tester requires

After Iteration

Tester

requires

After

Iteration

Continuous

testing

Tester

requires

After

Coding

Continuous

testing

8

Technical

leadership skilled

professionals

High

requirement of

leadership

skilled

professionals

Moderate

requirement of

leadership skilled

professionals

High

requirement

of leadership

skilled

professionals

Moderate

requirement

of leadership

skilled

professionals

High

requirement

of leadership

skilled

professionals

High

requirement

of leadership

skilled

professionals

9
Team Size Large Team

size required

Average Team

size required

Large Team

size required

Average

Team size

required

Average

Team size

required

Large Team

size required

Type of Project

10
Project Size Small Project

Size

Average

Project Size

Large

Project Size

Average to

large Project

Size

Large

Project Size

Large

Project Size

11

Improvement of

an Old

System

Less applicable

for

improvement

of old system

Less applicable

for

improvement of

old system

Highly

applicable for

improvement

of old system

Less

applicable for

improvement

of old system

Less

applicable for

improvement

of old system

Less

applicable for

improvement

of old system

12
Cost High Cost Low Cost High Cost Low Cost Reduced

development

Cost

High Cost

13

Duration of

project

Short Duration

 of

Project

Short Duration

of Project

Long

Duration of

Project

Short

Duration of

Project

Short

Duration of

Project

Long term

Projects

 Navigating Software Development Purvi Sankhe 10

Nanotechnology Perceptions 20 No. S15(2024) 1-31

14

Deployment time Faster

Deployment

time

Faster

Deployment time

Moderate

Deployment

time

Faster

Deployment

time

Faster

Deployment

time

Faster

Deployment

time

15
Reusable

Components

No No No Yes Yes Reusable

Features

16

Resource

availability

High need of

resource

availability

Moderate need

of resource

availability

Moderate

Risk

Management

Moderate

need of

resource

availability

Moderate

need of

resource

availability

High need of

resource

availability

17
Flexibility High

Flexibility

High

Flexibility

High

Flexibility

High

Flexibility

High

Flexibility

High

Flexibility

18

Adaptive to

Customer

needs

Moderate Yes Yes Yes Yes Yes

19
Continuous

Feedback

Yes Yes Moderate Yes Moderate Yes

20
Maintenance Average

Maintenance

Average

Maintenance

Complex

Maintenance

Average

Maintenance

Average

Maintenance

Average

Maintenance

Risk Associated

21

Risk Analysis

& Management

Less Risk

Management

Less Risk

Management

High Risk

Management

High Risk

Management

Moderate

Risk

Management

Moderate

Risk

Management

22

Possibility of

risk

association

Very less

Possibility

Less

Possibility

Less Possibility Less Possibility Less Possibility Less Possibility

23
Security vigorous

Security

Weak Security High

Security

High

Security

High

Security

High

Security

24
Guarantee of

success

Good Good High High High High

 3.3. Analyzing the usage of software development methodologies using data parameters

3.3.1. RAD Model
To address problems early, the RAD technique makes use of stakeholder feedback and iterative prototyping.

It works well for projects whose specifications vary over time, requiring early prototypes to accommodate

modifications. RAD prioritizes user interaction and works well for inexperienced teams. Although RAD

awarded projects have consistent funding, strict deadlines, and well-defined specifications, their significant

stakeholder participation may make them unsuitable for initiatives with little resources 3.1 Rapid

Application Development [43].

3.3.2 Prototyping

Projects with changing needs are best suited for the prototyping model, which enables the rapid construction

of prototypes that may be improved upon as they are developed. Depending on the needs, user involvement

might vary, which is advantageous for teams with less topic expertise or experience. It works well for

fulfilling deadlines, facilitating resource allocation, and enhancing current systems with steady

requirements. Other approaches, meanwhile, might be more appropriate for projects with a high degree of

risk. The decision ultimately comes down to the needs of the project and the risks involved [44].

 11 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

3.3.3 Spiral

Projects with changing or ambiguous objectives that require periodic refinement benefit from the use of the

spiral model. It encourages segmenting requirements into doable chunks and smoothly implementing

modifications. To make sure their requirements are met, users can participate in restricted or active ways.

Because it accommodates a variety of tools and approaches and allows for ongoing input, the Spiral model

is appropriate for teams with limited expertise. It helps with budgeting and resource allocation, especially

for projects with tight deadlines or limited resources, and is effective for enhancing current systems with

steady funding and essential requirements. The iterative structure of the paradigm encourages

development's efficiency and adaptability.

3.3.4 Extreme Programming

In order to produce high-quality software, Extreme Programming (XP), an Agile methodology, places a

strong value on close client involvement and iterative development. It places a strong emphasis on

refactoring, pair programming, acceptance testing, continuous integration, release planning, simple design,

and proactive client involvement. With techniques like acceptance test-driven requirements, user story-

driven development, customer-participated pair programming, and on-site customer feedback, user

involvement is crucial. The XP team prioritizes continual refactoring and operates as a small, autonomous,

multidisciplinary team with shared code ownership. Although XP works well for complicated projects, it

has drawbacks that must be addressed if it is to be maintained. These drawbacks include scheduling

uncertainty, customer relations problems, technology difficulties, and team dynamics [45].

3.3.5 Scrum

Agile framework Scrum places a strong emphasis on iterative sprints, cross-functional teamwork, keeping

a product backlog up to date, and important meetings including sprint planning, daily scrum, sprint review,

and retrospective [46]. In order to make sure that customer demands are satisfied, user participation

activities include creating user stories, adding to the product backlog, and offering feedback. The Scrum

development team prioritizes communication and teamwork and is small, self-organizing, cross-functional,

and dedicated to working on projects for sprint durations. They have all the required abilities. Risks

associated with Scrum projects include those related to technology, requirements, scheduling, people, and

the environment. To guarantee project success and stakeholder satisfaction, risk management strategies like

code reviews, exact requirement specification, Agile planning, team development, and continuous risk

assessment are employed [47].

3.3.6 Feature Driven Development model

Teamwork, comprehension of project requirements, flexibility, quality, disciplined development, and

effective project management are all stressed in feature-driven development (FDD). In order to ensure end-

user happiness, iterative development, user acceptance testing, feedback integration, and continual input

are all crucial. Small, cooperative, and goal-oriented, FDD teams work closely with clients to produce

high-calibre software. While regular releases, stakeholder input, and high-quality features are the goals of

projects, there are hazards such as unclear requirements and technological difficulties. To maximize

success, risks are minimized through stakeholder participation, communication, and client- centric

delivery.

Table 2 contains a list of the primary questions and training data for the model using various machine

learning algorithms.

 Navigating Software Development Purvi Sankhe 12

Nanotechnology Perceptions 20 No. S15(2024) 1-31

Table 2 Analysis of data parameters for the selection of software development methodology

Sr.

No.

