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Abstract 

Purpose: The accurate detection and classification of bone fractures in medical imaging 

remain significant challenges in the field of healthcare. Existing techniques often fall short 

of effectively identifying bone fractures due to suboptimal preprocessing methods. 

Moreover, the purpose of this study is to enhance the detection and classification accuracy. 

Methods: We introduce a novel approach incorporating a Three Level Multi-Model 

(TLMM)based histogram equalization to improve the accuracy. This approach encompasses 

Normalized Gamma-Corrected Contrast-Limited Adaptive Histogram Equalization (NGC-

CLAHE) with Tanzanian Devil Optimization (TDO), CLAHE with Self-Adaptive-TDO 

(SA-TDO), and Adaptive Weighted Brightness Preserving Dynamic Fuzzy Histogram 

Equalization (AW-BPDFHE) with Giant-Devil Optimization (GDO), derived from the Giant 

Trevally Optimizer (GTO) and Tanzanian Devil Optimization (TDO) algorithms. Once Pre-

processing is complete, the refined dataset is subjected to segmentation. For the 

segmentation, the SegNet model is used. Then the Gray-Level Co-occurrence Matrix 

(GLCM) model is used for extracting the optimal features. The obtained features are then 

directed to the classification layer, where a Fuzzy Radial Basis Function network (FRBF) 

efficiently classifies the bone fracture regions.  

Result: The performance of the proposed design can be validated by calculating different 

metrics. Moreover, the performance of the proposed model is compared with the existing 

models such as CNN, SVM, DT and RN.  

Conclusion: This integrated approach demonstrates promising results in improving the 

identification and classification of bone fractures in medical images, offering potential 

benefits to the field of medical diagnosis and patient care. On analyzing the performance of 

the proposed design as well as the existing model, the proposed model provides better 

detection and classification accuracy.  

Keywords: Bone fractures; Three Level Multi-Model; Giant-Devil Optimization; Gray-

Level Co-occurrence Matrix; Fuzzy Radial Basis Function network. 

 

1. Introduction 

The heart, lungs, brain, and other internal organs are among the important organs that are shielded by the 

solid organs, or bones, that make up the human body. The human body is made up of 206 different bones, 

each with its own shape, size, and composition. The auditory ossicles are the smallest bones, whereas the 

femur bones are the largest (Niu et al. 2023). Bone fractures are common in humans. Bone fractures can 
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occur from accidents and other circumstances when the bones are subjected to extreme pressure. Among 

the many different kinds that can occur are oblique, complicated, comminuted, spiral, greenstick, and 

transverse bone fractures (Fortin et al. 2020; Canavese et al. 2020). For the analysis of a wide range of 

illnesses or physiological issues, a variety of medical imaging techniques are available, including X-rays, 

ultrasound (Zak et al.  2021), computed tomography (CT) (Walle et al. 2022), magnetic resonance 

imaging (MRI) (Amar et al. 2021). positron emission tomography (PET) (Aaltonen et al. 2020), and many 

more. Among these, X-rays are the method for fracture identification that is used the most frequently over 

time (Leslie et al. 2021; Khan et al. 2020). Radiation of the kind that produces X-rays is sometimes 

referred to as electromagnetic radiation. It is the simplest and quickest method for examining the damage 

to joints and bones. 

However, orthopaedics often employs X-ray pictures to establish the fracture's presence, and then 

uses a variety of procedures to identify the fracture's ideal region and measurement (adav et al. 2022; Bae 

et al. 2021; Rajamanthrilage, et al. 2021).  According to the AO classification, the current majority of 

fracture classification methods rely on three-dimensional CT, X-ray, and MRI, as well as manual visual 

assessment. Due to their limited resolution, these pictures' information may be accurate enough for a 

surgeon to spot certain apparent fractures, but not to analyze smaller ones. In order to categorize the 

fractures and provide additional quantitative information, several computer-aided methods are used 

(Moon et al. 2022; Arpitha et al. 2020). To assist surgeons, see the organ more clearly and advance 

clinical orthopaedic knowledge, several researchers have developed 3D interactive software.  

The task of image segmentation is crucial in the medical setting and has many important and useful 

applications. The device separates the original picture into many parts. In the medical application, it 

extracts the functional regions based on the image's many attributes, such as texture, grayscale, and 

brightness level, but it also encountered several challenges. Due to the difficulty of segmenting different 

medical pictures using the same conventional approach, certain traditional procedures have a limited 

range of applications. Second, the local information in the image is difficult to remove since the 

traditional segmentation approach has little influence on the processing of details. The practical 

implication is therefore easily misinterpreted. Third, the usual approach is not the guiding concept in the 

decision about the threshold evaluation. Therefore, the threshold should be physically determined by 

experience and cannot be selected by certain procedures. The majority of medical image segmentation 

domains, in particular, do not have bound sets. Finding appropriate and realistic segmentation techniques 

is therefore the main driving force. 

There are several processes involved in the process of identifying and categorizing fractures (Mutasa 

et al. 2020). The first step in the process is data collection, which comprises collecting and then 

identifying X-ray image data sets from various hospitals or radiology centres. A dataset must be prepared 

before being fed into a classifier to predict fracture incidence and its corresponding class. 

The rest of the paper is organized as follows, the proposed bone fracture classification method is 

explained in Section 2, a discussion of the study is presented in Section 3, a Performance evaluation of the 

study is explained in Section 4, Section 5 compares the outcomes of the suggested model with the 

existing models and finally section 6 concludes the paper with a detailed conclusion. 

Some of the recent literature related to this topic is discussed in detail 

Identification and categorization of femoral fractures in X-ray pictures have been developed by (Qi et 

al. 2020). This created a benchmark consisting of 2333 X-ray pictures with 9 distinct fracture types, and 

each image was carefully labelled with ground truth boxes showing the various forms of femoral shaft 

fractures and the appropriate categories. An anchor-based Faster RCNN recognition model was used to 

locate fractures and classify their types; the ResNet50 backbone was constructed in a multi-resolution 

Feature Pyramid Network (FPN). 

Simulation of bone fractures by projecting the structures of fractures onto 3D bone structures as 

suggested by (Parra-Cabrera et al. 2022). Mathematical and topological details for the following fracture 

of the triangle mesh related to the bone model have been incorporated into the approach for displaying 

expert-generated fracture structures. This provides information about the reliability of the shape of the 

fracture as a result of the procedure for designing, the validation that was done, and the connections 
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between the fracture lines. The femur, humerus, ulna, and fibula have all been modelled in various 3D 

formats. Additionally, several kinds of fracture patterns have been produced. These designs were used to 

project them onto three-dimensional bones. (Hintringer et al. 2020) utilized the radius fractures, which 

were classified using biomechanical factors on a CT basis for therapy. The goal of the article was to 

define a few critical components that appear to be essential for reducing and stabilizing each form of 

DRF. An appropriate implant may be chosen after the definition has been determined to sustainably 

reduce these important elements. Furthermore, the ideal strategy was chosen. The surgeon can choose the 

best course of therapy and implant choice by employing the following principles. 

A comparison of classification systems of various classifications such as Evans, Jensen, and AO/OTA 

classification systems and the Tang classification system is developed by (Yin et al. 2021). Moreover, 

these studies also provide information regarding quantifying the intertrochanteric fractures of the 

proximal femur. Despite their modest dependability, both Evans and Jensen's and the AO/OTA 

classifications remained better. Strong categorization regularity, distinct subgroup differences, and ease of 

mastery were all features of the Tang classification. Surgery professionals can classify intertrochanteric 

fractures properly due to the thorough yet uncomplicated Tang classification. 

Classification of the fractures around prosthetic femurs automatically detection was suggested by 

(Alzaid et al. 2022). Using simple radiographs, evaluate how well current classification algorithms 

perform when dealing with binary and multi-class situations (fracture kinds). Aside from that, assessed 

the effectiveness of object detection systems utilizing DL architectures with one stage and two stages. 

Two clinical professionals categorized the fractures (type A, type B, and type C) and marked them with 

bounding boxes using the Vancouver Classification System. Then assessed and compared the 

performance of two object detection models, Faster RCNN and Retina Net, two object classification 

models, Densenet161, Resnet50, Inception, and VGG. 

