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Heat stroke is a severe condition resulting from prolonged exposure to high temperatures, posing 

significant health risks, particularly during extreme weather events. Accurate prediction of heat 

stroke is challenging due to the complex interplay of environmental and physiological factors. This 

study proposes a comprehensive machine learning framework to address this challenge effectively. 

We begin by ensuring data quality through normalization using a Reorder Iterative Imputer, which 

handles missing values and outliers with precision. Feature selection is then performed using a 

combination of Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor 

embedding (t-SNE) to identify the most relevant variables from a diverse set of indicators. The 

classification task is executed using a fused machine learning approach, integrating Random Forest, 

Support Vector Classifier, and Gradient Boosting methods to enhance prediction accuracy. Further, 

prediction optimization is achieved using a Cascaded Levy Flight Optimization algorithm, fine-

tuning model parameters for superior performance. The proposed method demonstrates significant 

improvements in prediction accuracy and reliability over traditional approaches, offering a valuable 

tool for early intervention and preventive measures in health monitoring and safety management. 

 

Keywords: Classification, Cascaded Levy Flight Optimization Data Normalization, Heat Stroke 

Prediction, Machine Learning. 

 

I. Introduction 

A dangerous medical emergency known as heat stroke occurs when the core body temperature 

rises to more than 40 degrees Celsius (104 degrees Fahrenheit) as a result of being exposed to 

very hot and humid conditions for an extended period of time [1]. It poses a serious risk to 

public health, especially during heatwaves or in places without proper cooling infrastructure 

[2]. If left untreated, the illness may cause organ failure and ultimately death [3]. To reduce 

the risks of heat stroke and to intervene promptly, early identification and prediction are of the 

utmost importance [4]. A number of physiological and environmental factors, such as personal 

health, levels of physical activity, and humidity, interact intricately to determine the likelihood 
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of heat stroke [5]. Because of their reliance on empirical principles or simplistic statistical 

techniques, traditional methods of heat stroke prediction have failed to capture the complex 

interactions between these components [6]. Furthermore, dealing with inadequate or noisy 

information and integrating multiple data sources are also necessary for real-time prediction 

and monitoring [7]. 

 By facilitating data-driven insights and predictive capacities, machine learning (ML) 

approaches provide a potential substitute to conventional methodologies [8–10]. Machine 

learning (ML) algorithms can efficiently process massive amounts of data, uncover intricate 

patterns, and provide accurate predictions when fed recent and historical data [11, 12]. Heat 

stroke forecasts may be made more accurate with the use of these systems, which use 

contemporary data processing and analytical methodologies [13–14]. Using the Reorder 

Iterative Imputer to normalise the data, we tackle the problem of dealing with inconsistent or 

missing data in this work [15-16]. By repeatedly honing the imputation of missing values and 

outliers, this method makes sure the dataset is ready for ML models [17–18]. If you want better 

input features and better performance from your machine learning algorithms, you need to 

normalise your data properly [19].  

 Using an iterative imputer for data normalisation and PCA with t-SNE for feature 

selection are the primary contributions of the work.  

Using fused ML for classification and cascaded levy flight optimisation for predictionFor 

what's left of the article, this is its table of contents. In Section 2, several writers explore 

different methods for predicting heat stroke. In Section 3, the model that has been suggested 

is outlined. The findings of the study are summarised in Section 4. Analysis of the findings 

and recommendations for further work make up Section 5. 

 

1.1 Motivation of the paper 

Despite efforts to mitigate the effects of climate change and other severe weather events, heat 

stroke continues to be a major problem in public health. The complex interplay between a wide 

range of environmental and physiological variables makes it difficult, even with improvements 

in health monitoring, to reliably anticipate when heat stroke will occur. This work is driven by 

the urgent need for a dependable prediction system that can accurately identify when heat 

stroke will occur, allowing for prompt actions that might save lives. This work employs state-

of-the-art machine learning approaches to address the shortcomings of conventional methods. 

It provides a holistic strategy that improves prediction capabilities by integrating data 

normalisation, feature selection, and optimisation. 