Questions

WATERFALL

(TRADITIONAL)

METHODOLOGY

AGILE

METHODOLOGY

RAD Spiral Prototyping Scrum XP FDD

1
All the requirements are clearly
defined at the start of project only.

FALSE FALSE FALSE FALSE FALSE FALSE

2
Not easily adaptable to any changes
after the start of the project

TRUE FALSE FALSE FALSE FALSE FALSE

3
User is involved only during starting
phase of the project.

FALSE FALSE FALSE FALSE FALSE FALSE

4
Extra Skilled professionals are not
required in team

TRUE TRUE TRUE FALSE TRUE FALSE

5
No need of tester from the start of

project. Tester is required only during

testing phase

FALSE FALSE FALSE FALSE FALSE FALSE

6 Works only on small size projects FALSE TRUE TRUE FALSE FALSE FALSE

7
Time taken for development of

product is more
FALSE TRUE TRUE FALSE TRUE TRUE

8 cost required is more. TRUE TRUE FALSE FALSE TRUE FALSE

9
Risk analysis and management is
done at moderate level.

TRUE FALSE TRUE FALSE FALSE TRUE

10 Risk is highly focused factor FALSE TRUE FALSE FALSE TRUE FALSE

11
Documentation is very important or
created at each phase pf project.

TRUE TRUE TRUE FALSE FALSE FALSE

12
Preferable for improvement of an old
systems

FALSE FALSE FALSE TRUE TRUE FALSE

13 reusable components are Developed TRUE TRUE FALSE TRUE TRUE TRUE

14 Flexibility in the process FALSE TRUE TRUE TRUE FALSE TRUE

15 Good security provided TRUE FALSE FALSE TRUE TRUE FALSE

16 Deployment time is less FALSE FALSE TRUE TRUE TRUE TRUE

3.4 Implementation Methodology

The machine learning methods Kneighbors Classifier, Gaussian NB, DecisionTree Classifier, Random Forest

Classifier, and Logistic Regression are applied in the development of recommendation systems. The flow of the

implementation technique employed to create the software development methodology recommendation system is

depicted in the figure.

 13 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

Figure 7Recommender model block diagram

The recommendation system is divided into two stages, as shown in figure 8.

Phase I: It offers recommendations for the best software development process, including whether to use an

agile or traditional software development approach.

Phase II: After deciding on a development approach, the next step is to choose between traditional and agile

development methodologies. If the traditional technique is advised, phase II offers suggestions regarding

spiral modeling, rapid application development, or prototyping. If the agile methodology is advised, phase

II offers suggestions regarding scrum, extreme programming or Feature Driven Development.

Figure 9 shows steps used for the development of recommendation model. The following procedure makes

up the methodology that was used to create the recommendation system in both phases.

I: Understand the Problem: We must first clearly define the issue that we are trying to solve. This includes

identifying the tasks that must be completed and deriving certain inferences from the problem description.

II: Gather Data: Subsequently, data is collected from diverse sources. This data may originate from files,

databases, or other sources, depending on the project. The amount and quality of data collected directly

affect proposed system's accuracy.

III: Prepare the Data: The data must be cleaned up after it is collected. This includes removing any

contradicting, missing or redundant data. Since raw data cannot be used right away, it is transformed into a

clean dataset.

IV: Train the Model: To improve functionality, the model is trained. The dataset is divided into training

and testing sets, with 80% of the data used for training and 20% for testing. The training set helps the model

learn from the data, while the testing set allows to evaluate the model's performance.

V: Evaluate the Model: Testing is used to evaluate the model. On newly gathered data, its performance is

assessed using a testing set. To assess its effectiveness, metrics including as recall, accuracy, and precision

have been used. If the model doesn't work well, you might need modify a few of the parameters or settings.

VI: Use the Model: In the end, once we are satisfied with the model's performance, we may begin applying

it to problems in the real world. This may mean using the knowledge the model has learned to address new

issues, provide predictions, or classify data.

 Navigating Software Development Purvi Sankhe 14

Nanotechnology Perceptions 20 No. S15(2024) 1-31

Figure 8 Flow diagram of proposed system
Briefing about the machine learning algorithms used for the development of recommendation system is as

follows:

Logistic Regression: When considering scenarios where there are just two options and we wish to know

how specific factors influence those options, logistic regression is a useful tool. It assists in our

understanding of how numerous factors affect the results in diverse circumstances [48].

Regression modeling achieves two main goals. Firstly, it makes predictions about the outcome based on

the most recent information available about the contributing elements. Second, it helps in gaining an

understanding of the problem at hand by showing the proportionate contributions of each component to the

outcome. We can therefore determine which aspects are actually significant and how they affect the result,

while taking other factors into consideration [49].

Gaussian NB: Naive Bayes is a simple algorithm for learning and decision making. It makes the

assumption that when determining which class object belongs to, individual features (such as color or size)

don't really depend on one another. This presumption makes it function well in many contexts, but in real-

world scenarios when features aren't totally independent, it occasionally causes problems [50].

Kneighbors Classifier: The K-NN algorithm is a simple machine learning method that falls under the

category of supervised learning. It's comparable to receiving assistance from an instructor while learning

under observation [51]. You give the machine many of labeled examples to work with, such pictures of

dogs and cats, and tell it which is which. It can then identify whether a new picture it sees is of a dog or a

cat based on its previous learning.

DecisionTree Classifier: Classification systems function identically to organizers, dividing large amounts

of data into distinct categories. They are quite beneficial for data mining. These systems assist in

categorizing newly received data, classifying it according to prior learning, and even making educated

guesses about its classification. Here, we'll focus on the decision tree algorithm, which is a widely used

 17 Purvi Sankhe Navigating Software Development

method for this. The process is visually represented using decision trees, which facilitates understanding.

These are strong instruments that are employed in many fields, such as machine learning and image

processing.

RandomForest Classifier: In machine learning and data science, the Random Forest classifier is a popular

method used for sorting things into different groups. It's like having a bunch of teams working together.

Each team uses its own decision-making process, called decision trees, to sort data into groups. Then, the

final decision is made by combining all these different team's results. This could mean averaging their

choices or going with the most common decision among them [52].

3.5 The performance differences among machine learning algorithms:

The differences in performance among various machine learning algorithms can be attributed to several

factors, including the nature of the data, the characteristics of the algorithms themselves, and the specific

context in which they are applied. Here are some key reasons that can help explain the accuracy results of

different algorithms used in the proposed system:

Algorithm Complexity and Structure:

Decision Trees and Random Forests: These algorithms tend to be highly accurate because they can capture

complex relationships within the data. Decision Trees build a model based on feature splits, effectively

managing non-linear relationships. Random Forests, which consist of multiple decision trees, mitigate

overfitting and enhance generalization by averaging the predictions from several trees.

K-Neighbors Classifier: The performance of this algorithm can vary greatly depending on the choice of 'k'

(the number of neighbors) and the distance metric employed. A small 'k' can lead to overfitting, while a

larger 'k' may obscure important patterns in the data. Its effectiveness is also influenced by the local

structure of the dataset.

Data Quality and Preprocessing: The accuracy of machine learning models is significantly impacted by

the quality of the input data. Problems such as missing values, noise, and irrelevant features can diminish

model performance. For example, if the data is not adequately cleaned or pre-processed, algorithms like

Gaussian Naive Bayes may struggle due to their assumptions about feature independence. The success of

the algorithms can also hinge on how well the features are engineered. Algorithms like Logistic Regression

may need careful feature selection and transformation to perform optimally, while tree-based methods can

handle raw features more effectively.

Model Assumptions:

Gaussian Naive Bayes: This algorithm is based on the assumption that the features are normally distributed

and independent when conditioned on the class label. If these assumptions are not met in the dataset, the

model's effectiveness may decline, resulting in lower accuracy compared to other algorithms that do not

rely on such strict assumptions.

Logistic Regression: This algorithm presumes a linear relationship between the input features and the log-

odds of the outcome. If the actual relationship is non-linear, Logistic Regression might not perform as well

as more adaptable models like Decision Trees or Random Forests.