The automatic peri-prosthetic femur fracture identification and categorization have been introduced 

by (Kandel et al.021). To improve the classification of images of musculoskeletal fractures, Comparing 

Stacking Ensemble Techniques. The process of diagnosing fractures in the emergency department with X-

ray imaging was a challenging one that required the knowledge of skilled physicians, an expert who was 

not always available. With the use of several ensemble approaches, the study tries to improve the 

performance of the most cutting-edge convolutional neural networks currently available. The photos were 

classified using a variety of CNNs in that method; nevertheless, a stacking ensemble provides a more 

trustworthy and robust classifier than picking the top one. (Keiler et al. 2020)outlined the impact of three-

dimensional exterior rendering CT reconstruction (3D-SR-CT) and two-dimensional multi-planar 

CT scans (2D-MP-CT) on the accuracy and dependability of surgical therapy selection for tibial plateau 

fractures, as well as the inter- and intra-observer dependability of four widely used categorization 

methods for these damages. 2D-MP-CT and 3D-SR-CT were used to assess fractures in order. Which 

determined the Kappa values for the relationships among the observers' suggestions for bone grafting and 

the fracture classifications, various surgical techniques, implant placements, and classifications of 

fractures. Furthermore, evaluated the relationship between the actual surgical operation done and the 

proposed treatment regimens by the observers. 

Classification of proximal femoral fractures with pinpoint accuracy for engaging instruction and 

surgery scheduling mechanism is designed by (Jiménez-Sánchez et al. 2020). Demonstrate the feasibility 

of developing a computer-aided diagnostic (CAD) tool that is capable of fully automatically identifying 

and classifying proximal femur fractures according to the AO classification on X-ray images. The 

proposed method aims to improve healthcare planning while aiding trauma surgeon trainees' education. 

The ResNet-50 and AlexNet structures for deep learning classification and translation, were put into 

practice. As deep learning classification and localization models, ResNet-50 and AlexNet architectures, 

respectively, were implemented. 

Deep-learning ensemble models to classify shoulder X-ray images have been proposed by (Uysal et 

al. 2021). In that project, artificial intelligence was used to categorize shoulder X-ray pictures as fractured 

or unfractured to aid surgeons. To that end, two ensemble learning models (EL1 and EL2) were 

developed, and 26 deep learning-based models that had been trained were evaluated in terms of their 
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ability to identify shoulder fractures using the musculoskeletal radiography (MURA) dataset. A number 

of models, including ResNet, ResNeXt, VGG, Inception, MobileNet, DenseNet and their spinal fully 

connected (Spinal FC) versions, have previously undergone training. 

Classification of frayed elbows using hand-crafted and deep feature fusion and selection based on the 

whale optimization approach has been suggested by (Malik et al. 2022). In that study, a technique was 

suggested where input photos were transformed into RGB colour space. The process of data augmentation 

was used to increase the number of photographs. Then, deep features are retrieved using DarkNetwork-53 

and Xception. X-ray pictures were used to extract the texture (LBP) and shape-based (HOG) 

characteristics. With a dimension of N=2125, the score-based features were serially fused after being 

chosen using PCA. The best parameters were then applied to WOA to choose N 1049 features from N 

2125, which were then sent to SVM, WNN, and KNN classifiers. 

Problem statement: The automated recognition, categorization, and modelling of bone fractures in 

medical imaging, particularly X-ray and CT images, is a subject that is covered in the extracts from 

various research works. These are but a handful of the themes mentioned in these extracts, which 

emphasize many facets of this overarching issue. A few more include the development of algorithms and 

models for fracture detection and classification, the use of 3D models for fracture simulation, and the 

evaluation of the efficiency of various classification and strategy schemes. The application of cutting-

edge technology, such deep learning and computer vision, to enhance bone fracture diagnosis and 

treatment planning is the main emphasis of the article, even though each snippet focuses on a different 

element of the issue.  An important difficulty in the field of orthopedics and musculoskeletal medicine is 

the precise diagnosis, classification, and modelling of bone fractures in medical imaging, particularly X-

ray and CT scans. Manual analysis of these photos requires a lot of time, is subjective, and frequently 

depends on the presence of knowledgeable experts. To improve patient care, support surgical planning, 

and help healthcare personnel make wise decisions about fracture management, it is imperative to create 

automated and trustworthy systems for fracture diagnosis, classification, and simulation. 

This complex issue has various important elements: 

▪ Fracture Detection: To accurately and automatically identify the presence of fractures in medical 

pictures, computer vision techniques and models must be developed. The position of fractures 

inside the bone structures is one aspect of this. 

▪ Fracture Classification: Fractures need to be classified after they are found into particular 

categories or classes to help with treatment choices. Different classification methods are 

addressed, including AO/OTA and Tang classification, emphasizing the significance of choosing 

the best appropriate system for various types of fractures. 

▪ Fracture Simulation: During treatment planning, it is essential to simulate fractures, including 

their effects on bone structures. This entails developing 3D projections of fractures and models, 

as well as evaluating the biomechanical parameters that affect treatment options. 

▪ Algorithm Evaluation: A comprehensive evaluation and comparison of the performance of 

various algorithms, deep learning models, and ensemble approaches is required. This involves 

evaluating how well they function in identifying and categorizing fractures as well as how useful 

they are in actual clinical settings. 

▪ Surgical Treatment Planning: The ultimate objective is to give medical practitioners trustworthy 

resources and data to help with surgical treatment planning. Based on the specifics of each 

fracture, this entails choosing the proper implants and surgical procedures. 

▪ Education and Training: The creation of CAD technologies that can help in the teaching and 

training of medical professionals, particularly trauma surgeon trainees, is necessary in addition to 

developing practical applications. 

Experts from several fields, including computer vision, deep learning, radiography, orthopedics, and 

biomechanics, must work together to solve these problems. The efficiency of fracture diagnosis and 

treatment planning, as well as patient outcomes, might be greatly enhanced by the creation of accurate, 

automated, and clinically pertinent solutions. 

 



455 R. Jothi An Enhanced Preprocessed Techniques 

 

Nanotechnology Perceptions 20 No.S15 (2024) 451-472 

 

2. Proposed methodology 

The X-ray/CT scans, which provide pictures of both healthy and fractured bones, are provided by the 

hospital. The image is going to have less noise if preprocessing techniques like RGB to grayscale 

conversion are used and improved using filtering algorithms in the first step. After that, it uses edge 

detection algorithms to detect the edges of the picture before segmenting it. After segmentation, each 

image is converted into a set of features using a feature extraction technique. The features that were 

retrieved are then used to construct the categorization technique. Lastly, the accuracy and efficacy of the 

proposed system are evaluated. The suggested system's flow diagram for locating bone fractures in CT 

and X-ray images is shown in Figure 1. 

1. TLMM model

2. Image 

Augmentation

3. Noise removal

4. Grey scale 

conversion

Dataset
SegNet

GLCM

Pre-processing

Segmentation

Classification

Fracture type

Fuzzy Radial Basis 

Function network

Feature Extraction

1. NGC-CLAHE with TDO

2. CLAHE with SA-TDO

3. AW-BPDFHE with GDO

 
Figure 1: Overall work flow diagram for the proposed bone disease classification model 

2.1.  Three Level Multi-Model (TLMM) based Pre-processing 

The multi-model-based histogram equalization technique consists of three successive levels of image pre-

processing aimed at enhancing image quality and contrast. In the first level, a process known as NGC-

CLAHE is applied, which involves gamma correction to normalize image intensity and CLAHE for 

enhancing local contrast. The second level introduces a proposed variation of CLAHE, utilizing CLAHE 

with SA-TDO, potentially incorporating novel algorithms to further improve contrast and noise reduction. 

Finally, the third level employs AW-BPDFHE with GDO, a technique designed to adaptively enhance 

image brightness while preserving dynamic range. These three levels of image pre-processing collectively 

aim to prepare input images for subsequent computer vision or image analysis tasks by optimizing their 

contrast and quality. 

