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Abstract: Protocol prediction in network traffic allows for smarter, more effective network 
management by anticipating the types of data that will flow through the network and 
regulating resources consequently.The prominence is on using Optuna, a framework for fine-
tuning model configuration parameters that maximize model performance. A deep learning-
based model that was tuned for tasks involving the classification of network traffic is created 
using TensorFlow/Keras. In order to increase classification accuracy, a variety of model 
setup parameters by employing Optuna's effective search methods and pruning processes is 
implemented. This AI-based network traffic classification model attained high performance, 
with 90.48% accuracy, 90.70% precision, 90.47% recall, and a 90.52% F1-score. The final 
model showed that optimizing model configuration parameters improve network traffic 
prediction and categorization, as seen by the distinguished gains in accuracy and other 
evaluation metrics that it attained. 
 

1. Introduction: 

Network traffic has increased significantly due to the exponential expansion in internet usage.That is the 
reason, effective traffic classification and prediction are crucial for maintaining network security and 
quality of service (QoS). Network managers prioritize, secure, and improve network performance by 
using the classification of network traffic, which is essential for recognizing and controlling various types 
of traffic. However, standard classification techniques have difficulties due to the dynamic nature of 
network traffic, which is considered by a variety of applications and protocols. 

Today’s developments in artificial intelligence [1][2] have brought increasingly complex models, 
such as machine learning (ML) and deep learning (DL), to solve these issues. These models have 
demonstrated potential in managing difficult traffic patterns and attaining increased precision in 
classification. The selection of model configuration parameter commands the behavior of the learning 
algorithm and it has a significant influence on these models' performance. It is often time-consuming and 
ineffective to manually adjust the model configuration settings, particularly for deep learning models with 
lots of parameters. 

Within this framework, optimizing the model setup parameter [3] has become avital first step 
toward improving model performance. In order to optimize model performance through model 
configuration parameter adjustment, this research presents a novel way to AI-based network traffic 
classification and prediction. To enhance a deep learning model's classification accuracy, the tuning 
process using Optuna [17] [18], a state-of-the-art framework for optimizing model configuration 
parameters, is automated.  

Optuna[19] [20] has a number of benefits over conventional optimization techniques, such as 
itdefines by methodology that enables flexible and dynamic optimization and its strong pruning 
algorithms that prematurely end unproductive trials and conserve computing capacity. The efficiency of 
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the model for classifying network traffic is tried to improve as its use of adjusting parameters and show 
how fine-tuning model configuration parameters increase prediction accuracy. 

The paper is divided in following sections: The past work in network traffic classification and 
model configuration parameter optimization is reviewed in Section 2. The approach, which includes the 
Optuna-based optimization process, model design, and data pretreatment, is explained in Section 3. The 
optimized model's results are shown in Section 4, and the paper's conclusion and future research prospects 
are outlined in Section 5. 
By offering a thorough framework for classifying network traffic using neural network techniques and 
inevitably fine-tuning model configuration parameters within optuna framework, this research advances 
the area. The results is used to enhance network traffic management systems' accuracy and efficiency, 
which will ultimately improve network security and QoS.  
2. Related Work: 

With the goal of identifying the kind or purpose of Internet traffic, network traffic classification is an 
essential part of network administration and security. This review examines the range of approaches used 
in the classification of network traffic, emphasizing the progression from conventional methods to 
sophisticated machine learning and deep learning techniques. 
2.1. Traditional Traffic Classification Methods 

Conventional approaches for classifying network traffic are divided into payload based, port based, and 
statisticalbased methods [1]. These techniques are commonly used, still the growing usage of encryption 
and dynamic port allocation presents thoughtful difficulties. 

1. Port-based Classification: To identify apps, this method uses well-known port numbers. But as 
more programs service or use dynamic or non-standard ports, its efficacy has decreased [2].  

2. Payload-based Classification: This method distinguishes apps by examining the payload of 
packets. Method is accurate but it is inefficient for encrypted traffic and computationally 
challenging [2].  

3. Statistical-based Classification: This technique classifies traffic based on statistical characteristics 
of traffic flows, such as packet size and inter-arrival intervals. Encryption has less of an impact on 
it, but accuracy perhaps be an issue [2].  

2.2. Machine Learning Approaches 

More advanced techniques for classifying protocol for network traffic quality management have been 
used with the introduction of ML techniques. It makes use of data to learn and get better over time. 