II. Background study 

Akbar, M.  et al. [1] According to its expanded sampling technique, the SVM model achieved 

87% accuracy in predicting heat shock proteins, according to the study conducted by these 

scientists. Furthermore, heat shock proteins in eukaryotic organisms may be more precisely 

identified using the study model. To find the proteins that are untraceable using this method, 

however, urgent research and the creation of sophisticated machine learning models were 

required. 
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 Hirano, Y. et al. [3] Prediction models for heat-related illnesses based on machine 

learning showed potential for the first time in the authors' study. Larger samples, crucial factor 

inclusion, and clinical prospective validation were all areas that might have used more 

investigation to improve performance quality. 

 Ke, D.  et al. [5] The author came up with a reliable way to forecast the number of 

heat-related ambulance calls per day. Very high forecast accuracy necessitated the 

development of regional-level models, while the national-level model demonstrated 

exceptional prediction accuracy applicable to several locations. Writing about heatwave 

characteristics like optimal temperature, cumulative heat stress, and heat acclimatisation 

allowed these authors to make far more accurate predictions. With the inclusion of heatwave 

characteristics, the national model's adjusted R2 increased from 0.9061 to 0.9659, significantly 

improving its ability to forecast the frequency of heat-related ambulance calls in most places 

with little computing effort. 

 Li, H.  et al. [7] it is possible that AF patients' multi-spectrum fundus photographs, on 

their own, may predict the chance of secondary WAS, and that DNNs had better prediction 

performance when combined with such photos. In order to uncover unique microscopic 

features of disease, it was helpful to get many spectral fundus photographs.  

 Nissa, N.  et al. [9] This study mainly contributed by comparing several ML algorithms 

for early-stage CVD prediction. The quality of the dataset was improved by the use of 

preprocessing procedures. Dealing with faulty or missing data and removing outliers were the 

main concerns. Using a variety of statistical criteria, the author also compared the results of 

the three machine learning algorithms she employed to predict the disease.  

 Priyadarshini, T.  et al. [13] The purpose of this research was to develop a smart 

prediction model that, using a dataset of heat stroke symptoms, could assess patients' 

susceptibility to heart attacks. The author used K-means clustering, Naïve Bayes, Decision 

Tree, and Artificial Neural Network classifiers to build a prediction system. 

 Statsenko, Y.  et al. [15] The study found that certain weather conditions were linked 

to higher HS incidence, severity, and early results. In the days after a significant shift in AT, 

humidex, or AP, the risk ratio of HS often increases. There may still be a significant risk even 

after the ecosystem has stabilised. It seems that the two parameters should be considered 

together, as Humidex fared better than AT as a predictor. Combining and analysing all 

available meteorological data from the past few days was crucial for making accurate 

projections. 

 Yu, H.  et al. [19] The author sought to determine if there was a correlation between 

the expression of genes related to the Unfolded Protein Response (UPR) pathway and 

ischaemic stroke (WAS) patient clinical features, immune cell infiltration, and inflammatory 

factor release. The authors demonstrated a strong relationship between these factors by 

analysing gene microarray data collected from blood samples. 



                                 Combination Of Fused Machine Learning.... Mohamad Emad Bitar et al. 1092  

 

Nanotechnology Perceptions 20 No. S14 (2024)  

Table 1: Survey of Machine Learning Models for Heat-Related Health Predictions 

Author Year Methodology Advantage Limitation 

Hirano et al. 2021 Machine 

learning-based 

mortality 

prediction model 

for heat-related 

illness 

Provides 

accurate 

mortality 

prediction using 

real-time data 

Can require 

extensive 

computational 

resources for 

training and 

updating the 

model 

Ke et al. 2023 Machine 

learning models 

for predicting 

heat-related 

ambulance calls 

based on 

heatwave 

features 

Enhances 

prediction 

accuracy by 

considering 

specific 

heatwave 

characteristics 

Limited by the 

quality and 

granularity of 

the input 

weather data 

Ogata et al. 2021 Machine 

learning 

Utilizes a 

comprehensive 

data set for 

improved 

prediction 

accuracy 

Cannot be easily 

generalizable to 

other regions 

with different 

climatic 

conditions 

Shimazaki et 

al. 