2.1.1. Pre-processing using NGC-CLAHE 

The CT picture that was acquired is converted to a grayscale image. The intensity levels of the input 

photos are typically varied, hence an efficient CLAHE is used to equalize the images. In E-CLAHE, 
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pictures are initially divided into smaller tiles depending on intensity levels; all tiles have their contrast 

increased. This helps make things that are concealed in a picture more visible when projected. In contrast 

to conventional histogram equalization, contrast limited AHE (CLAHE) limits the contrast. Additionally, 

these characteristics are given to global histogram equalization, giving birth to CLAHE, which is rarely 

used in practice. Every neighbourhood pixel in CLAHE must employ the contrast limiting procedure from 

which the transformation function is generated. The goal of CLAHE is to completely reduce noise 

amplification, which is impossible to do with adaptive histogram equalization. However, this is 

achievable by restricting AHE's contrast enhancement. By using the transformation slope function, a 

particular pixel value's contrast is amplified. This is proportional to the cumulative distribution function 

(CDF) of the neighbourhood slopes and to the pixel-level histogram value. Before assessing CDF, 

CLAHE limits amplification by histogram clipping at a predetermined value. This limits the function of 

the CDF slope and transformation. The phrase "clip limit," which is dependent on histogram 

normalization and, consequently, on the size of the neighbourhood region, refers to the value at which 

histograms are clipped. Eq. (1) evaluates the clip point as follows: 𝛽 = 𝑀𝑁 (1 + 𝛼100 𝑆𝑚𝑎𝑥)     (1) 

Where 𝑀 is the number of pixels in each block, 𝑁 is the range of blocks, 𝑆𝑚𝑎𝑥 is the maximum 

slope, and 𝛼 is the clip factor. The Clipping Point (CP) is 𝑀/𝑁 when " 𝛼 " is close to 0, meaning that the 

block's pixels will remain constant. When " 𝛼 " is getting close to 100, contrast is greatly enhanced. As a 

result, the key factor controlling improvement in contrast is CP. Eq. (2) and Eq. (3) in CDF achieve 

mapping function to remap block picture with grey level as trails: 𝑐𝑑𝑓(𝑙) = ∑𝑙𝑘=0 𝑝𝑑𝑓(𝑙)    (2) 𝑇(𝑙) = 𝑐𝑑𝑓(𝑙) × 𝑙𝑚𝑎𝑥     (3) 

Where 𝑙𝑚𝑎𝑥is the highest pixel value allowed in a block and 𝑇(𝑙) is the remapping function. 

Numerous remapping functions are achieved with regard to CDF with redistributed histogram in block. 

Every value of a pixel is interrupted by mapping functions to prevent artefacts. "𝑝" is a pixel that is 

randomly delimited by blocks, and "𝑎, " "𝑏, " "𝑐, " 𝑎𝑛𝑑 "𝑑" are the centres of those blocks. Eq. (4) 

describes how to get the remapped "𝑝" pixel using bilinear interpolation. 𝑇(𝑝(𝑖)) = 𝑚. (𝑛. 𝑇𝑎 . 𝑝(𝑖) + (1 − 𝑛). 𝑇𝑏 . 𝑝(𝑖) + (1 − 𝑚). (𝑛. 𝑇𝑐 . 𝑝(𝑖) + (1 − 𝑛). 𝑇𝑑 . 𝑝(𝑖))      (4) 

Where 𝑇(. ) is the remapping function and 𝑝(𝑖) is the value of the pixel "𝑖" at the (𝑥, 𝑦) position. 

Artefacts are removed in the interpolation process. Gamma correction is carried out after the CLAHE. 

The relationship between a pixel's brightness and its numerical value is described by the gamma function, 

a grey-level translation function. As a result, it may be used to improve the brightness of photographs that 

include imperfections. The non-linear brightness of pictures can be changed to a greater or lower range 

via gamma correction. Gamma correction is applied somewhere between 0 and 1. One (1) represents pure 

white, whereas zero (0) represents pure black. For the test dataset, the gamma adjustment is made in the 

direction of one. In simpler notation, the function for gamma correction is shown as: 𝐼𝑂𝑈𝑇 = 𝐴. 𝐼𝐼𝑁𝛾       (5) 

Where, 𝐼𝑂𝑈𝑇 is the output created after gamma correction. 𝐼𝐼𝑁𝛾  stands for input and is raised to 

power. Then 𝐴 stands for the constant that has a value between 0 and 1. From Eq. (5), it is clear that 

changing the value of the parameter 𝛾 can change the transformation function. The projected picture will 

be made darker if the value of 𝛾 is raised since the image will be over compensated. Therefore, it is 

preferable to increase the dynamic range to match its whole natural interval. 

2.1.2. Second level pre-processing using CLAHE with SA-TDO 

The implementation of CLAHE using the SA-TDO method is the second stage of picture pre-processing. 

This process seeks to improve the image's quality and contrast even further. A well-known technique for 

enhancing local contrast and minimizing noise amplification in homogenous areas is CLAHE. SA-TDO 

presumably refers to a particular improvement or modification of CLAHE, maybe including new 

algorithms or techniques to provide more effective contrast enhancement and noise reduction. This degree 
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of pre-processing is necessary to get the picture ready for further analysis or computer vision jobs where 

contrast and image quality are key factors in correct findings. 

The suggested SA-TDO uses a population-based stochastic algorithm with Tasmanian Devils (TD) as 

its searcher agents. The initial population of these agents is generated randomly by utilizing the 

constraints of the challenge. issue solvers within the SA-TDO population provide possible values for the 

elements in the issue based on where they are in the search space. As a result, each person in a population 

may be thought of mathematically as a vector whose constituents are equal to the number of variables in 

the issue. As a consequence, a matrix in Eq. (6) may be used to describe the set of SA-TDO members. 𝑋 = [𝑋1  ⋮  𝑋𝑖   ⋮  𝑋𝑁]𝑁×𝑚|[𝑥1,1  … 𝑥1,𝑗  … 𝑥1,𝑚  ⋮ ⋱ ⋮ ⋱ ⋮  𝑥𝑖,1  … 𝑥𝑖,𝑗  … 𝑥𝑖,𝑚  ⋮ ⋱ ⋮ ⋱ ⋮  𝑥𝑁,1  … 𝑥𝑁,𝑗  … 𝑥𝑁,𝑚]𝑁×𝑚   (6) 

Where 𝑋 is the total number of TD, 𝑋𝑖 denotes the 𝑖𝑡ℎ candidate solution, 𝑁 denotes the total 

number of TD searching, 𝑥𝑖,𝑗 denotes the candidate value for the 𝑗𝑡ℎvariable, and 𝑚indicates the total 

number of variables in the tasks that are provided. By entering each potential answer into the values of the 

objective function's variables, the objective function of the issue may be calculated. In order to represent 

the values acquired for the objective function, a vector is used in Eq. (7). 𝐹𝑖𝑡 = [𝐹𝑖𝑡1  ⋮  𝐹𝑖𝑡𝑖  ⋮  𝐹𝑖𝑡𝑁]𝑁×1|[𝐹𝑖𝑡(𝑥1)  ⋮  𝐹𝑖𝑡(𝑥𝑖)  ⋮  𝐹𝑖𝑡(𝑥𝑁)]𝑁×1 (7) 

Where 𝐹𝑖𝑡𝑖 is the value of the objective value acquired by the 𝑖𝑡ℎ search solution and 𝐹𝑖𝑡 is the vector 

of objective function values. The study of the values produced for the objective function reveals the 

calibre of the potential solutions. Upon determining the optimal value for the objective function, the 

possible solution that leads to the best member of the group is established. Using the new data, the best 

member of the population is adjusted in each cycle. Two Tasmanian devil feeding techniques are used as 

the basis for the population update process in SA-TDO. Any Tasmanian devil can consume carrion or 

seek for prey. 