Overfitting vs. Underfitting: Complex models such as Random Forests can achieve impressive accuracy

on training data but risk overfitting if not carefully adjusted (for instance, by controlling the depth of the

trees). This can result in diminished accuracy on new, unseen data. On the other hand, simpler models like

Logistic Regression may underfit if the underlying relationships in the data are intricate, leading to lower

accuracy.

The variations in accuracy among different machine learning algorithms can be linked to their structural

properties, the quality and characteristics of the data, the assumptions they operate under, and how

effectively they are tuned and applied to the specific problem. Grasping these elements is essential for

choosing the right algorithm and enhancing model performance in real-world scenarios.

Nanotechnology Perceptions 20 No. S15(2024) 1-31

Nanotechnology Perceptions 20 No. S15(2024) 1-31

 Navigating Software Development Purvi Sankhe 18

3.6 Factors contribute to variations in accuracy of ML algorithms:

Machine learning accuracy and recall varies across algorithms because of certain factors:

Algorithm Complexity: Sophisticated models such as Random Forests and Neural Networks ascribe ability

to capture a variety of patterns which in return, tends to improve the accuracy and the recall. Such models

may overfit and therefore not perform well on new data. On the other hand, weak models tend to have a

lesser number of patterns but are relative in their tendency of overfitting.

Data Quality: Data quality which incorporates noise, outliers and missing values may lead to decrease in

performance. Decision Trees, for example, tend to be adversely impacted by outliers, whereas other models

such as tree-based models tend to perform better with missing values.

Feature Engineering: It is important to choose the right features to use as well as appropriate scaling of the

features where applicable. Brooks suggests that irrelevant features usually deceive models and correct ones

enhance the performance of algorithms such as the K-Nearest neighbors and Logistic regression.

Class Imbalance: In the case of class imbalance, models trained on such datasets will tend to focus on the

majority class despite the minority class being vital, which leads to high accuracy with very little recall. In

such cases resampling strategies or metrics that encourage recall can help.

Hyperparameter Tuning: Hyperparameter optimization is a very important step in modeling tasks as it

includes selection of some important and effective parameters, like the depth of trees in Random Forests

for improving the performance of the model. Advanced metric techniques like grid search improve

performance metrics of the model by returning both accuracy and recall.

Metrics Used: Accuracy provides a measure of the level of the model's correct prediction while purpose of

recall is to provide a measure of the true positive instances that have been detected by the model. Accuracy

might be high together with precision but recall may be painfully low as true positives will be feebly found

from the saturation of true negatives, mostly in datasets biased or gene enriched to one label. Data Split:

The way data is organized into training data and testing data set is very crucial. Misalignment of dividing

this data set can misrepresent precision and recall results. Cross-validation can provide a more accurate and

realistic approximation of the estimation of prescription.

Model Interpretability: Decision Trees is one of such techniques which is used and enhances recall since

they are easier to interpret however, more sophisticated algorithms for example Neural Networks are hard

to explain.

Domain Knowledge: Every area of specialization has its unique features and that knowledge can aid in

designing efficient algorithms, subsequently improving recall and precision.

so the disparities in accuracy and recall across different algorithms are accounted for by the consideration

of a number of factors including the combination of algorithm characteristics, data quality and feature

engineering, class balance, hyperparameter settings, and evaluation. Therefore, these parameters are

necessary for determining the algorithm to use and consequently improving its performance in a particular

task.

4. Results

It is clear from figure 8 that software development methodology recommendation system is divided into

two phases. First phase recommends software development methodology and second phase recommends

models under traditional development approach and agile development approach. Figure 9,10 & 11 shows

results obtained for traditional development approach whereas Figure 13,14 & 15 shows results obtained

for agile development approach.

 19 Purvi Sankhe Navigating Software Development

4.1. Results of model trained under Traditional (Waterfall Methodology)

Figure 9 Confusion Matrix of models trained under traditional methodology (a)Logical regression (b)

Kneighbors Classifier(c) Gaussian NB (d) DecisionTree Classifier (e) RandomForest Classifier

Figure 10 shows the comparative analysis of all five algorithms w.r.t. Recall, Precision, F1-score.

Figure 10 Confirmation Matrix of Machine learning algorithms applied for traditional methodology

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

 Navigating Software Development Purvi Sankhe 18

Figure 11 Accuracy score plot of machine learning algorithms applied to train traditional methodology

recommendation model
Pre-processing and data cleaning using different dataset classifications have been shown to have a

considerable impact on the accuracy of machine learning models, as illustrated in figures 10 and 11.

Kneighbors classifier gives 98% accuracy and the Gaussian NB approach gives 86% accuracy, logistic

regression yields 96% accuracy & the DecisionTree and Random Forest classifiers yields 100% accuracy.

4.2. Results of model trained under Agile Methodology

Figure 12 Confusion Matrix of models trained under agile methodology (a)Logical regression (b)

Kneighbors Classifier(c) Gaussian NB (d) DecisionTree Classifier (e) RandomForest Classifier

Figure 13 shows the comparative analysis of all five algorithms w.r.t. Recall, Precision, F1-score.

Figure 13 Confirmation Matrix of Machine learning algorithms applied for Agile methodology

Nanotechnology Perceptions 20 No. S15(2024) 1-31

 19 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

Figure 14 Accuracy score plot of machine learning algorithms applied to train Agile methodology

recommendation model.

Pre-processing and data cleaning using different dataset classifications have been shown to have a

considerable impact on the accuracy of machine learning models, as illustrated in figures 13 and 14.

Kneighbors classifier & logistic regression yields 99% accuracy, the Gaussian NB approach gives 95%

accuracy & the DecisionTree and Random Forest classifiers gives100% accuracy.

4.3 Performance of ML algorithms

Following is the insights into why certain models, such as Decision Trees or Random Forest, performed

better compared to other ML algorithms used for the development of proposed recommendation

model.Discrepancies in the performance of certain models, such as Decision Trees or Random Forests, as

compared to simpler import models of Gaussian Naive Bayes (NB) seem to be connected with some

underlying reasons:

Model Structure and Degree of Freedom: Decision trees are complex non-linear models characterized

by their ability to discover intricate relationships in data. They do so by a series of decisions, where the

data is partitioned on the basis of value of the feature variables enhancing the modeling of a more complex

architecture and interaction of the features. Such flexibility usually results in a higher accuracy on various

kinds of datasets. Random Forests is an ensemble technique that aggregates many decision trees to enhance

accuracy and preservation of the structures. Predicting outcomes from a number of trees and then averaging

the results, helps to avoid overfitting of any single tree, enhancing how the model performs on new unseen

data.

Interaction of Features: Feature Interactions: Intrinsically, decision trees and Random Forests manage

and even exploit interactions between features without being told to literally do so. Whereas, Gaussian NB,

for instance, over deals with the assumption of independence of features relative to the class label, which is

extreme and sometimes impractical. This assumption of independence can more often than not lead to poor

outcomes in cases where there are feature dependence relationships.

Distribution Assumptions: Gaussian NB assumes that features follow a normal distribution. Nevertheless,

if the actual distribution of the data is remarkably different from this assumption, then the model may not

perform as well.

 Navigating Software Development Purvi Sankhe 20

Nanotechnology Perceptions 20 No. S15(2024) 1-31

The reason Decision Trees and Random Forests are so powerful is because they do not make this assumption

about the distribution of data, and therefore can work well with a greater variety of datasets.

The capacity to understand non-linear relationships: Decision Trees and Random Forests are good at

modeling non-linear relationships between features and the target variable, because they have many

decision nodes. GaussianNB is a Linear classifier and therefore will not fit very well to data sets that do not

have a linear relationship between features which in turn will cause it to have lower accuracy and recall.