2022 Supervised 

machine 

learning 

Customizes 

prevention 

strategies based 

on individual 

health data 

Requires 

continuous 

monitoring and 

data collection, 

which can be 

impractical in 

some settings 

Xu et al. 2024 machine 

learning  

 

Integrates 

multiple data 

sources for 

robust 

predictions 

Potentially high 

computational 

cost and 

complexity in 

integrating 

various data 

sources 

 

2.1 Problem definition 

Particularly during severe weather events, there is a considerable danger of heat stroke, which 

is caused by being exposed to high temperatures for an extended period of time. The 

complicated interaction of environmental and physiological variables makes accurate 

prediction of the onset of heat stroke problematic. When faced with such complexity and the 
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need for rapid forecasts, traditional approaches often fail. This study employs advanced 

machine learning techniques to investigate many indications, enhance data quality, and 

optimise model performance; the goal is to provide a more reliable tool for early diagnosis and 

preventive measures. Improving the accuracy of predictions is the main objective. 

III. Materials and methods 

Here we lay out the steps that will be taken to create a reliable heat stroke prediction system. 

To properly manage missing values and outliers, the technique starts with data preparation, 

which includes normalisation by a Reorder Iterative Imputer. Combining principal component 

analysis (PCA) with t-SNE enables feature selection, which in turn identifies the most 

important predictors. In order to improve classification accuracy, a fused machine learning 

strategy is applied. This approach integrates Gradient Boosting, Random Forest, and Support 

Vector Classifier. Cascaded Levy Flight Optimisation, which optimises the model's 

parameters to produce greater predicted accuracy, is used to optimise the model's performance. 

 
Figure 1: Heat stroke prediction workflow architecture 

 

3.1 Dataset collection 
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Kaggle, a well-known website for data science and machine learning tools, provided the 

dataset used in this work. The dataset in question may be accessed at this URL: 

https://www.kaggle.com/datasets/tahiatazin1510997643/heat-stroke. Critical for forecasting 

the start of heat stroke, it contains comprehensive data of heat stroke episodes together with a 

range of physiological and environmental characteristics. 

3.2 Data normalization using reorder iterative imputer 

Data normalisation techniques such as the Reorder Iterative Imputer deal with issues including 

outliers and missing values. It uses feature-feature connections and distribution-distribution-

adjustment repeatedly to estimate and impute missing data. Improved accuracy and reliability 

in normalisation are achieved by rearranging the imputation process according to the 

significance of features and data patterns. Data quality is improved and the dataset is prepared 

for effective analysis and modelling by iteratively refining the imputation using the Reorder 

Iterative Imputer. 

 Generative iteration is used by Imputer. Imputer applies criteria to a partially formed 

alignment and creates a new alignment with each iteration of the generating process. In each 

generating phase, a complete alignment is formed. However, in inference, successive partial 

alignments are produced by using a reduced selection. The previously issued tokens are often 

included in this subset as a result of an iterative refinement process. Unlike CTC, Imputer's 

iterative technique may specify conditional dependencies across generation stages. If the 

Imputer wants to parameterise the distribution of alignment, it will presume that token 

predictions are conditionally independent.  

 

𝑝𝜃(𝑎|𝑎−, 𝑥) = ∏ 𝑝(𝑎𝑖|𝑎−, 𝑥; 𝜃)𝑖  ----------- (1) 

 where 𝑝𝜃(𝑎|𝑎−, 𝑥)and ∅ denote the masked out letter, and a˜ represents an earlier 

alignment. As per BERT's findings, the specification of the mask token aligns with the ∅ mask 

token. To clarify, after a token is committed in a˜, a must stay consistent; otherwise, a˜ might 

be empty (for instance, all tokens are concealed) and ai = ˜ai∀a˜i 6= empty. By conditioning 

on a˜, Imputer can model conditional dependencies between phases of generation, and by 

assuming conditional independence between predictions of new tokens, it can allow parallel 

generation inside a generation step.  

3.3 Feature selection and classification using fused machine learning 

In order to improve prediction performance, fused machine learning incorporates many 

algorithms into feature selection and classification. In order to increase the effectiveness of the 

model, feature selection uses t-Distributed Stochastic Neighbour Embedding methods to 

identify the most important variables from the dataset. To classify data, a fused machine 

learning model uses techniques like a Voting Classifier to combine the predictions of many 

classifiers, including Random Forest, Support Vector Classifier, and Gradient Boosting. 