2) Step 1: Exploration phase (Feeding by eating carrion) 

The TD occasionally chooses to eat the local carrion than hunting. Around the TD, there are other raptors 

who pursue enormous prey but are unable to consume it all. Furthermore, until the TD shows around, 

these creatures might not be able to consume enough of their prey. The TD loves to eat these carrions 

under these circumstances. The behaviour of the TD when searching for carrion in its habitat is 

comparable to the algorithm search procedure in a setting for addressing problems. This TD strategy truly 

demonstrates how well SA-TDO exploration works in scanning several search space areas to find the first 

optimal position. With the help of Eq. (8) to Eq. (10), notions reflected in the TD's technique of 

consuming dead bodies are mathematically modelled. The placements of other group individuals in the 

search area are assumed by the SA-TDO design to be carrion spots for each TD. The 𝑖𝑡ℎTD is chosen as 

the target carrion for the 𝑘𝑡ℎ population member, following Eq. (8) simulates a random pick of one of 

these situations. Consequently, k needs to be randomly selected from 1 to N, whereas i must be picked at 

random from 0 to N. 𝐶𝑖 = 𝑋𝑘 , 𝑖 = 1,2, … 𝑁, 𝑘 ∈ {1,2, … . , 𝑁|𝑘 ≠ 𝑖}  (8) 

Where 𝐶𝑖 is the carrion that the TD has chosen for it. The selected carrion is used to calculate a new 

location for the TD in the search space. According to this strategy's modelling of TD movements, if a 

carrion's objective function value is higher, the TD will travel towards it; otherwise, it will move away 

from it. In Eq. (9), this TD movement technique is replicated. Once the last step of the first strategy has 

computed the new location for the TD, if the goal function's value is greater in the new position, the 

position is recognized; if not, the TD remains in its previous location. The update phase in Eq. (10) is 

modelled. 𝑥𝑖,𝑗𝑛𝑒𝑤,𝑆1 = {𝑥𝑖,𝑗 + 𝐹. 𝑟. (𝑐𝑖,𝑗 − 𝐼. 𝑥𝑖,𝑗),   𝐹𝑖𝑡𝐶𝑖 < 𝐹𝑖𝑡𝑖𝑥𝑖,𝑗 + 𝑟. (𝑥𝑖,𝑗 − 𝑐𝑖,𝑗),   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (9) 

(𝑋𝑖 = {𝑋𝑖𝑛𝑒𝑤,𝑆1, 𝐹𝑖𝑡𝑖𝑛𝑒𝑤,𝑆1 < 𝐹𝑖𝑡𝑖𝑋𝑖,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              (10) 

The HBA uses a flag (𝐹) parameter to indicate the algorithm's search direction, which increases the 

likelihood that search space will be extensively scanned by agents. Through the digging phase and the 
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honey phase, the locations of the agents are updated. During the first phase, the honey badger travels in a 

cardioid form using the following equation: Following this formula, the value of F is determined: 𝐹 = {1  𝑖𝑓 𝑟 ≤ 0.5 − 1 𝑒𝑙𝑠𝑒  (11) 

Where 𝑟 denotes a random value between [0, 1]. 

ii. Step 2: Exploitation phase (Feeding by eating prey) 

Hunting and eating prey are the TD's second method of feeding. There are two phases to the TD's assault 

behaviour. In the first step, it selects the victim and surveys its surroundings before attacking it. In the 

second stage, it pursues the victim once it has arrived so that it can be halted and consumed. Similar to 

how the initial approach, or choosing the carcass, is modeled, the first step is modeled. As a result, Eq. 

(12) to Eq. (14) are used to mimic the initial stages of prey selection and assault. In the second approach, 

the location of other individuals in the population is taken into account while updating the location of the 𝑖𝑡ℎ TD. The 𝑘𝑡ℎ population member is chosen at random to be the prey, where 𝑘 is a natural random 

number between 1 𝑎𝑛𝑑 𝑁 that is the reverse of 𝑖. In Eq. (12), the process of choosing prey is mimicked. 𝑃𝑖 = 𝑋𝑘 , 𝑖 = 1,2, … , 𝑁 , 𝑘 ∈ {1,2, … , 𝑁|𝑘 ≠ 𝑖}  (12) 

The TD has chosen 𝑃𝑖 as its target in this instance. Once the prey's location is determined, the TD 

calculates a new position. The TD determines its new position and travels either towards or away from the 

targeted prey depending on whether its objective function value is higher. Eq. (12) presents a model of 

this process. If the target function's value is increased by the new location estimated for the TD, the old 

position is replaced. Model 8 illustrates this stage of the second technique. 𝑥𝑖,𝑗𝑛𝑒𝑤,𝑆2 = {(𝐿 + 𝑉) + 𝑟. (𝑝𝑖,𝑗 − 𝐼. 𝑥𝑖𝑗),   𝐹𝑖𝑡𝑃𝑖 < 𝐹𝑖𝑡𝑖𝑥𝑖,𝑗 + 𝑟. (𝑥𝑖,𝑗 −𝑝𝑖,𝑗),   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒(13) 𝑋𝑖 = {𝑋𝑖,𝑗𝑛𝑒𝑤,𝑆2,   𝐹𝑖𝑡𝑖𝑛𝑒𝑤,𝑆2 < 𝐹𝑖𝑡𝑖𝑋𝑖,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (14) 

In this case, 𝑋𝑖𝑛𝑒𝑤,𝑆2
 represents the updated status of the 𝑖𝑡ℎ Tasmanian based on the second 

strategy, 𝐹𝑖𝑡𝑖𝑛𝑒𝑤,𝑆2
 represents its objective function value,𝑋𝑖,𝑗𝑛𝑒𝑤,𝑆2

represents its value for the jth variable, 

and 𝐹𝑖𝑡𝑖 represents its objective function value of the chosen prey. In order to mimic chasing the bird, L 

symbolizes the launch speed, which may be computed using Eq. (15): 𝐿 = 𝑥𝑖,𝑗 ×𝑠𝑖𝑛 𝑠𝑖𝑛(𝜃2°) × 𝐹𝑖𝑡𝑖   (15) 

Where (16) may be used to compute the visual distortion V: 𝑉 =𝑠𝑖𝑛 𝑠𝑖𝑛(𝜃2°) × 𝐷     (16) 

Using the formula in Eq. (17), where sin is the sine of a variable expressed in degrees and D is the 

separation between the prey and the attacker: 𝐷 = |𝑥𝑖,𝑗𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗|     (17) 

Where 𝑥𝑖,𝑗𝑏𝑒𝑠𝑡is the best-obtained solution so far; it represents the location of the prey. If the newly 

computed position offers a greater value for the goal function than the old one, the TD will accept it. For 

the TD in Eq. (18) this location updating mechanism is reproduced. 𝑅 = 0.01 (1 − 𝑡𝑇)     (18) 𝑥𝑖,𝑗𝑛𝑒𝑤 = 𝑥𝑖,𝑗 + (2𝑟 − 1). 𝑅. 𝑥𝑖,𝑗    (19) 𝑋𝑖 ={𝑋𝑖𝑛𝑒𝑤 ,   𝐹𝑖𝑡𝑖𝑛𝑒𝑤 < 𝐹𝑖𝑡𝑖𝑋𝑖,   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (20) 

Where 𝑅 is the attack location's neighbourhood radius, 𝑡 is the current iteration count, 𝑇 is the 

maximum iteration count, 𝑋𝑖𝑛𝑒𝑤 is the 𝑖𝑡ℎ TD's new status in the area around 𝑋𝑖, 𝑥𝑖,𝑗𝑛𝑒𝑤is its value for the 𝑗𝑡ℎ parameter, and 𝐹𝑖𝑡𝑖𝑛𝑒𝑤 is the objective value. 

The first algorithm iteration is finished after all SA-TDO members have been updated. The 

objective function and TD location are computed with new values. Following this, the algorithm moves 

on to the following iteration, and the process of updating the SA-TDO population continues until all 

iterations have been completed, as shown by Eq. (6) through Eq. (20). During these iterations, SA-TDO 

revises and saves the top candidate solution. SA-TDO presents the top potential answer as the problem's 

resolution when the algorithm has been fully developed. 
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3.1.3. Third level pre-processing using AW-BPDFHE with GDO 

The third level uses GDO together with AW-BPDFHE as the final step in picture pre-processing. The 

goal of this stage is to improve the contrast and image quality even further. The adaptive technique 

BPDFHE seeks to improve picture brightness while maintaining dynamic range, making sure that crucial 

image features are not lost throughout the enhancement process. The addition of GDO shows that some 

sort of adaptive weighting is used in this procedure, perhaps catered to the unique qualities of the image 

and further enhancing image quality. This third stage of pre-processing is essential for getting the picture 

ready for further analysis and making sure it offers the best data for various computer vision or image 

processing jobs. 