Performance on Imbalanced Datasets: Decision Trees and Random Forests are better at dealing with

imbalanced datasets, but only if used in conjunction with techniques such as class weighting or resampling.

Gaussian Naive Bayes could have some problems in those cases, because it is probabilistic in nature and

tends to favor the majority class.

5. Discussion

5.1 Proposed System

Techniques and tools designed to give developers additional capabilities have multiplied over the past few

decades in an attempt to improve development processes, reduce expenses, and increase productivity. But

in addition to these cutting-edge tools, appropriate software development processes are also essential. For a

software project or application to be successful, selecting the appropriate technique is essential. How the

development and testing procedures go is determined by the approach that is chosen. A development

technique is often used by IT organizations in accordance with the nature of the project or product being

created. This choice isn't always easy to make, though. Frequently, the selected technique proves to be

inappropriate, resulting in misunderstandings and inefficiencies throughout the process of development.

Time, money, and resources are worthless as a result of this. In order to overcome this challenge, software

developers must be given direction on which methodology to choose based on a variety of project

parameters. As a result, a recommendation system that makes recommendations regarding the best

methodology for a particular project or product is required. The suggested methodology includes

developing a recommender model that will gather input from the teams of developers and customers/users

and then use that information to determine which software development methodology is best for the project

or product development process.

The recommendation system that we propose for the selection of the SDE is easy to use, can be easily

implemented in the existing environment, and provides API compatibility option, tunable parameters, and

training options. Limitations in deployment include people’s resistance to change, data quality problems,

technical integration problems, resource shortages, scaling problems, and the need for continuous

maintenance and users’ training. These are some of the limitations that if dealt with using

changemanagement and adequate resource deployment will aid the implementation of the system and make

the most of the available opportunities.

5.2 Existing System

Recommendation systems can work well with requirements elicitation, as demonstrated by Faiz Akram's

research. These systems provide predictions about the needs of stakeholders based on their preferences for

various requirements kinds through collaborative filtering. That's kind of like when you purchase online

and the website makes product recommendations based on your past preferences. This system assists in

resolving issues such as determining the needs of stakeholders during the requirements collecting phase

and automating the process of selecting methods for gathering those needs [53].

 21 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

Liang Wei developed four recommendation algorithms in 2021 that are freely accessible to all users. These

systems assist users in selecting the appropriate software tools by taking into account factors such as

previous tool usage and type of work. These systems can recommend which tools to use, for instance, if

you're managing a project and need to keep track of tasks, communicate, manage code, and write papers.

Liang Wei categorized these tools according to their capabilities and then used that information to provide

recommendations through a rule-based framework [54].

Software developers are able to benefit from recommendation algorithms developed by Juri Di's work on

CROSSMINER in 2021. At different stages of development, these algorithms provide recommendations

on what code functions are required, how to use third-party tools, and which ones to use. They had to deal

with issues such a lack of data, insufficient beginning points, defining what constitutes a good idea, and

how to evaluate if the suggestions are effective in order to come up with these recommendations [55].

Michael B. and his group built a system to suggest project management techniques in 2022. This system

determines if an algorithm can select the optimal course of action in a given circumstance. They also

established protocols to increase the flexibility and agility of development. Imagine, then, having a tool that

not only helps the development process become more flexible and agile overall, but also recommends the

best approaches to manage a project [56].

5.3 comparison between the proposed system and existing system

All Features in one system: The new system brings together functions from different recommendation

systems into one platform. Existing systems often focus on specific areas like tool selection or requirements

gathering. In contrast, this model tackles both the choice of software development methods and the specific

process models within those methods. This complete approach makes sure users get customized advice that

takes into account many aspects of their projects [16].

User Data and Flexibility: The new system lets users or IT teams enter key details about their projects. It

then uses this information to suggest the best software development method and suitable process model.

This flexibility is key because it matches the advice to each project's unique factors and needs, which many

current systems can't do.[16]

Smart Learning: The new system uses smart learning techniques to make better decisions. It looks at

different project details and what users like to give more accurate and useful advice. This is better than

old systems that might use fixed rules or past data without the ability to learn and change over time.[16]

overcoming Research Gap: Current methods often fail to offer a full recommendation system to help

developers pick a specific method for software projects. The suggested system bridges this gap. It

provides a two-step recommender model. This model guides users from first choosing an approach to

picking a specific model. This improves the overall output and success of the software development

process [4][16].

Focusing on Project Success: The suggested system stresses how important it is to pick the right method

for project success. It knows that the choice of development technique affects the development and testing

processes. It aims to cut down on mix-ups and waste that can happen from picking the wrong method

[15][16].

 Navigating Software Development Purvi Sankhe 22

Nanotechnology Perceptions 20 No. S15(2024) 1-31

Proposed system offers a full flexible, and machine learning-based approach to select best appropriate

software development methods. It challenges the limits of current systems and enhancements the overall

project management experience.

5.4 Limitations of existing system over proposed system

After researching existing systems, it's clear that there isn't one that can guide users on both choosing the

right software development method and then picking the specific process model under that method. Some

systems help with selecting techniques for gathering software requirements, while others aid in various

stages of development like choosing tools, documenting, figuring out necessary code functions, and selecting

third-party tools. Another system assists in picking the right software tools based on past usage and the type

of work.

Figure 15 shows the novelty of proposed system. It combines all the functionalities of existing

recommendation system into one recommendation system. Users or IT teams just need to provide some key

information, and the system will recommend the best software development method and the suitable process

model for their project.

5.4.1 shortcomings of current systems and how the proposed model addresses these issues:

The Proposed System tackles several specific weaknesses of existing systems in the area of software

development methodology selection. Here are the main weaknesses and how the proposed model

overcomes them:

1. Limited scope of recommendation:
Weakness: Many current systems zero in on particular aspects of the software development process, like

tool selection or requirements gathering. They fail to give a full picture that includes methodology selection.

Proposed Model solution: The suggested model combines both methodology and process model

suggestions into one system. This all-encompassing approach lets users get custom guidance that covers all

key aspects of their projects helping them make better-informed choices [15].

2. Static Decision-Making:
Weakness: Current systems often depend on fixed rules or old data, which can make it hard for them to

adjust to new project factors or changing needs. This can result in out-of-date or irrelevant suggestions.

Figure 15: Comparison of Exiting System & Proposed System

 23 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

Proposed Model solution: By using machine learning algorithms, the suggested model can look at up-to-

the-minute data and user inputs to give flexible suggestions. This ability to adapt makes the suggestions

more relevant and accurate so they fit current project needs better [16][15].

3. Lack of Proper Guidance:
Weakness: Current systems do not fully facilitate the user in their selection process, with most users

choosing methodologies based on very little background or support information.

Proposed Model Solution: The proposed two-phase recommender model supports the user from the

selection of an appropriate methodology for a given project based on initial project parameters through to

finer methodology selection. This structured guidance of methodology selection enables the user to better

deal with the intricacies of this process [16].

4. Absence of Adequate Consideration of Project-Specific Variables:
Weakness: All the parameters influencing methodology selection, like team dynamics, stakeholder

preference, and project complexity, which are project-specific variables, are not appropriately considered

in many of the available systems.

Propose Model Solution The proposed model takes into consideration a wide scale of project-specific

factors including type, complexity, scope, available resources, and preferences of the stakeholders. With

this consideration, recommendations are closely aligned with the actual needs and constraints of the project.