1. Supervised Learning: Using labeled training data, algorithms have been used to classify traffic. 
These techniques do not work well with zero-day applications and necessitate big labeled datasets 
[3].  

2. Unsupervised Learning: Similar traffic patterns are grouped using clustering techniques like k-
means without any prior label. These techniques recognize novel forms of traffic, but challenging 
due to enormous use of internet in today’s era [3].  

3. Hybrid Approaches: Identifying zero-day applications is one area where combining supervised 
and unsupervised learningimprove robustness. To increase classification accuracy, the robust 
statistical traffic classification (RTC) scheme, for example, syndicates the two methods. 
[3][4][5].  

2.3. Deep Learning Techniques 

Deep Convolutional neural networks (CNN) and network-in-network (NIN) models are examples of deep 
learning models. They establishedpotential in managing encrypted and complex traffic patterns. 

1. CNN-based Models: These models achieve good classification accuracy by extracting features 
from traffic data using convolutional layers. They however computationally costly [6].  

2. NIN Models: By adding micro-networks after every convolution layer, NIN models improve local 
feature modeling. In order to reduce model complexity and achieve a balance between efficiency 
and accuracy, they additionally employ global average pooling [6] [7]. 

3. Hybrid Neural Networks: By applying dual-mode feature extraction, hybrid neural networks 
enhance classification performance by combining flow-level and packet-level characteristics [10]. 
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Despite progress, there are still a number of issues in classifying network traffic: 
1. Traditional and machine learning-based techniques face serious hurdles from the growing usage 

of encryption. To solve this problem, methods like hybrid neural networks and deep NIN models 
are being investigated [6] [10]. 

2. Biased models may result from imbalanced datasets. To lessen this issue, approaches including 
cost-sensitive learning and ensemble methods have been suggested [8]. 

3. The performance of DL-based classifiers is severely harmed by adversarial attacks. In order to 
create resilient models that able to survive such attacks, research is still being done [9]. 

Sophisticated ML and DL techniques have replaced more conventional port and payload-based 
approaches in the classification of network traffic. Even though there has been a lot of progress, issues 
still motivate study in this area. 
3. Methodology: 
This section explores the specific methods used to create the network traffic categorization for protocol 
prediction model with an emphasis on the mathematical underpinnings of the model, data preprocessing, 
model design, and model configuration parameter optimization using Optuna [20]. 87 features that were 
taken from IP flows will be used to classify network traffic. A deep learning framework optimized by 
supervised optuna [21] based model configuration parameters will be used to do this. Proposed 
methodology is as follows figure 3.1. 

 
Figure 1: Proposed Architecture for Network Traffic Classification 

 3.1. Dataset and Preprocessing 

The dataset [11] [12] [13] consists of 87 features that describe the characteristics of IP flows, which 
include: 

• Source and Destination IP Addresses (Nominal) 
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• Source and Destination Ports (Numeric) 
• Inter-arrival Times (Numeric) 
• Timestamp (DateTime) 
• Layer 7 Protocol (Application Class) 

Given the heterogeneous nature of the features, preprocessing steps are crucial to standardize the data and 
make it suitable for the neural network. 
Preprocessing Techniques: 

• Data Cleaning: Let 𝑋 be the feature matrix, where 𝑋 ∈ 𝑅𝑁×87 and 𝑁 represents the number of 
instances. The dataset undergoes cleaning to remove any null or corrupted entries. Define a 
binary mask matrix 𝑀 ∈ {0,1}𝑁×87  where 𝑀𝑖𝑗=1 if 𝑋𝑖𝑗is valid, otherwise𝑀𝑖𝑗 = 0. The cleaning 
operation is formalized as: 𝑋𝑐𝑙𝑒𝑎𝑛 = 𝑋 ∘ 𝑀 
where ∘ denotes the Hadamard product. 