Dynamic fuzzy histogram equalization has been used in several research to increase the 

brightness of low contrast images made up of discrete grey levels with a dynamic range of [0, L-1]. 

Dynamic fuzzy histogram equalization approach that preserves brightness involves first splitting the fuzzy 

histogram, followed by DHE equalization of each sub-histogram. A fuzzy histogram consists of the real 

numbers ℎ(𝑖), 𝑖 = 1, . . . , 𝐿 − 1, where ℎ(𝑖) represents the frequency with which grey levels that are close 

to i occur. Eq. (1) is used to find the remapped values for the 𝑖𝑡ℎ sub-histogram. 𝑦(𝑗) = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑟𝑎𝑛𝑔𝑒𝑖 ∑𝑗𝑘=𝑠𝑡𝑎𝑟𝑡𝑖 ℎ(𝑘)𝑀𝑖    (21) 

Where 𝑟𝑎𝑛𝑔𝑒𝑖 and 𝑠𝑡𝑎𝑟𝑡𝑖 may be calculated using Eq. (22) and Eq. (25), respectively, and 𝑦(𝑗) 

is the new intensity level corresponding to the 𝑗𝑡ℎ intensity level on the original picture, and ℎ(𝑘) is the 

histogram score at the 𝑘𝑡ℎ intensity range on the fuzzy histogram: 𝑟𝑎𝑛𝑔𝑒𝑖 = (𝐿−1)×𝑓𝑎𝑐𝑡𝑜𝑟𝑖∑𝑛+1𝑘=1 𝑓𝑎𝑐𝑡𝑜𝑟𝑘    (22) 𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝑠𝑝𝑎𝑛𝑖 × 𝑀𝑖    (23) 𝑠𝑝𝑎𝑛𝑖 = ℎ𝑖𝑔ℎ𝑖 − 𝑙𝑜𝑤𝑖    (24) 

Where 𝑀𝑖 is the total number of pixels in that partitioning and ℎ𝑖𝑔ℎ𝑖and 𝑙𝑜𝑤𝑖stand for the 

greatest and lowest intensity values in the 𝑖𝑡ℎ input sub-histogram, respectively. 𝑟𝑎𝑛𝑔𝑒𝑖is the dynamic 

range of the output sub-histogram, whereas 𝑠𝑝𝑎𝑛𝑖 is the dynamic range of the given partition. 𝑠𝑡𝑎𝑟𝑡𝑖 = ∑𝑖−1𝑘=1 𝑟𝑎𝑛𝑔𝑒𝑘 + 1   (25) 𝑠𝑡𝑜𝑝𝑖 = ∑𝑖𝑘=1 𝑟𝑎𝑛𝑔𝑒𝑘    (26) 

The last step is to normalize the brightness of the image using Eq. (27), which compels the 

algorithm to ensure that the mean brightness of the enhanced image is equal to the mean brightness of the 

original image. 𝑔(𝑥, 𝑦) =  𝐴𝑤 ∗ 𝑚𝑖𝑚𝑜 𝑓(𝑥, 𝑦)    (27) 

Where '𝑔' is the enhanced picture using BPDFHE and '𝑔(𝑥, 𝑦)' is the grey level value at the pixel 

position (𝑥, 𝑦), 𝐴𝑤 is the adaptive weight function which ranges form [1,2], 𝑚𝑖and 𝑚𝑜 are the mean 

brightness levels of the input and the image '𝑓' obtained after the dynamic histogram equalisation step, 

respectively. 

2.2. Image Augmentation 

In image processing jobs, data augmentation is utilized to generate additional instances from the training 

data that already exists. The model is capable of learning from a large range of examples and efficiently 

generalizing to a large number of possible input picture orientations. Additionally, a limited dataset size 

frequently causes the model to be overfit. As a result, adding new data through data augmentation gives 

the input data greater diversity and prevents the model from becoming overfit. The next section goes into 

further depth on the data augmentation techniques used in the current study, including random 

crop, random rotation,  random flip, and random light. 

3.2.1. Random Rotation 

It describes the technique of rotating training images at any angles without affecting the image's basic 

meaning. This approach offers a new perspective on the model that is being taught. When using a model 

in a non-fixed location, it is crucial to rotate the picture (for instance, using a mobile interface). Rotating a 

photograph might be challenging since graphical errors around the image's edges could cause issues. 
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3.2.2. Radom Crop 

Selecting a portion of a picture and storing it as a new training instance is known as cropping. This 

cropping region may be chosen based on a predetermined plan or at random. Cropping also means that a 

picture is made square by enlarging it to fit into a square while maintaining the aspect ratio. Then, more 

pixels are added to fill in the newly generated gaps. 

3.2.3. Random Flip 

By randomly flipping an item along its x- or y-axis while maintaining the image's basic structure and 

meaning, the model learns that an object need not always be comprehended from left to right or up to 

down. 

3.2.4. Random Lighting  

Adjusting picture intensity to be arbitrarily brighter and darker is particularly advantageous if a model 

must operate in a variety of lighting situations. Generalization is aided by adjusting the intensity to reflect 

the circumstances the model will experience in use as opposed to the training images. 

2.3.  Noise reduction 

Based on the following equation, a Gaussian filter has been applied to the image to minimize noise and 

undesired features: 𝑔(𝑚, 𝑛) = 𝐺𝜎(𝑚, 𝑛) ∗ 𝑓(𝑚, 𝑛)    (28) 

The gradient operator is represented by 𝑔(𝑚, 𝑛), the adaptive filter is represented by 𝑓(𝑚, 𝑛), the 

standard deviation is represented by 𝜎, and the image matrices are by 𝑚 𝑎𝑛𝑑 𝑛. The 𝐺 is determined 

using: 𝐺𝜎 = 1√2𝜋𝜎2 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 𝑚2+𝑛22𝜎2 )   (29) 

2.4. Grayscale conversion 

Grayscale images solely include grayscale data, whereas primary colours (RGB) are used in MRI reports. 

Grey scale is a sort of monochrome image where each pixel contains information on the intensity of light; 

as a result, it may resemble a traditional black-and-white image. It is simpler to process the MRI after 

conversion to a grayscale picture. Here, we use the commands "rgb2gray" and "binarize" to transform a 

three-dimensional picture into a two-dimensional, grayscale image. 

2.5.  Segmentation using Segnet 

The pre-processed images are given to the segnet model for extracting the ROI region. Segnet consists of 

an encoding network, an associated decoding network, and a last layer for categorization based on pixels. 

13 convolutional layers compose the image classification-based encoding network. The decoder network 

consists of 13 levels since each encoder layer has a matching decoder layer. An SMC is used to create 

class probabilities for each individual pixel using the final decoder output. Within the encoder network, 

every encoder convolution with a filter bank to produce a set of feature maps. Then batch normalization is 

used. This is followed by using the element-wise rectified linear nonlinearity (ReLU) max (0, x). After 

max-pooling is finished, the output is then sub-sampled. 

The suitable decoder inside the decoder network up samples the input feature maps by using the max-

pooling indices from the remembered matched encoder feature maps. A trainable decoder filter bank is 

then used to convolve these feature maps to produce dense feature maps. After that, a batch normalizing 

process is applied to every one of these maps. A trainable softmax classifier receives the high dimensional 

feature and classifies each pixel separately. With K representing the number of classes, Softmax generates 

a K channel image of probability. According on the predicted segmentation, the class with the highest 

probability at each pixel. The convolutional layer can be explained as follows: 

A filter bank is 𝑊𝑙 = (𝑊1𝑙 , 𝑊2𝑙 , … . , 𝑊𝑑ℎ𝑙𝑙 ). The 𝑊𝑘𝑙 , 𝑘 ∈ {1,2, … , 𝑑ℎ𝑙 }are each 𝑚𝑙 × 𝑚𝑙 linear filters 

inserted in the 𝑙𝑡ℎ layer. The quantity 𝑑ℎ𝑙  represents the variety of filters or kernels in the filter bank 𝑊𝑙. 
A mu local relevant area in the image 𝐼𝑝𝑙−1 covered by the filter 𝑤𝑘𝑙  is convolved with an input 𝐼𝑝𝑙−1 patch. 