5.5 scenarios demonstrating the advantages of Proposed Model:

Following are the few scenarios that clearly demonstrate the advantages of integrating multiple

functionalities into one recommendation system.

Scenario 1: Startup Developing an iPhone Application
Context: A client has approached a startup to design an iPhone mobile application with specific

requirements and wanted it to be executed within the imposed short time frame.

Limitation in Current System: the team uses some of these tools separately to select methodologies and

another tool to select appropriate development tools.

The advantage of the proposed model is that the recommendation system will allow inputs, such as project

parameters, e.g., complexity of the mobile app, number of people in the team, and deadline. A well- rounded

recommendation from such input would consider both the Agile methodology, as well as application-

specific tools like JIRA as the project management tool and Git as the source control tool, among others,

which support Agile practices. This reduces time in making decisions and will ensure all recommendations

made are integrated and relevant to the project at hand.

Scenario 2: Large Organization with Heterogeneous Projects
Background: A large organization is undertaking software projects in different departments with different

prerequisites and constraints.

Current System Limitation: Different methodologies with differences in requirements gathering among

various systems of every department have caused inconsistencies and deficiencies in standardization across

projects.

Proposed Model Advantage: The integrated system will provide a common platform where all departments

can input their project specifics. Example: A department implementing a complicated enterprise application

may receive recommendations of an appropriate methodology, such as Spiral, and the specific process

models involving risk management strategies by the needs of the department. This standardization will

thereby help improve collaboration and knowledge sharing within departments and enhance the overall

efficiency of project management.

Scenario 3: Transitioning Team to Agile

Context: The traditional software development team is transitioning towards Agile methodologies to better

project outcomes.

 Navigating Software Development Purvi Sankhe 24

Nanotechnology Perceptions 20 No. S15(2024) 1-31

Current System Limitation: The team has separate learning resources to understand Agile methodologies

and tool selection resources which supports Agile practices; it makes steep learning curve and probability

of aligned tool usage.

Integrated Recommendation System Proposed Model Advantage: This system not only recommends Agile

methodologies like Scrum but also trains the team about some best practices in addition to recommending

a few highly suggested tools like Trello for task management, Slack for communication, all of them in one

place. This integral support makes it easy for the team to adjust while ensuring they actually know what

methodology to use and which tools to implement.

Scenario 4: A Project with Evolving Requirements
Context: A software project is a dynamic environment where changes in requirements continually emerge

because of stakeholder feedbacks.

Current System Limitation: The team relies on a static recommendation system that does not adapt to

changing project conditions, leading to potential mismatches between the chosen methodology and the

evolving project needs.

The integrated system continued to analyze the data of a project and some feedback from a stakeholder,

thereby adjusting real-time recommendations that were consistent with the analysis. For example, if the

scope of the project was expanded, the system might recommend adjusting from a waterfall approach to

more agile methodologies with certain tools that enhance iteration-based development. This allows the

project to operate within the expectations of the stakeholders and respond appropriately to change.

Integrating multiple functions into a single recommendation system increases efficiency, consistency, and

adaptability, ultimately improving project outcomes and collaboration among team members.

5.6 how developers or IT teams would benefit from the proposed recommendation system

Here are the use cases that show how developers or IT teams will benefit from the proposed

recommendation system on the selection of software development methodologies:

Use Case 1: Development of mobile applications in a start-up.

Scenario: A start-up company plans to build a mobile application integrated with a new service. The

workforce comprises a few junior developers who have no prior-experience in mobile app development.

How the system works:

Input Parameters: The group inputs input fields into the system such as type of the project (mobile

application), number of the team (five developers), duration of the project (three months) and financial

limits.

Recommendation: The system proposes Agile in the Scrum fashion considering the size and need for

development iteration involving end user.

Outcome: The team embraces Scrum which enables them to work in time boxed sprints, receive feedback

regularly and incorporate changes with ease. This results to the app being launched to the market within the

set time frame and budget thus improving the morale of the team members as well as the project

stakeholders.

Use Case 2: Revamping Enterprise Software Situation:

Scenario: A large organization with a great many departments needs a number of modifications to the

current ERP system. This undertaking is cumbersome since it has an implication on many departments and

requires involvement from all parties.

How the System Assists:

Input Parameters: The project manager enters several parameters: type of work (considered as complex),

number of participants (high) and a reasonable time limit (12 months).

Recommendation: Regarding the system, it is recommended that one uses the Spiral model because it

promotes a sequential mode of developing and managing risk.

Outcome: With the help of the risks controlling in Spiral model, it becomes possible to minimize risks

and, at the same time, many departments can share their opinion and the team provide the product that

 25 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

meets the expectations of different stakeholders. This in its turn leads to some reduction of complex

operations, and the general result obtained will be more acceptable.

These use cases illustrate how the proposed recommendation system can provide tailored guidance to

developers and IT teams based on specific project parameters. By leveraging the system, teams can make

informed decisions about the most suitable methodologies, leading to improved project outcomes, enhanced

collaboration, and more efficient use of resources. The ability to adapt recommendations based on real-time

data and project needs ensures that the system remains relevant and valuable in diverse development

scenarios.

5.7 potential limitations of the proposed recommendation system.

Possible Limitations of the Proposed Recommendation System
Dependence on Input Quality: The system depends on the nearby and correct project parameters. Writing

recommendations can be affected by the quality of the input in a way that does not necessarily help the

project succeed.

Complexity of Project Variables: There are many aspects in running a software project such as the team on

board, the stakeholders, and many more conditions and preferences. It may not be able to identify all these

complexities; this means that the recommendations generated in the project may not be as precise.

Limited Methodologies: The system may favor a set of SDM that receive most attention and adoption today,

or which are widely used, and which might not necessarily be the best for a given project. This limitation

may help minimize users’ flexibility.

Static Recommendations: The results in the system might also be based on the first inputs that were given

and might not refresh with continual change in project circumstances. This may have given out dated advice

in case the whole project changes during its life cycle.

User Expertise: For the second limitation, the recommendations provided by the system may be quite

abstract and for the new users of the system, such recommendations may be more difficult to interpret,

which leads to the improper usage of methodologies. As is often the case with applications, the most benefit

is probably going to be derived from it by those who have used it before on a regular basis.

Integration Challenges: Despite the fact that these tools were intended to be integrated with other software,

minor problems like data incompatibility or different formats could hamper integration.

Resource Intensity: Such a system will need to be created and sustained, both of which take time and require

staff and money, the latter of which may not be available in small design teams or less well- funded

companies.

Over-Reliance: Some of the negative aspects that can be associated with teams might include the fact that

over reliance of the team to the system might lead to a reduction in the overall critical thinking and decision-

making processes that might be subscribed with the different teams. While using the system, the users need

to apply their knowledge and at the same time, not blindly follow the recommendation of the system.

Ethical and Bias Considerations: A range of prejudicial programming biases could occur as the algorithms

of the system tended to encode summaries consistent with the historical data fed into the system, or with

the inputs provided by users, wherein the end solutions tend to favor certain methodologies than others.

Scalability Issues: Depending on the general number of organizations and specific project volumes the

system has to grow. Depending on its design, the system might fail to give indication of performance

problems that arise from the increased amount of data or more users reducing its reliability.

5.8 Challenges in the Proposed Recommendation System

challenges in implementing a recommended system are as below:
Data Availability: It is important for the system to use accurate and detail information about the projects.

Lack of structured, or at best, fragmented historical data diminishes the accuracy of recommendations.