• Missing Value Imputation: Missing values in the feature matrix 𝑋𝑐𝑙𝑒𝑎𝑛 are imputed using a 
strategy such as mean imputation. If μ𝑗 denotes the mean of the 𝑗𝑡ℎ feature across all valid 

entries, the imputation operation for missing entries is given by: 𝑋𝑖𝑗 = μ𝑗𝑖𝑓𝑀𝑖𝑗 = 0 

• One-Hot Encoding: For nominal categorical features, one-hot encoding transforms each category 
into a binary vector. Let 𝑋𝑐𝑎𝑡 be a nominal feature vector with 𝐶unique categories. The one-hot 
encoding of 𝑋𝑐𝑎𝑡 results in a binary matrix 𝑋𝑜𝑛𝑒ℎ𝑜𝑡∈{0,1}𝑁×𝐶 where: 𝑋𝑜𝑛𝑒ℎ𝑜𝑡[𝑖, 𝑘] = 1𝑖𝑓𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑏𝑒𝑙𝑜𝑛𝑔𝑠𝑡𝑜𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑘 

 
• Normalization: To ensure all features contribute equally to the model, numerical features are 

normalized. For feature jj, normalization is defined as: 𝑋`𝑖𝑗  = 
𝑋𝑖𝑗−min ( 𝑋𝑖)max(𝑋𝑗)−min ( 𝑋𝑗) 

 resulting in a transformed feature matrix 𝑋` ∈ [0,1]𝑁×87 
• Train-Test Split: The dataset is split into training 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛and test sets 𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡. The split 

ratio is set as 70% for training and 30% for testing. 
3.2. Model Architecture 

In order to effectively capture the associations between the 87 input features and the target class 
(application protocol), the model is a deep feedforward neural network. TensorFlow/Keras is used to build 
the architecture, and Optuna is used to optimize the model's setup parameters. 
Let the input feature matrix be 𝑋′ ∈ 𝑅𝑁×87, and the corresponding output class vector be 𝑌 ∈ 𝑅𝑁×𝐶where 𝐶 is thenumber of unique application classes. 
The neural network comprises an input layer, 𝐿 hidden layers, and an output layer. The transformations at 
each layer can be expressed as follows: 

• Input Layer: The input layer applies a linear transformation followed by a activation function. If 𝑊0∈𝑅87∗𝑑1 represents the weight matrix and 𝑏0∈𝑅𝑑1is the bias vector, the activation of the input 
layer is given by: ℎ1   = 𝑅𝑒𝐿𝑈(𝑋′𝑊0 + 𝑏0) 

  where ℎ1∈𝑅𝑁∗𝑑1 
• Hidden Layers: Each hidden layer applies a linear transformation followed by a ReLU activation 

function and dropout regularization. For the 𝑙 − 𝑡ℎ hidden layer, the transformation is: ℎ𝑙+1   = 𝐷𝑅𝑂𝑃𝑂𝑈𝑇(𝑅𝑒𝐿𝑈(ℎ𝑙𝑊𝑙 + 𝑏𝑙) 
 
WhereW𝑙∈𝑅𝑑𝑙+𝑑𝑙+1and 𝑏𝑙∈𝑅𝑑𝑙 represent the weight matrix and bias vector, respectively. The 
dropout function randomly sets a fraction of the activations to zero, controlled by a dropout rate 𝑝𝑙, to prevent overfitting: 
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    𝐷𝑟𝑜𝑝𝑜𝑢𝑡(ℎ𝑙+1) = ℎ𝑙+1 ⋅ 𝐷,              𝐷 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑙) 
 where D is a binary mask matrix. 

• Output Layer: The output layer applies a softmax activation function to produce class 
probabilities:     𝑦′ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑙𝑊𝑙 + 𝑏𝑙)) 

 where 𝑦′ ∈ 𝑅𝑁×𝐶 represents the predicted probabilities for each class. 
The softmax function is defined as: 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖)  =  𝑒𝑧𝑖∑ 𝑒𝑧𝑗𝐶𝑗=1  

ensuring that the output is a valid probability distribution. 
Loss Function: The model is trained using the categorical cross-entropy loss function, which measures the 
divergence between the predicted probabilities 𝑦’and the true labels 𝑦: 𝐿(𝑦, 𝑦 ′) = − 1𝑁 ∑ ∑ 𝑦𝑖𝑗log (𝐶

𝑗=1
𝑁

𝑖=1 𝑦′𝑖𝑗) 

where𝑦𝑖𝑗is a binary indicator (0 or 1) if class label j is the correct classification for instance i. 
Regularization:L2 regularization is applied to the weights to prevent overfitting by penalizing large 
weight values. The L2 regularization term is added to the loss function: 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 𝜆 ∑ ∣∣ 𝑊𝑙 ∣∣𝐿

𝑙=0  

where λ is the regularization strength. 
3.3Model configuration parameter Optimization with Optuna 