A local convolution operation is possible due to the filter 𝑊𝑘𝑙, which advances across the input patch 𝐼𝑝𝑙 . 

Convolution procedures using 𝑑ℎ𝑙  filters produce 𝑑ℎ𝑙 feature maps for each patch that was derived from the 

picture. 
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It is possible to rewrite the outcome of the linear convolutional operation on 𝐼𝑝𝑙−1by 𝑊𝑘𝑙 as 𝑔𝑘𝑙 =𝐼𝑝𝑙−1 ∗ 𝑊𝑘𝑙. Here, the image pixels of the local, corresponding region that the filter covers are multiplied 

by the filter coefficients to get the pixel value 𝑔𝑘(𝑝) at each point of the resulting picture 𝑔𝑘𝑙 . Every filter 𝑤𝑘convolves over pixels in 𝐼𝑝𝑙−1 that are (𝜔𝑙−1 − 𝑚𝑙 + 1) × (𝜔𝑙−1 − 𝑚𝑙 + 1)  throughout the 

convolutional processes. The output of active function is given in Eq. (30) 𝑥𝑙 = 𝑓(𝑔𝑘𝑙 ) = 11+𝑒𝑥𝑝 (−𝑔𝑘𝑙 )    (30) 

Achieving spatial invariance, the max-pooling layers lower the resolution of the feature maps 

obtained in the convolutional layers. It performs local pooling of feature maps by utilizing a max 

operation close to the convolutional layer outcomes. After performing a max-pooling procedure, the size 

of the resulting photos increases. (𝜔𝑙−1−𝑚𝑙+1)𝑆 × (𝜔𝑙−1−𝑚𝑙+1)𝑆     (31) 

Where the term "𝑆" denotes the operation's scale. The Softmax classifier represents a supervised 

model that extends logistic regression. 𝑃𝑊(𝑙)(𝑥𝑙) = 11+𝑒𝑥𝑝 (−𝑊(𝑙)𝑇𝑥𝑙)    (32) 

Where 𝑃𝑊(𝑙)(𝑥𝑙)is a sigmoid function with parameters 𝑊(𝑙). The Segnet has learnt a high-level 

feature, which is the input 𝑥(𝑙) of SMC. The SMC parameter 𝑊(𝑙)that is acquired during a training set. 

Every patch given into the algorithm with the learnt parameter 𝑊(𝑙)yields a value between 0 and 1, which 

is regarded as the likelihood that the input patch corresponds to the specified area and background. Next, 

it is possible to describe the projected class 𝑖 ̂and prediction score 𝑆̂(𝑖)̂ as, 𝑖̂ = {𝑖|𝑃𝑤𝑖(𝑙)(𝑦̂ = 𝑖)} , 𝑖 ∈ {0,1}   (33) 𝑆̂(𝑖)̂ = 𝑃𝑊(𝑙)(𝑦𝑙 = 𝑖)̂, 𝑖̂ ∈ {0,1}   (34) 

The appropriate label files are created once the training procedure's training data set and related 

ground truth are constructed. After configuring the Segnet network structure, the script file invokes the 

training set and network structure to begin training. By modifying the internal network parameters while 

the network is being trained, the training performance is optimized. When the training process yields 

consistent accuracy and loss, the network model may be acquired. 

2.6. Feature extraction using GLCM 

The segmented image is given to the GLCM for extracting the features. In GLCM model the correlation, 

homogeneity, contrast, energy, and dissimilarity are used for feature extraction. 

 

i. Correlation  

It measures the linear relationships between grey tones in a picture. The correlation between a pixel and 

its neighbour is described.  𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑𝑁−1𝑖=𝑗=0 (𝑖−𝜇)(𝑗−𝜇)𝜎2     (35) 

ii. Homogeneity Feature 

Large values of the diagonal GLCM components show the high uniformity in the picture texture. The 

degree of homogeneity is greatest when all of the image's pixels have the same values. The uniformity of 

the image is diminished by a strong contrast. Eq. (36) provides the homogeneity feature. 𝐻 = ∑𝑁−1𝑖=0 ∑𝑁−1𝑗=0 𝑃(𝑖,𝑗)1+(𝑖−1)2    (36) 

iii. Contrast Feature 

The difference between the lowest and greatest pixel values in a collection of pixels is measured by the 

contrast characteristic. Eq. (37) provides the contrast feature. 𝐻 = ∑𝑁−1𝑖=0 ∑𝑁−1𝑗=0 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2  (37) 

These four features are extracted for different offset and angle values to create a feature vector. The 

steps are 1 and 3 pixels, and the angles are 0, 45, and 900 degrees. 
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iv. Energy feature 

The square root of the second moment feature for angles is the energy feature. This characteristic displays 

the texture of the image's homogeneity. The energy feature acquired from the GLCM is provided by Eq. 

(38). Given that GLCM is a normalized matrix, the energy's maximum value is unity. 𝐸 = √∑𝑁−1𝑖=0 ∑𝑁−1𝑗=0 {𝑃(𝑖, 𝑗)}2   (38) 

v. Dissimilarity Feature 

The dissimilarity stands for the texture of the image's variability. By adding linear weights as specified by 

Eq. (39) to the GLCM cell values, the dissimilarity feature is produced. 𝐷 = ∑𝑁−1𝑖=0 ∑𝑁−1𝑗=0 𝑃(𝑖, 𝑗)|𝑖 − 𝑗|   (39) 

2.7. Classification using FRBF 

The collected ROI characteristics are then passed on to the classification layer, where the FRBF is applied 

to categorize the bone fracture site. A FRBF has four layers: the input layer, the layer that fuzzifies the 

data, and the layer that fuzzifies the reasoning. The input components are first added to the input layer, 

then transferred to the layer of fuzzification, where they are connected to the layer of fuzzy logic, where 

the fuzzy rule checking is completed before the fuzzy calculation, and finally moved to the layer of fuzzy 

logic. The output and node weights for the output layer are listed below. Figure 2 illustrates the FRBF 

model's architectural layout. 

Input 

layer
Fuzzy 

layer

Fuzzy 

reasoning 

layer

Output 

layer

 
Figure 2: Layered architecture of the FRBF model 

The first layer is known as the input layer. The input and output values shown below may be used 

to represent each node 𝑖 in this layer: ℎ1(𝑖) = 𝑥𝑖     (40) 

The layer of fuzzification is the second layer. This layer's nodes each have a membership function 

that is a Gaussian basis function (𝑏𝑗). Regarding the 𝑗𝑡ℎ node: {ℎ2(𝑖, 𝑗) = 𝑒(𝑛𝑒𝑡𝑗2)𝑛𝑒𝑡𝑗2 = |𝑥−𝑐𝑖𝑗|2𝑏𝑗2    (41) 

Where 𝑐𝑖𝑗is the value of the central vector of the 𝑗𝑡ℎ neuron and 𝑏𝑗> 0 is the hidden layer neuron 𝑗's width. The third layer is reasoning that is fuzzy. The layer's link to the layer of fuzzification enables 

fuzzy rule comparison and between-node fuzzy procedures. Each node's output 𝑗 is determined by the 

product of its input values. ℎ3(𝑗) = ∏𝑁𝑗=1 ℎ2(𝑖, 𝑗)  (42) 

Where 𝑁 = ∏𝑛𝑖=1 𝑁𝑖is the total count of nodes in the fuzzification layer and the 𝑖𝑡ℎmembership 

functions in the input layer. The output layer is the last layer. Each output component of this layer is 

determined by the weighted sum of the input signals: 
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ℎ3(𝑙) = 𝑤. ℎ3 = ∑𝑁𝑗=1 𝑤(𝑙, 𝑗). ℎ3(𝑗) (43) 