Through the use of multiple learning approaches and an emphasis on critical characteristics, 

this strategy enhances overall accuracy and resilience by combining the capabilities of each 

model. 
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3.3.1 PCA with t-Distributed Stochastic Neighbor Embedding 

There is a two-step dimensionality reduction procedure involved in feature extraction utilising 

PCA paired with t-Distributed Stochastic Neighbour Embedding (t-SNE). To begin, principle 

component analysis (PCA) is used to find the main components that account for the highest 

variation in the data, so reducing the high-dimensional data to a lower-dimensional space. The 

data is made more manageable for further analysis after this first reduction simplifies it by 

reducing noise. For example, due to their significant value in the data, characteristics like 

gender, nationality, and daily consumed water (L) may be lowered during principal component 

analysis (PCA). It is then possible to further decrease the data's dimensionality to two or three 

dimensions by applying t-SNE to the PCA-reduced data, all the while keeping the local 

structure and connections between data points intact. The interplay between Strenuous 

exercise, Rectal temperature (deg C), and Environmental temperature (C) is only one example 

of how this combination enables efficient visualisation of complicated data structures by 

drawing attention to clusters and patterns that may go unnoticed in higher dimensions. 

 Inaccurate categorisations and limited applicability are the end outcomes. Reduced 

model complexity is achieved by t-Distributed Stochastic Neighbour Embedding by the 

elimination of superfluous predictors. Since t-SNE is a wrapper approach that mostly uses 

filter feature selection, it may easily be used as the primary feature selection method in many 

ML algorithms. Next, the features are ranked based on their importance using coefficients or 

feature significance. The model is re-fitted by individually deleting the poorest feature or 

features. The procedure is iterated until the quantity of characteristics surpasses a certain limit. 

𝑅𝑎𝑛𝑘𝑖 = {𝑟𝑖1 = 1, 𝑟𝑖2 = 2, … , 𝑟𝑖𝑝 = 𝑝} -------- (2) 

 Next, we employ eight different t-Distributed Stochastic Neighbour Embedding 

algorithms to identify the feature cut-offs. Most people believe these are the most essential 

attributes to have. This strategy picks |αP| features from each feature subset to create the best 

feature subset. 

𝐹𝑆𝑖
𝑜𝑝𝑡

= {𝑓𝑖1, 𝑓𝑖2, … , 𝑓𝑖, |𝛼𝑃|} ----------- (3) 

The round-down operator is represented mathematically as |αP|.This will enable us to exclude 

characteristics with poor robustness and accuracy, such as Weight (kg) or Sickle Cell Trait 

(SCT), depending on the dataset. Consider a scenario in which the parameter τ surpasses the 

AUC of the top N feature sets for predictive classification. This is why they are known as:  

𝑓𝑖𝑜𝑝𝑡 = {𝐹𝑆1
𝑜𝑝𝑡

, 𝐹𝑆2
𝑜𝑝𝑡

, … , 𝐹𝑆𝑁
𝑜𝑝𝑡

} ------------- (4) 

 Finally, we define the robust biomarker screening issue as an unstable combination 

problem with N characteristics. To ensure stability, all permutations of the sets in FS_2^optopt 

are examined.  

 

Algorithm  1: PCA with t-Distributed Stochastic Neighbor Embedding 

Input: 

• High-dimensional dataset X with n samples and d features 

• Number of principal components k for PCA 
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• Perplexity parameter for t-SNE 

• Maximum number of iterations for t-SNE 

Steps: 

o Normalize the dataset X to have zero mean and unit variance. 

o Compute the covariance matrix ∑ =
1

𝑛−1
𝑋𝑇𝑋 

o Perform eigenvalue decomposition on 𝛴 to get eigenvalues and 

eigenvectors. 

o Sort eigenvectors by the magnitude of their corresponding eigenvalues in 

descending order. 

o Select the top 𝑘 eigenvectors to form the projection matrix𝑊 

o Project the original dataset 𝑋 onto the lower-dimensional space: 𝑋𝑃𝐶𝐴 =
𝑋𝑊 

o Initialize the low-dimensional representation Y of 𝑋𝑃𝐶𝐴 randomly. 

o Calculate pairwise similarities 𝑃𝑖𝑗 in the high-dimensional space using 

Gaussian distribution. 

o Calculate pairwise similarities 𝑄𝑖𝑗 in the low-dimensional space using 

Student's t-distribution. 