In order to effectively capture the associations between the 87 input features and the target class 
(application protocol), the model is a deep feedforward neural network. TensorFlow/Keras is used to build 
the architecture, and Optuna is used to optimize the model's setup parameters. 
Optimization Process: 

• Objective Function: The objective function, 𝑓(𝜃) is defined to train the model with a set of model 
configuration parameters 𝜃 and return the validation accuracy:     𝑓(𝜃) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑣𝑎𝑙(𝜃) 

 where θ includes parameters like the number of layers, neurons, learning rate, etc. 
• Sampler: Optuna employs the Tree-structured Parzen Estimator (TPE) sampler, which models the 

objective function probabilistically. The TPE uses Bayesian optimization to efficiently explore the 
model configuration parameter space by balancing exploration and exploitation:  𝜃𝑡+1 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝐸[𝑝(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑣𝑎𝑙 ∣ 𝜃)𝑞(𝜃) ] 
where 𝑝( 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑣𝑎𝑙 ∣∣ 𝜃 )is the likelihood of obtaining a high accuracy given the model 
configuration parameters 𝜃, and 𝑞(𝜃) is a prior distribution over the model configuration 
parameters. 

• Pruning: Optuna integrates pruning mechanisms, where unpromising trials are terminated early 
based on intermediate validation results. Let J be the number of epochs. If, after epoch j, the 
validation accuracy 𝐴𝑗 is lower than a predefined threshold 𝑇, the trial is pruned: 𝑃𝑟𝑢𝑛𝑒 𝑖𝑓𝐴𝑗 < 𝑇 

• Search Space: The search space for model configuration parameters is defined as follows: 
   Number of layers 𝐿 ∈ [6,8] 
   Neurons per layer 𝑑𝑙 ∈ [512,1024] 
   Learning rate 𝜂 ∈ [1𝑒 − 4,1𝑒 − 3] 
   Regularization strength 𝜆 ∈ [1𝑒 − 5,1𝑒 − 2] 
   Dropout rate 𝑝𝑙 ∈ [0.2,0.5] 
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The optimal model configuration parameters found through Optuna are used to retrain the model on the 
full training set. 
3.4. Model Training and Evaluation 

The Adam optimizer, renowned for its adaptable learning rate, is used to train the model. To avoid 
overfitting, early stopping is used during training; if the validation loss does not improve after a 
predetermined number of epochs, training is terminated. 
 Evaluation Metrics: 

• Accuracy: Defined as the ratio of correctly predicted instances to the total number of instances:     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1𝑁 ∑ 𝐼 (𝑦 ′ = 𝑦)𝑁
𝑖=1  

  where ‘I’ is the indicator function that returns 1 if the prediction is correct and 0 otherwise. 
• Precision, Recall, and F1-Score: For multi-class classification, the precision, recall, and F1-score 

are computed for each class and then weighted by the class support:    𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑇𝑃𝑖𝐶𝑖=1 ∑ (𝑇𝑃𝑖 +  𝐹𝑃𝑖)𝐶𝑖=1  𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑇𝑃𝑖𝐶𝑖=1 ∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)𝐶𝑖=1  𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

where 𝑇𝑃𝑖, 𝐹𝑃𝑖, and 𝐹𝑁𝑖 represent true positives, false positives, and false negatives for class 𝑖.  
The model attempts to achieve high classification accuracy in network traffic classification by integrating 
these sophisticated approaches and mathematical formulations, hence supporting effective and 
dependable quality management in network systems. 
4. Results 

Optunais used to acquire the best model configuration parameters. The performance of the proposed 
network traffic categorization model was assessed on the dataset. A evaluation criteria, such as accuracy, 
precision, recall and F1-scoreare used to convey the results. These metrics offer a thorough insight into 
how well the model categorizes network traffic flows into the various classifications. 
 4.1 Model Performance Metrics 

The following metrics were computed to assess the overall performance of the model: 
• Accuracy: The model attainedagood accuracy of 90.48%. It indicates approximately 90% of the 

network traffic flows were correctly classified. This accuracy validates the robustness of the 
model in distinguishing between different types of protocol in network traffic. 

• Precision: The weighted average precision across all classes is 90.70%. Precision measures the 
proportion of correctly predicted positive instances, prominence the model's ability to avoid false 
positives. 