Where 𝑤 represents the connection between the nodes in the output layer and those in the third 

layer, and 𝑙 represents the total number of output layer nodes. Four layers make up the FRBF: an input 

layer, two layers of fuzzy reasoning, and a layer of fuzzy reasoning. The input can be defined as 𝑥 =[𝑠, 𝑠̇] and the network's output value, real value are thus represented by 𝑑̂(𝑡) = ℎ4(𝑙) and inaccuracy in 

the network's estimate is: 𝜀1(𝑡) = 𝑑(𝜔𝑟, 𝛽, 𝑡) − 𝑑̂(𝑡)     (44) 

The variable parameters are calibrated using the gradient descent method. The intended function 

is described as follows: 𝐸 = 12 ∗ 𝜀(𝑡)2      (45) 

The FRBF's learning strategy involves modifying the output layer's weights: ∆𝑤(𝑡) = −𝜙 𝜕𝐸𝜕𝑤 = − − 𝜙 𝜕𝐸𝜕𝑤 ∗ 𝜕𝜀𝜕𝑑̂ 𝜕𝑑̂𝜕𝑤    (46) 

The learning algorithm used in the output layer consists: 𝑤(𝑡) = 𝑤(𝑡 − 1) + ∆𝑤(𝑡) + 𝛼[𝑤(𝑡 − 1) − 𝑤(𝑡 − 2)]  (47) 

Where 𝛼 is the momentum factor, 𝛼∈ [0, 1], and 𝜑 is the learning rate, [0, 1]. The membership 

function parameters are modified as follows for the input layer: {∆𝑐𝑖𝑗 = −𝜙 𝜕𝐸𝜕𝑐𝑖𝑗 = −𝜙 𝜕𝐸𝜕𝑛𝑒𝑡𝑗2 ∗ 𝜕𝑛𝑒𝑡𝑗2𝜕𝑐𝑖𝑗 = −𝜙𝛿𝑗2 1(𝑥𝑖−𝑐𝑖𝑗)𝑏𝑗2 ∆𝑏𝑗 = −𝜙 𝜕𝐸𝜕𝑏𝑗 = −𝜙 𝜕𝐸𝜕𝑛𝑒𝑡𝑗2 ∗𝜕𝑛𝑒𝑡𝑗2𝜕𝑏𝑗 = −𝜙𝛿𝑗2 1(𝑥𝑖−𝑏𝑗)𝑏𝑗2    (48) 

Where    𝛿𝑗2 = 𝜕𝐸𝜕𝑛𝑒𝑡𝑗2 = −𝜀(𝑡) 𝜕𝑑̂(𝑡)𝜕𝑛𝑒𝑡𝑗2     (49) 

The method for learning a membership function's parameters is: {𝑐𝑖𝑗(𝑡) = 𝑐𝑖𝑗(𝑡 − 1) + ∆𝑐𝑖𝑗(𝑡) + 𝛼[𝑐𝑖𝑗(𝑡 − 1) − 𝑐𝑖𝑗(𝑡 − 2)]𝑏𝑗(𝑡) = 𝑏𝑗(𝑡 − 1) +∆𝑏𝑗(𝑡) + 𝛼[𝑏𝑗(𝑡 − 1) − 𝑏𝑗(𝑡 − 2)]  (50) 

The output of the FRBF system from the previously described equation is: 𝑑̂(𝑡) = ∑𝑁𝑗=1 𝑤(𝑙, 𝑗). ℎ3(𝑗) = 𝑊∗𝑇ℎ(𝑥)   (51) 

Where 𝑊∗ is the ideal network weight. The final output of the FRBF model gives the type of bone 

fracture. 

3. Result  

This section compares the suggested model's efficiency with methods that are currently in use, and the 

results are displayed as graphs. The Python platform is utilized for the implementation, and the input 

picture is obtained from the Bone Break Classifier Dataset  

(https://www.kaggle.com/datasets/amohankumar/bone-break-classifier-

dataset?select=Comminuted+fracture” dated on 03/10/2023). The collection of 1750 photos, including 

around 150+ images for each of the 12 main kinds of fractures. Google Images was used to web scrape 

the dataset. The main goal is to develop a reliable image classification model that can accurately classify 

input photos into one of the 12 distinct fracture classifications. The diagnosis and categorization of bone 

fractures need to be automated and improved, and this classification system is crucial. This might help 

medical practitioners make better decisions. The performance measures covered in the section below are 

used to compute this efficiency. 

3.1. Performance metrics 

This section contains the performance metrics and the formulae for calculating them. 

● Sensitivity 

To find the sensitivity value, just divide the total positives by the fraction of true positive forecasts. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃+𝐹𝑁                                                                (52) 

● Specificity 
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The number of correctly predicted negative outcomes divided by the total number of negatives yields 

the specificity. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡 𝑦 = 𝑇𝑁𝑇𝑁+𝐹𝑃     (53) 

 

● Accuracy 

Accuracy is defined as the ratio of accurately identified information to all of the data in the record. 

The accuracy is characterized as, 

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁        (54) 

● Precision 

 Precision shows the total number of real samples that are suitably taken into account during the 

categorization process by using all of the samples that were utilized in the procedure.  

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃+𝐹𝑃         (55) 

● Recall 

 When classifying data, recall rate indicates the total number of real samples that are taken into 

account. This is done by grouping all of the training data's samples into the same categories.  

     𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁         (56) 

● F- Score 

 Recall rate and accuracy harmonic means are what define the F-score.  

    𝐹𝑆𝑐𝑜𝑟𝑒 = 2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙          (57) 

● Negative Prediction Value (NPV) 

The relationship between TN and the total of TN and FN is known as the NPV. 𝑁𝑃𝑉 = 𝑇𝑁𝑇𝑁+𝐹𝑁            (58) 

● Matthews correlation coefficient (MCC) 

The equation below represents the two-by-two binary value association measurement, often known as 

MCC, 𝑀𝐶𝐶 = (𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁)√(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝐹𝑃)       (59) 

 

● False Positive Ratio (FPR) 

When all adverse events are divided by all adverse events that were mistakenly classed as positive, 

the FPR is obtained. 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁                                                                 (60) 

● False Negative Ratio (FNR) 

Often referred to as the "miss rate," this is the likelihood that a true positive will pass the test without 

being detected. 𝐹𝑁𝑅 = 𝐹𝑁𝐹𝑁+𝑇𝑃       (61)     

4. Discussion 

The proposed model is developed to enhance the detection accuracy as well as the classification 

accuracy. Likewise, the proposed design provides better detection accuracy and classification 

accuracy. However, limitations present in this study are it consumes more time for data segmentation 

and classification. Histogram equalization does not respond to the noise data. The suggested Seg-

FRBF model is contrasted with the methods already in use like Convolutional Neural Network 

(CNN), Support Vector Regression (SVM), Random Forest (RF) and Decision Tree (DT). The 

comparison is shown in Table 1. 
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Table 1: Comparison between the suggested and current methods for achieving 

a 70% learning rate 

Performance 

metrics 

CNN SVM RF DT PROPOSED 

Accuracy 0.959131 0.939394 0.95315 0.948365 0.977738 

Precision 0.754785 0.636364 0.7189 0.690191 0.866427 

Sensitivity 0.754785 0.636364 0.7189 0.690191 0.866427 

Specificity 0.977708 0.966942 0.974445 0.971836 0.987857 

f1-score 0.754785 0.636364 0.7189 0.690191 0.866427 

MCC 0.732492 0.603306 0.693345 0.662027 0.854284 

NPV 0.977708 0.966942 0.974445 0.971836 0.987857 

FPR 0.022292 0.033058 0.025555 0.028164 0.012143 

FNR 0.245215 0.363636 0.2811 0.309809 0.133573 

In the presented table 1 of performance metrics, the proposed model stands out with remarkable 

results. It achieves the highest accuracy, approximately 97.77%, indicating that nearly 97.77% of its 

predictions are correct. Moreover, the proposed model excels in precision (approximately 86.64%) and 

sensitivity (also approximately 86.64%), showcasing its ability to accurately identify positive instances. 