Indicators such as project scope and team characteristics are important; however, if not

 Navigating Software Development Purvi Sankhe 26

Nanotechnology Perceptions 20 No. S15(2024) 1-31

consistently gathered within the system, they may produce fewer valuable outputs. It is challenging to take

a snapshot-in-time data and provide recommendations as they change as a project progresses over time.

Handling Increased Data Volume: As the numbers of projects increase, a similar increase must be

reflected by the system while serving the expected quality.

Algorithm Complexity: While complex models may extend the recommendation range and precision, they

are portrayed as weak points due to high computational demand, degradation of system performance. User

Load Management: It should support many users and ideally do so effectively irrespective of the size of a

company.

Generalizability to Different Projects: Diversity of Methodologies, the system should be able to contain

different methodologies including Waterfall, Agile and provide recommendations in relation to different

projects.

Varied Project Contexts: It is important for recommendations to consider industry requirements besides

organizational cultures to identify if projects, meeting such needs should be considered.

Adaptability to Emerging Trends: The system has to be consistent with the contemporary paradigm shifts

of software development.

User Expertise: The system should be intelligent in such a way that it will not be misconstrued by the

advanced and the less experienced users.

Flexibility, data availability and generalizability concerns seem to represent the main areas that need to be

enhanced for the system to function effectively. By addressing these challenges, the system can provide

information for different software development projects, which should improve results in this field.

5.9 Assumptions Made During the Development Process

During the development of the proposed recommendation system for selecting software development

methodologies, several assumptions were made that could impact the system's performance. Recognizing

these assumptions is essential for understanding the potential limitations and areas for improvement in the

system. Below are key assumptions that were considered:

1. Availability of Historical Data

Assumption: It is assumed that organizations have access to sufficient historical project data, including

metrics related to project complexity, team composition, and past methodology effectiveness.

Impact: If organizations lack comprehensive historical data or if the data is of poor quality, the system's

ability to generate accurate and relevant recommendations may be compromised.

2. Consistency in Project Parameters
Assumption: The system assumes that project parameters (e.g., scope, complexity, resource availability)

remain relatively stable throughout the project lifecycle.

Impact: In reality, project parameters can change frequently due to evolving requirements or external

factors. This variability may lead to recommendations that are no longer applicable, affecting the system's

reliability.

3. User Familiarity with Methodologies
Assumption: It is assumed that users have a basic understanding of various software development

methodologies and their characteristics.

Impact: If users lack familiarity with the methodologies, they may misinterpret the recommendations or fail

to provide accurate input data, leading to suboptimal decision-making.

4. Uniformity of Team Dynamics
Assumption: The system assumes that team dynamics and collaboration styles are relatively uniform across

different projects and organizations.

Impact: Variability in team dynamics, such as communication styles and collaboration practices, can

influence the effectiveness of different methodologies. The system may not account for these differences,

potentially leading to inappropriate recommendations.

5. Static Nature of Methodology Effectiveness

 27 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

Assumption: It is assumed that the effectiveness of specific methodologies remains constant over time and

across different projects.

Impact: The effectiveness of methodologies can vary based on context, industry, and project type. If the

system does not adapt to these changes, it may provide outdated or irrelevant recommendations.

6. Simplified User Input

Assumption: The system assumes that users can provide simplified input regarding project parameters

without needing extensive training or guidance.

Impact: If users find the input process complex or confusing, they may provide incomplete or inaccurate

information, which can negatively affect the quality of the recommendations.

7. Homogeneity of Stakeholder Preferences

Assumption: The system assumes that stakeholder preferences and requirements are relatively

homogeneous within a project.

Impact: In reality, stakeholders may have diverse and sometimes conflicting preferences, which can

complicate the recommendation process. The system may struggle to reconcile these differences, leading

to less effective recommendations.

The assumptions made during the development of the recommendation system can significantly impact its

performance and effectiveness. By acknowledging these assumptions, developers and users can better

understand the system's limitations and work towards mitigating potential issues. Continuous evaluation

and refinement of the system, along with user feedback, will be essential for addressing these assumptions

and enhancing the overall performance of the recommendation system.

6. Conclusion& Future Work

This Research article proposes recommendation system for choosing the best software development

methodology based on the particular data parameters and type of project. It tackles the decisive problem of

method selection by putting forth a two-phase recommender model, which provides direction from initial

approach selection to particular model selection. By utilizing machine learning methods, the suggested

approach improves decision-making by taking a variety of project aspects and preferences into account.

Existing systems concentrate on particular areas such as tool selection or requirements elicitation; in

contrast, the proposed model is unique in that it addresses methodology as well as recommendations for

process models. By streamlining the development process, this integrated solution seeks to ensure efficacy,

efficiency, and alignment with project goals. Such all-encompassing recommendation systems are

becoming more and more necessary as software development progresses to effectively face the challenges

of project management and produce positive results.

Each approach to software development has advantages and disadvantages. For projects with dynamic

needs and early user involvement, rapid application development, or RAD, is a good fit. With prototyping,

improvements may be made quickly and projects with changing demands can benefit greatly. Tasks with

ambiguous objectives can be effectively divided into manageable segments using the Spiral approach.

Relentless client collaboration and iterative software development are the hallmarks of Extreme

Programming. To meet client requests, Scrum places a strong emphasis on collaboration and iterative

sprints. Workplace collaboration, comprehension of project requirements, and the delivery of superior

features are prioritized in feature-driven development. Selecting the best approach for a project depends on

its requirements and associated risks.

Future work could involve expanding the analysis to include additional software development

methodologies within both traditional and agile approaches, integrating them into a recommendation system

for IT developers. The recommendation system could be designed to suggest multiple models, potentially

including hybrid approaches, aimed at developing higher-quality software. This enhancement aims to

provide developers with a more comprehensive and effective tool for selecting suitable methodologies for

their projects.

 Navigating Software Development Purvi Sankhe 28

Nanotechnology Perceptions 20 No. S15(2024) 1-31

6. References

[1] Saleh SM. Comparative Study on the Software Methodologies for Effective Software Development.

International Journal of Scientific and Engineering Research.2017;8(4):1018-1025, May 2017. Available

online:

https://www.researchgate.net/publication/316753858_Comparative_Study_on_the_Software_Methodolog

ies_for_Effective_Software_Development.

[2] Gurung G.,Shah R.,Jaiswal D.Software Development Life Cycle Models-A Comparative Study.

International Journal of Scientific Research in Computer Science, Engineering and information

Technology.202;DOI: 10.32628/CSEIT206410.

[3] Samuel Gbli T. Empirical Study of Agile Software Development Methodologies: A Comparative

Analysis. Asian Journal of Research in Computer Science. 2024; 17 (5): 30-42, DOI:

10.9734/AJRCOS/2024/v17i5436.

[4] Hossain MI. Software Development Life Cycle (SDLC) Methodologies for Information Systems

Project Management. International Journal for Multidisciplinary Research.2023;5(5).

http://dx.doi.org/10.36948/ijfmr.2023.v05i05.6223.

[5] Alam I, Sarwar N, Noreen I. Statistical analysis of software development models by six-pointed star

framework. PLoS ONE. 2022; 17(4): e0264420. https://doi.org/10.1371/journal. pone.0264420.

[6] Mishra A.,Alzoubi Y. Structured software development versus agile software development: a

comparative analysisInt J Syst Assur Eng Manag (August 2023) 14(4):1504–1522.

https://doi.org/10.1007/s13198-023-01958-5.

[7] Sankhe P, Dixit M. A Review and Survey of Software Development Methodologies. International

Journal of Creative Research Thoughts.2023;11(5): 2320-2882. Available online:

ijcrt.org/papers/IJCRT2305598.pdf.