• Recall: The weighted average recall across all classes is 90.48%. Recall measures the proportion 
of actual positive instances that were correctly identified by the model, emphasizing its ability to 
capture true positives. 

• F1-Score: The weighted average F1score is 90.52%. This metric reflects the overall classification 
performance by considering both false positives and false negatives. 

4.2 Comparison with Baseline Models 

To further validate the effectiveness of the proposed model, its performance was compared against several 
baseline models, including a standard feedforward neural network without model configuration parameter 
optimization, and traditional machine learning classifiers such as Random Forest and Support Vector 
Machines (SVM) as shown in figure. 

• Baseline Feedforward Neural Network: The baseline model without Optuna optimization 
achieved an accuracy of 85.23%. This lower accuracy underscores the importance of model 
configuration parameter tuning in enhancing model performance [15]. 
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• Random Forest: The Random Forest classifier achieved an accuracy of 87.45%, which, while 
respectable, was still outperformed by the proposed deep learning model [16]. 

• Support Vector Machine (SVM): The SVM model attained an accuracy of 84.67%, indicating 
its limitations in handling the complexity of the network traffic dataset compared to the proposed 
model [14]. 

 
Figure: Comparison with other models 

4.3. Performance Across Different Classes 

The model's performance was also evaluated on a per-class basis to understand how well it classified each 
type of network traffic. The precision, recall, and F1-score for each class are summarized below: 

• WWW (Web Traffic): Precision = 91.2%, Recall = 90.8%, F1-Score = 91.0% 
• DNS (Domain Name System): Precision = 89.7%, Recall = 89.2%, F1-Score = 89.4% 
• FTP (File Transfer Protocol): Precision = 88.9%, Recall = 88.7%, F1-Score = 88.8% 
• P2P (Peer-to-Peer): Precision = 89.5%, Recall = 89.3%, F1-Score = 89.4% 
• Telnet: Precision = 90.3%, Recall = 90.0%, F1-Score = 90.1% 

These results indicate that the model performs consistently across different network traffic classes, with 
no significant performance degradation for any particular class. 
4.4 Impact of Model configuration parameter Optimization 

A crucialaspect in improving the model's performance was the Optuna model configuration parameter 
optimization procedure. Improved classification accuracy resulted from identifying the ideal set of model 
configuration parameters through experimentation with several configurations. The comparison with 
baseline models and the consistently high metrics in all classes validate the performance gain attained 
through model configuration parameter tuning. 
4.5 Training Time and Resource Utilization 

The training procedure was effective because early pausing and pruning techniques were used to reduce 
pointless computations. Compared to a conventional grid search method, the Optuna-based optimization 
resulted in a training time reduction for the optimal model configuration that was almost 30% shorter, 
indicating its effectiveness and resource efficiency. 

This result shows how deep learning techniques and careful model setup parameter optimization 
allowed the suggested network traffic classification model to achieve high performance. Real-world 
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network traffic classification and quality control tasks is benefit from the model's use, as demonstrated by 
its robust and consistent findings across many metrics and class. 
5. Conclusion and Future Scope 

Deep learning-based network traffic classification is implemented. The model was able to achieve optimal 
performance on a difficult dataset comprising 87 features, which represented different application layer 
protocols and network flow statistics, by using model configuration parameter adjustment through the 
Optuna framework. Optuna's integration made it possible to welldiscover the model configuration 
parameter space, leading to the development of a model with improved precision, recall, and F1-scores 
across a variety of network traffic classes and a high classification accuracy of 90.48%. Early halting and 
trimming techniques were used to increase training effectiveness and save resource usage.The proposed 
method showed notable gains over baseline modelsand underscored the need for optimizing model 
configuration parameters to augment the efficacy of deep learning models. The suggested model improves 
network quality management by accurately predicting protocol, which makes it a useful tool for security 
monitoring and real-time network traffic analysis. 

Although the existing model has shown encouraging results, there are still a number of areas to be 
improved. Increasing the semi-supervised learning component by better integrating unlabeled data may 
improve performance, especially in situations when labeled data is hard to come by. The model may be 
able to make use of previously taught models on similar tasks, which could save training times and 
increase classification accuracy. Additional investigation into sophisticated feature engineering 
methodologies may reveal novel, informative characteristics to enhance efficiency. By addressing these 
issues, the suggested strategy might be improved, improving methodology and real-world application in 
traffic analysis and security of networks. 
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