Additionally, it boasts exceptional specificity (approximately 98.79%), signifying its proficiency in 

correctly identifying negative instances. The F1-score, a balanced measure of accuracy, reflects a 

harmonious trade-off between precision and recall at approximately 86.64%. The Matthews Correlation 

Coefficient (MCC) further attests to the proposed model's excellence with a score of approximately 

85.43%. It also demonstrates a high Negative Predictive Value (NPV) of around 98.79%, underlining the 

accuracy of its negative predictions. While its False Positive Rate (FPR) is low at approximately 1.21%, 

there is a moderate False Negative Rate (FNR) of about 13.36%, indicating that it misses approximately 

13.36% of actual positive cases. In summary, the proposed model exhibits robust performance across a 

spectrum of evaluation metrics, making it a promising candidate for the classification task, although 

considerations should be based on the specific priorities and objectives of the application. For learning 

rate 80% is compared in table 2. 

Table 2: Comparison of the proposed and existing techniques for learning rate 80% 

Performance 

metrics 

CNN SVM RF DT PROPOSED 

Accuracy 
0.977738 0.942783 0.931320 0.938098 0.984450 

Precision 
0.866427 0.656699 0.587919 0.628589 0.906699 

Sensitivity 
0.866427 0.656699 0.587919 0.628589 0.906699 

Specificity 
0.987857 0.968791 0.962538 0.966235 0.991518 

f1-score 
0.866427 0.656699 0.587919 0.628589 0.906699 

MCC 
0.854284 0.625489 0.550457 0.594824 0.898217 

NPV 
0.987857 0.968791 0.962538 0.966235 0.991518 

FPR 
0.012143 0.031209 0.037462 0.033765 0.008482 

FNR 
0.133573 0.343301 0.412081 0.371411 0.093301 
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The table 2 provides a comprehensive overview of the performance metrics for various classification 

models, including CNN, SVM, RFE, DT, and a proposed model. These metrics assess the effectiveness of 

these models in classifying data into two classes, typically representing positive and negative cases. 

Notably, accuracy, which measures the overall correctness of predictions, ranges from approximately 

0.931 to 0.984 across models, with higher values indicating better performance. Precision, sensitivity, and 

F1-score reflect the ability to correctly classify positive cases, with values ranging from approximately 

0.587 to 0.906. Specificity, representing the accurate classification of negative cases, is relatively high, 

ranging from around 0.962 to 0.991. The Matthews Correlation Coefficient (MCC), a measure of binary 

classification quality, varies from approximately 0.550 to 0.898. Additionally, false positive rate (FPR) 

and false negative rate (FNR) values, measuring classification errors, range from approximately 0.008 to 

0.037 and from 0.093 to 0.412, respectively. These metrics collectively offer insights into the models' 

performance and their ability to accurately classify data, depending on the specific context and priorities 

of the classification task. 

a. Accuracy 

Table 1 and Table 2's accuracy metrics comparison makes it clear that the proposed model continuously 

outperforms them at various learning rates. The suggested model achieves an accuracy of 0.984450 in 

Table 2, which is just a little bit higher than the accuracy of 0.977738 in Table 1, when the learning rate is 

raised from 70% (Table 1) to 80% (Table 2). Notably, the suggested model regularly performs better in 

both tables than the other methods currently in use, demonstrating its potency in properly identifying data. 

The comparison is shown in figure 3. 

 
Figure 3: Comparison of the accuracy metric 

b. Precision 

Tables 1 and 2 show a consistent pattern in the performance of the proposed model across various 

learning rates in terms of accuracy measures. The fraction of accurate positive predictions among all of 

the model's positive predictions is known as precision. The suggested model keeps a high level of 

precision in both tables, with precision values of 0.866427 in Table 1 and 0.906699 in Table 2. This 

shows that the suggested methodology is successful in accurately recognizing and categorizing positive 

instances, such as bone fractures. Figure 4 shows the comparison of the precision metric. 
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Figure 4: Comparison of the precision metric 

c. Sensitivity 

In Table 1 (learning rate 70%), the proposed model exhibits a sensitivity value of 0.866427, indicating its 

capability to correctly detect and classify positive cases, such as bone fractures. In Table 2 (learning rate 

80%), the proposed model maintains a similar high sensitivity level at 0.906699, suggesting its consistent 

effectiveness in accurately capturing positive instances. The sensitivity values are shown in figure 5. 

 
Figure 5: Comparison of the sensitivity metric 

d. Specificity 

In both Table 1 (learning rate 70%) and Table 2 (learning rate 80%), the proposed model consistently 

demonstrates high specificity values of 0.987857 and 0.991518, respectively. These values indicate that 

the proposed model excels at correctly identifying cases that do not belong to the positive class, shown in 

figure 6. 
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Figure 6: Comparison of the specificity metric 

e. F1-score 

In Table 1 (Learning Rate 70%), the proposed model achieves an F1-score of 0.866427, 

demonstrating a balanced capability to accurately classify positive cases while minimizing false 

positives. In Table 2 (Learning Rate 80%), the proposed model's F1-score improves to 0.906699, 

indicating enhanced precision and recall, compared in figure 7. 

 
Figure 7: Comparison of the f1-score metric 

f. NPV 

In Table 1 (Learning Rate 70%), the NPV values for different models range from approximately 

0.966942 to 0.977708. Notably, the proposed model in Table 1 achieves a high NPV of 0.977708, 

indicating its capability to effectively avoid false negatives and accurately classify true negative cases. In 

Table 2 (Learning Rate 80%), the NPV values also demonstrate strong performance across models, 

ranging from approximately 0.966235 to 0.991518. The NPV values are compared in figure 8. 
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Figure 8: Comparison of the NPV metric 

g. MCC 

The MCC values for several models are represented in Table 1 (Learning Rate 70%), and they range from 

around 0.603306 to 0.854284. Notably, the suggested model in Table 1 receives a strong MCC score of 

0.854284, suggesting its efficiency in classifying tasks. The suggested model achieves an outstanding 

MCC of 0.898217, with MCC values in Table 2 (Learning Rate 80%) ranging roughly from 0.550457 to 

0.898217, shown in figure 9. 

 
Figure 9: Comparison of the MCC metric 

h. FPR 

The range of FPR values for several models in Table 1 (Learning Rate 70%) is about from 0.022292 

to 0.037462. The suggested model in Table 1 also gets a commendably low FPR of 0.012143, 

demonstrating its capacity to successfully reduce the rate of mistakenly identifying negative situations 

as positive. The FPR values in Table 2 (Learning Rate 80%) are similar, with the suggested model 

reaching a noticeably low FPR of 0.008482. The FPR values range from around 0.008482 to 

0.037462, shown in figure 10. 
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Figure 10: Comparison of the FPR metric 

i. FNR 

In Table 1 (Learning Rate 70%), FNR values span from approximately 0.133573 to 0.343301 for various 

models. Importantly, the proposed model in Table 1 maintains a commendably low FNR of 0.133573, 

indicating its efficacy in minimizing the rate of incorrectly classifying positive cases as negative, thereby 

reducing the risk of missing actual positive instances. Similarly, in Table 2 (Learning Rate 80%), FNR 

values vary from approximately 0.093301 to 0.412081, with the proposed model demonstrating a notably 

low FNR of 0.093301, shown in figure 11. 

 
Figure 11: Comparison of the FNR metric 

5. Conclusion 

In conclusion, the accurate detection and classification of bone fractures in medical imaging are critical 

challenges in the healthcare field. Current techniques often struggle due to inadequate preprocessing 

methods. However, our proposed TLMM based histogram equalization approach, featuring advanced 

enhancements like NGC-CLAHE with TDO, CLAHE with SA-TDO, and AW-BPDFHE with GDO, 

derived from GTO and TDO algorithms, offers a powerful solution. This method significantly improves 

preprocessing by addressing image noise and quality issues. Additionally, we employ image 

augmentation, noise reduction, and grayscale conversion to optimize the dataset for segmentation and 

classification tasks. Our approach utilizes the SegNet model for segmentation and the GLCM model for 

feature extraction. The subsequent classification layer, employing a Fuzzy Radial Basis Function network 

(FRBF), efficiently identifies bone fracture regions. This integrated approach shows great promise in 
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enhancing the identification and classification of bone fractures in medical images, offering substantial 

benefits to medical diagnosis and patient care, ultimately contributing to improved healthcare outcomes. 
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