Output: 

• Selected Feature List (Time of day, Nationality, Sweating, age, temperature 

cardiovascular, water with 15 attributes) 

 

3.2.2 Random Forest classifier  

During training, Random Forest creates numerous decision trees and then utilises the mean 

prediction (regression) or mode of their classes (classification) as its final output, as cited by 

Eldora, K. et al. (2024). It improves accuracy and robustness by combining the predictions of 

several trees, each built from a different set of data and features. This strategy enhances 

generalisation while reducing overfitting by averaging out individual tree biases. 

𝑚𝑔(𝑋, 𝑌) = 𝑎𝑣𝑘𝐼(ℎ𝑘(𝑋) = 𝑌) ----------- (5) 

 I(•) is the indicator function in this situation. The margin is defined as the amount by 

which the relevant class's average vote at X, Y exceeds the average vote for any other class. 

We may have more trust in the categorisation if the margin is larger. The generalisation error 

may be stated as: 

𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0)  ------------ (6) 

 

3.2.3 Support Vector Classifier 

The Support Vector Classifier (SVC) in machine learning looks for the optimum hyperplane 

in the feature space while classifying data, as alluded to by Ke, D. et al. (2023). It accomplishes 

this purpose by maximising the space between the hyperplane and the data points closest to 

each class (support vectors). Linear, polynomial, and radial basis functions are among the 

kernel functions used by SVC to change the feature space and increase separation, enabling it 

to handle both linear and nonlinear classification tasks.  
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 Consider the most typical nonlinearly separable situation after translating the data set 

into the higher-dimensional feature space. To address the optimisation problem, consider using 

the soft margin technique and a cost function that includes the slack variable ξi, a measure of 

misclassification error. 

𝑚𝑖𝑛𝜑(𝑤, 𝜀) =
1

2
||𝑤||

2
+ 𝐶 ∑ 𝜀𝑖𝑖  ---------- (7) 

 A kernel function, designated as 𝜀𝑖 , maps the higher-dimensional feature space 

nonlinearly. The training data becomes linearly separable in higher dimensions, despite the 

Kernel function's nonlinearity in input space. 

3.2.4 Gradient Boosting 

Building a powerful learner is an iterative process for improving algorithms. Weak learners 

are those that do slightly better than random, according to Nissa, N. et al. (2021). Gradient 

boosting is a regression strategy similar to boosting. To approximate the function 𝐹(𝑥), we use 

gradient boosting to minimise the expected value of a loss function 𝐿(𝑦, 𝐹(𝑥)), The training 

dataset is supplied as𝐷 =  {𝑥𝑖, 𝑦𝑖} N 1  , and this function relates occurrences x to their output 

values y. Gradient boosting creates a weighted sum of functions to approximate 𝐹(𝑥) 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝑝𝑚ℎ𝑚(𝑥) ------------ (8)  

 The weight of the 𝑚𝑡ℎfunction, ℎ𝑚(𝑥), is denoted by 𝑝𝑚. These techniques reflect the 

ensemble's models, like decision trees. An iterative approximation is applied. Following that, 

a line search optimisation problem is resolved to determine the value of 𝑝𝑚 

3.2.5 Voting Classifier 

To get our ultimate conclusion, we combined multiple weak classifiers trained using the 

ensemble technique. The voting classifier employed in this work is an example of an ensemble 

technique. This is performed by running a slew of useless ML techniques on the same dataset 

simultaneously. Each of the previous classification models votes for each occurrence in the 

data set using the Voting Classifier (voting = 'hard') used in this study. More than half of voters 

will choose the ultimate output prediction. 

Algorithm 2: fused machine learning 

Input: 

Training data: {(X1, Y1), (X2, Y2), … , (XN, YN)} 

Number of trees: K 

Kernel function K(xi, xj) 

Number of iterations: M 

Steps: 

For each tree k ∈ {1,2, . . . , K}: 

Bootstrap sampling entails selecting data at random and then replacing it with data from 

the training set. 

At each node, choose a subset of characteristics at random to divide. 

Formulate the optimization problem: 
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min
1

2
||w||

2
+ C ∑ εi

N
i=1    

Initialize the model with a constant value: 

F0(x) = argmin ∑ L(Yi, r)N
i=1   

Fit a weak learner hm to the pseudo-residuals. 

Update the model: 

Fm(x) = Fm−1(x) + ahm(x)  

Output: 

Ensemble model consisting of K decision trees 

Predicted class labels Y for the input test data. 