[8] Hossain M.I. Software Development Life Cycle (SDLC) Methodologies for Information Systems

Project Management. International Journal for Multidisciplinary Research (IJFMR).2023;5(5). DOI:

10.36948/ijfmr.2023.v05i05.6223

[9] Risener, K. (2022). A Study of Software Development Methodologies. Computer Science and

Computer Engineering Undergraduate Honors Theses Retrieved from

https://scholarworks.uark.edu/csceuht/103.

[10] Otieno M. Odera D. Ounza J. Theory and practice in secure software development lifecycle: A

comprehensive Survey. World Journal of Advanced Research and Reviews, 2023, 18(03), 053–078.

https://doi.org/10.30574/wjarr.2023.18.3.0944.

[11] Fagarasan C,Popa O, Pisla A, Cristea C. Agile, waterfall and iterative approach in information

technology projects. IOP Conf. Ser.: Mater. Sci. Eng.2021; 1169 012025. doi:10.1088/1757-

899X/1169/1/012025.

[12] Alam I, Sarwar N, Noreen I Statistical analysis of software development models by six-pointed star

framework. PLoS ONE:2022; 17(4): e0264420. https://doi.org/10.1371/journal. pone.0264420.

[13] Dilmini I.G.U.,Rathnayaka, Kumara BTGS. A Review of Software Development Methodologies in

Software Engineering. International Journal of Advance Research and Innovative Ideas in

Education.2020;6(4). Available online:

https://ijariie.com/AdminUploadPdf/A_Review_of_Software_Development_Methodologies_in_Software

_Engineering_ijariie12553.pdf.

[14] Narayan R. STUDY OF VARIOUS SOFTWARE DEVELOPMENT METHODOLOGIES. EPRA

International Journal of Multidisciplinary Research (IJMR).2021;7(4). DOI: 10.36713/epra2013.

[15] Havstorm, T., Karlsson, F. Software developers reasoning behind adoption and use of software

development methods – a systematic literature review International journal of information systems and

project management,2023; 11(2): 47-78 https://doi.org/10.12821/ijispm110203.

[16] M. Weber, Economy and society. Berkeley, CA: University of California Press, 1978.

http://www.researchgate.net/publication/316753858_Comparative_Study_on_the_Software_Methodolog
http://dx.doi.org/10.36948/ijfmr.2023.v05i05.6223
https://ijcrt.org/papers/IJCRT2305598.pdf
https://scholarworks.uark.edu/csceuht/103
https://doi.org/10.30574/wjarr.2023.18.3.0944
https://ijariie.com/AdminUploadPdf/A_Review_of_Software_Development_Methodologies_in_Software_Engineering_ijariie12553.pdf
https://ijariie.com/AdminUploadPdf/A_Review_of_Software_Development_Methodologies_in_Software_Engineering_ijariie12553.pdf
https://doi.org/10.12821/ijispm110203

 29 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

[17] Hafeez A.,Hassan S., Javeed S.,Quershi B.,Aziz A.,Furqan M.,and Hussain I. Software Engineering

Process Models Strengths and Limitations with SimSE. Indian Journal of Science and Technology,

2019;12(31). DOI: 10.17485/ijst/2019/v12i31/146617.

[18] Music, Semir, "Selecting a Software Development Methodology Based on Project Characteristics"

(2018). Graduate Research Papers. 3884. https://scholarworks.uni.edu/grp/3884.

[19] Gurianov D., Myshenkov K., Terekhov V. Software Development Methodologies: Analysis and

Classification.5th International Youth Conference on Radio Electronics, Electrical and Power Engineering

(REEPE).IEEE xplore. March 2023; https://doi.org/10.1109/REEPE57272.2023.10086852.

[20] Jiujiu Yu.Research Process on Software Development Model.ACMME IOP Publishing IOP Conf.

Series: Materials Science and Engineering 394 ;2018: 032045 doi:10.1088/1757-899X/394/3/032045.,

2018.
[21] Saranya P, Monica V, Priyadharshini J. Comparative Study of Software Development Methodologies.

International Research Journal of Engineering and Technology (IRJET).2017;4(5). Available online:

https://www.irjet.net/archives/V4/i5/IRJET-V4I529.pdf.

[22] Saravanos, A.; Curinga, M.X. Simulating the Software Development Lifecycle: The Waterfall Model.

Appl. Syst. Innov. 2023; 6, 108. https://doi.org/10.3390/asi6060108.

[23] Adenowo A, Adenowo B. Software Engineering Methodologies: A Review of the Waterfall Model

and ObjectOriented Approach. International Journal of Scientific & Engineering Research. 2020 July; 4(7).

[24] ide E. T. Akinsola, Afolakemi S. Ogunbanwo, Olatunji J. Okesola, Isaac J. Odun-Ayo, Florence D.

Ayegbusi & Ayodele A. Adebiyi,” Comparative Analysis of Software Development Life Cycle Models

(SDLC)”, Computer Science On-line Conference CSOC 2020: Intelligent Algorithms in Software

Engineering August 2020 pp 310–322. DOI: 10.1007/978-3-030-51965-0_27.

[25] Herawati S., Negara Y., Febriansyah H., and Fatah D. Application of the Waterfall Method on a Web-

Based Job Training Management Information System at Trunojoyo University Madura. E3S Web of

Conferences 328, 04026 (2021). https://doi.org/10.1051/e3sconf/202132804026.

[26] Daraghmi Y.-A., Daraghmi E.-Y. RAPD: Rapid and Participatory Application Development of

Usable Systems. IEEE Access. Sep.2022; 10. doi: 10.1109/ACCESS.2022.3203582.

[27] Sasmito GW, Wibowo D, Dairoh, Implementation of Rapid Application Development Method in the

Development of Geographic Information Systems of Industrial Centers. Journal of Information &

communication convergence engineering. Sep.2020; 18(3):194-200.

[28] Bjarnason E, Lang F, Mjöberg A. An empirically based model of software prototyping: a mapping

study and a multi-case study. Empirical Software Engineering. 2023; 28:115.

Doi:https://doi.org/10.1007/s.10664-023-10331-w.

[29] Susanto A., Meiryani.System Development Method with The Prototype Method”, International

Journal of Scientific & Technology Research.2019;8(7). Available online: http://www.ijstr.org/final-

print/july2019/System-Development-Method-With-The-Prototype-Method.pdf

[30] Doshi D., Jain L.,Gala K.Review of The Spiral Model and Its Applications. International Journal of

Engineering Applied Sciences and Technology.2021;5(12): 311-316. Available online:

https://www.ijeast.com/papers/311-316,Tesma512,IJEAST.pdf.

[31] Doshi D, Jain L, Gala K. REVIEW OF THE SPIRAL MODEL AND ITS APPLICATIONS.

International Journal of Engineering Applied Sciences and Technology. 2021; 5(12). 311-316.