Ensemble model combining predictions of all base classifiers 

 

3.3 Prediction using cascaded levy flight optimization 

Cascaded Levy Flight Optimisation uses complex optimisation techniques to improve model 

performance. It uses Levy fly, a stochastic process inspired by animal foraging behaviour, to 

investigate the parameter space of predictive models. The approach repeatedly optimises 

model parameters using Levy flight stages to increase prediction accuracy. This cascaded 

approach employs many rounds of parameter adjustment, improving the overall performance 

of the predictive model and allowing for higher convergence on optimal parameters. 

 The step sizes of walkers in a Levy flight, an unplanned walking pattern, are 

determined by a probability distribution known as the Levy distribution, which has large tails. 

This distribution generates larger steps more often than a regular distribution.  

The Levy distribution has a power law tail and is represented by the probability density 

function 

f(x) =
1

√2πσ2
exp (−

r

2σ2
|x − μ|)

r

|x−μ|1+r -------------- (9) 

• "µ" is the location parameter, which is the distribution's mean. 

• The scale parameter σ represents the distribution's standard deviation. 

• The parameter γ determines the distribution's form and is known as the tail index. 

 The tail index value The form of the distribution is dictated by γ. When γ falls within 

the range of 0 to 2, the variance of the distribution is indefinite since it is an infinite variance 

distribution. The variance of the distribution is finite when γ > 2, whereas the mean is infinite 

when γ = 1 or less. 

 

Algorithm 3: cascaded levy flight optimization 

Input: 

Model: The predictive model to be optimized (Random Forest, SVC, Gradient Boosting). 

Training Data (𝐗𝐭𝐫𝐚𝐢𝐧, 𝐲𝐭𝐫𝐚𝐢𝐧) : The features and labels used to train the model. 

Testing Data (𝐗𝐭𝐞𝐬𝐭, 𝐲𝐭𝐞𝐬𝐭): The features and labels used to evaluate model performance. 

Steps: 

Initialize: Set random hyperparameters within the defined ranges for the model. 

Train and Evaluate: Fit the model with the initial parameters and evaluate its 

performance on the test data. 
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• Generate new hyperparameters using Levy flight to explore the parameter space. 

• Train and evaluate the model with the new parameters. 

f(x) =
1

√2πσ2
exp (−

r

2σ2
|x − μ|)

r

|x−μ|1+r  

• Update the best parameters and model if the new model's performance is better. 

Converge: After the maximum number of iterations, finalize the model with the best 

parameters found. 

Output: 

1. Best Model: The predictive model with the optimal hyperparameters found 

through the optimization process. 

2. Best Parameters: The set of hyperparameters that yielded the highest model 

performance. 

3. Best Score: The performance metric (e.g., accuracy) achieved by the model with 

the best parameters. 

 

IV. Results and discussion  

Here, we present and analyse the outcomes of our heat stroke prediction model, which was 

developed using cutting-edge machine learning approaches. We begin by testing the model's 

performance using optimised hyperparameters produced via Cascaded Levy Flight 

Optimisation. 

  
Figure 3 and 4: After and before preprocessing Distribution of heat stroke cases by time of 

year 

 

Figure 3 depicts the distribution of heat stroke cases throughout the year, illustrating seasonal 

variations and changes. The graph displays the frequency of heat stroke episodes against the 

months of the year, demonstrating how the incidence of heat stroke fluctuates with the seasons. 
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Figure 4: Correlation heatmap 

  

Figure 4 depicts the relationships between the dataset's different features using a correlation 

heatmap. In each heatmap cell, you can observe a correlation coefficient between two 

variables, which might range from -1 to 1. Because the coefficient is near to one, it implies a 

significant positive correlation, implying that raising one variable causes an increase in the 

other. 

 

  
Figure 5 and 6: Before and After pre-processing scatter plot of patient temperature vs rectal 

temperature 
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Figures 5 and 6 show a scatter plot of the connection between patient temperature and rectal 

temperature after data preprocessing. Each point on the figure represents a unique subject, with 

temperature readings on the x-axis and rectal temperature measurements on the y-axis. 

 
Figure 7: t-SNE visualization of heat stroke data 

  

Figure 7 provides a t-SNE visualization of the heat stroke dataset, which is a dimensionality 

reduction technique used to visualize high-dimensional data in two or three dimensions. The 

plot displays how data points, representing different instances or patients, are distributed 

across a two-dimensional space. 

 
Figure 8: Selected feature (Time of day, Nationality, Sweating, age, temperature 

cardiovascular, water with 15 attributes) 
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Figure 8 illustrates the chosen feature. The x axis denotes significance, whereas the y axis 

displays feature. 

 

Table 2: Feature extraction value comparison table  

Methods Accuracy Precision Recall F-measure 

PCA 94.32 94.02 94.67 95.31 

LDA 94.99 94.99 94.36 95.24 

t-SNE 95.71 94.36 95.36 95.25 

PCA with t-

SNE 

96.36 96.22 96.87 97.81 

 

 

 
Figure 9: Feature selection value comparison chart 

  

Table 2 and Figure 9 indicate that the combination of PCA and t-SNE achieves the best 

performance across all metrics for feature extraction and classification. Specifically, this 

strategy attained an accuracy of 96.36%, outperforming individual approaches such as PCA 

(94.32%), Linear Discriminant Analysis (LDA) (94.99%), and t-SNE (95.71%). It also had the 

best accuracy (96.22%), which outperformed PCA (94.02%), LDA (94.99%), and t-SNE 

(94.36%). Furthermore, PCA and t-SNE have a higher recall of 96.87% than the other 

approaches, indicating that they can better detect true positives. The F-measure of 97.81% 

demonstrates a balanced performance in both accuracy and recall. Overall, the PCA with t-

SNE technique excels at providing a strong and precise feature extraction framework, making 

it ideal for applications that need high accuracy and recall. 
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Table 3: Performance Metrics of Machine Learning Models with and without Features 

Methods  Accuracy Precision Recall F-measure 

RFC  

 

Without 

Feature 

Selection 

94.36 94.25 94.21 94.17 

SVC 95.31 95.24 95.17 95.87 

GB 96.31 96.28 96.59 96.18 

Fused ML 97.35 97.18 97.17 97.19 

FML without 

optimization 

98.24 98.14 98.20 98.21 

RFC With 

Feature 

Selection 

96.21 96.36 95.24 96.39 

SVC 97.51 97.54 97.81 97.99 

GB 97.99 97.89 97.66 97.25 

Fused ML 98.21 98.01 98.37 98.17 

FML with 

optimization 

99.36 99.05 99.61 99.98 

 

 

 
Figure 10: Performance Metrics of Machine Learning Models with and without Optimization 

comparison chat 

  

Table 3 and Figure 10 show the performance characteristics of several machine learning 

models, with and without optimisation. Among the models tested, the Cascaded Levy Flight 
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technique outperforms all metrics in all optimisation situations. Without optimisation, it has 

an accuracy of 98.24%, precision of 98.14%, recall of 98.20%, and F-measure of 98.21%. 

With optimisation, it achieves 99.36% accuracy, 99.05% precision, 99.61% recall, and an 

impressive F-measure of 99.98%. In contrast, the Fused ML model, the next best performer, 

has somewhat lower results, with accuracy, precision, recall, and F-measure values 

consistently lower than those of the Cascaded Levy Flight method. Overall, the Cascaded Levy 

Flight technique beats other models in identifying and categorising targets, proving its greater 

usefulness in the current situation. 

V. Conclusion 

This paper proposes a strong and integrated machine learning framework for accurately 

predicting heat stroke, taking into account the complexity of both environmental and 

physiological components. The proposed approach significantly outperforms traditional 

methods in terms of prediction accuracy and reliability by utilising advanced techniques such 

as Reorder Iterative Imputation for data normalisation, PCA combined with t-SNE for 

effective feature selection, and a fusion of sophisticated classification algorithms optimised 

via Cascaded Levy Flight Optimisation. The findings highlight the framework's potential as 

an effective early intervention tool, allowing for proactive health monitoring and safety 

management during severe heat events. Without optimisation, it has an accuracy of 98.24%, 

precision of 98.14%, recall of 98.20%, and F-measure of 98.21%. With optimisation, it 

achieves 99.36% accuracy, 99.05% precision, 99.61% recall, and an impressive F-measure of 

99.98%. Future study will concentrate on increasing the dataset and improving the model to 

improve its generalisability across diverse demographics and climates. 
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