[32] Komatsu T, Nagatani K, Hirata Y. Spiral model development of retroftted robot for tele-operation of

conventional hydraulic excavator. ROBOMECH Journal springerseries.2023; 10:28.

https://doi.org/10.1186/s40648-023-00267-7.

https://scholarworks.uni.edu/grp/3884
https://doi.org/10.1109/REEPE57272.2023.10086852
http://www.irjet.net/archives/V4/i5/IRJET-V4I529.pdf
https://doi.org/10.3390/asi6060108
https://doi.org/10.1051/e3sconf/202132804026
http://www.ijstr.org/final-print/july2019/System-Development-Method-With-The-Prototype-Method.pdf
http://www.ijstr.org/final-print/july2019/System-Development-Method-With-The-Prototype-Method.pdf
http://www.ijeast.com/papers/311-316%2CTesma512%2CIJEAST.pdf
https://doi.org/10.1186/s40648-023-00267-7

 Navigating Software Development Purvi Sankhe 30

Nanotechnology Perceptions 20 No. S15(2024) 1-31

[33] Alsharari AS, Nazmee W, Zainon W, Letchmunan S. A Review of Agile Methods for Requirement

Change Management in Web Engineering. International Conference on Smart Computing and Application

(ICSCA). 2023 IEEE; DOI: 10.1109/ICSCA57840.2023.10087734.

[34] Moloto M., Harmse A, Zuva T, "Impact of Agile Methodology Use on Project Success in

Organizations - A Systematic Literature Review," in Software Engineering Perspectives in Intelligent

Systems. CoMeSySo 2020. Advances in Intelligent Systems and Computing, R. Silhavy, P. Silhavy, and

Z. Prokopova Eds. Cham: Springer, 2020, pp. 267- 280.
[35] Edison H, Wang X,Conboy K. Comparing Methods for Large-Scale Agile Software Development: A

Systematic Literature Review. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.2022 August;

48(8). http://dx.doi.org/10.1109/TSE.2021.3069039.

[36] Sofia F,Barata P, Determinants of E-Commerce, Artificial Intelligence, and Agile Methods in Small-

and Medium-Sized Enterprises. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT.2023;

0018-9391.https:// doi 10.1109/TEM.2023.3269601.

[37] Akhtar A, Bakhtawar B, Akhtar S, EXTREME PROGRAMMING VS SCRUM: A COMPARISON
OF AGILE MODELS. International Journal of Technology, Innovation and Management (IJTIM). 2022;

2(2).

Online at: https://doi.org/10.54489/ijtim.v2i1.77
[38] Manisha, Khurana M, Kaur K.Impact of Agile Scrum Methodology on Team’s Productivity & Client

Satisfaction- A Case Study. IEEE, 3rd International Conference on Advances in Computing,

Communication Control and Networking (ICAC3N).2021; DOI: 10.1109/ICAC3N53548.2021.9725505,

INSPEC Accession Number: 21666322.

[39] Saeedi, K.; Visvizi, A. Software Development Methodologies, HEIs, and the Digital Economy. Educ.

Sci. 2021, 11, 73. https://doi.org/10.3390/educsci 11020073.

[40] Lee, W.-T.; Chen, C.-H. Agile Software Development and Reuse Approach with Scrum and Software

Product Line Engineering. Electronics. 2023;12, 3291. https:// doi.org/10.3390/electronics12153291.

[41] Riady S, Sofi K, Shadiq J, Arifin R. selection of Feature Driven Development (FDD) Model in Agile

Method for Developing Information System of Mosque Management. Journal of Computer Networks,

Architecture and High Performance Computing. July 2022; 4(2).

https://doi.org/10.47709/cnahpc.v4i2.1469.

[42] Nawaz Z, Proposal of Enhanced FDD Process Model, I. J. Education and Management Engineering.

2021; 4, 43-50. DOI: 10.5815/ijeme.2021.04.05

[43] Nalendra A K. Rapid Application Development (RAD) model method for creating an agricultural

irrigation system based on internet of things. The 5th Annual Applied Science and Engineering Conference

(AASEC 2020) IOP Conf. Series: Materials Science and Engineering 1098. 2021;

022103.doi:10.1088/1757-899X/1098/2/022103.

[44] Saari M, Soini J, Grönman J, Rantanen P., Mäkinen T, Sillberg P. Modeling the Software Prototyping

Process in a Research Context. Information Modelling and Knowledge Bases XXXII,

doi:10.3233/FAIA200823.

[45] Shrivastava A, Jaggi I, Katoch N, Gupta D, Gupta S. A Systematic Review on Extreme

Programming. Journal of Physics: Conference Series 1969. 2021; 012046. IOP Publishing

doi:10.1088/1742-6596/1969/1/012046.

[46] Sankhe P, Dixit M, Bano T, Mathur S. Review of an Agile Software Development Methodology with

SCRUM & Extreme Programming. IEEE International Conference on Current Development in

Engineering and Technology.2022;978(1):5415-5. https://doi.org/10.1109/CCET56606.2022.10080640.

[47] Alexander Dada O, Sanusi I. The adoption of Software Engineering practices in a Scrum

environment. African Journal of Science, Technology, Innovation and Development.2022;14(6):1429-

1446, DOI:10.1080/20421338.2021.1955431.

http://dx.doi.org/10.1109/TSE.2021.3069039
https://doi.org/10.54489/ijtim.v2i1.77
https://doi.org/10.3390/educsci%2011020073
https://doi.org/10.1109/CCET56606.2022.10080640

 31 Purvi Sankhe Navigating Software Development

Nanotechnology Perceptions 20 No. S15 (2024) 1-31

[48] Hanslo R, Tanner M, Machine Learning models to predict Agile Methodology adoption. Proceedings

of the Federated Conference on Computer Science and Information Systems.2020;697–704. https://doi:

10.15439/2020F214.

[49] Jain H, Khunteta A, Srivastava S.Churn prediction in telecommunication using logistic regression and

 logit boost. Procedia Computer Science.2020;167: 101-112.

https://doi.org/10.1016/j.procs.2020.03.187.
[50] Gadekallu T, Khare N, Bhattacharya S, Reddy P, Maddikunta, In-Ho R, Alazab M. Early detection of

diabetic retinopathy using PCA-firefly based deep learning model.Electronics.2020;9(2):274.

https://doi.org/10.3390/electronics9020274.

[51] Suyal M, Goyal P. A Review on Analysis of K-Nearest Neighbor Classification Machine Learning

Algorithms based on Supervised Learning. International Journal of Engineering Trends and

Technology.2022 July; 70(7):43-48.https://doi.org/10.14445/22315381/IJETT-V70I7P205.

[52] Sarker I, Kayes A,Watters P.Effectiveness analysis of machine learning classification models for

predicting personalized context-aware smartphone usage. Springer Journal of Big Data. 2019 July;57.

https://doi.org/10.1186/s40537-019-0219-y.

[53] Akram F, Ahmad T, Sadiq M. Recommendation systems-based software requirements elicitation

process—a systematic literature review. Journal of Engineering and AppliedScience.2024;71(29)

https://doi.org/10.1186/s44147-024-00363-4.

[54] Wei L, Capretz L. Recommender Systems for Software Project Managers. Proceedings of the

Evaluation and Assessment in Software Engineering. 2021; 412-417,

https://doi.org/10.1145/3463274.3463951.

[55] Rocco JD, Ruscio DD, Sipio CD, Nguyen P, Rubei R, Development of recommendation systems for

software engineering: the CROSSMINER experience. Empirical SoftwareEngineering.2021;69(26).

https://doi.org/10.1007/s10664-021-09963-7.

[56] Michael B. Recommendation of Project Management Practices: A Contribution to Hybrid Models.

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT.2022December;69(6).

https://doi.org/10.1109/TEM.2021.3101179.

https://doi.org/10.3390/electronics9020274
https://doi.org/10.14445/22315381/IJETT-V70I7P205
https://doi.org/10.1186/s40537-019-0219-y
https://doi.org/10.1007/s10664-021-09963-7
https://doi.org/10.1109/TEM.2021.3101179

