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Abstract: This paper presents a comprehensive study of Partial
Differential Equations (PDEs), beginning with a general definition
and classification into three primary types: parabolic, hyperbolic, and
elliptic equations. We focus on the development of finite difference
schemes for numerically solving specific PDEs and Ordinary
Differential Equations (ODEs), demonstrating their effectiveness
through selected examples implemented in Matlab. A general study
of some finite difference schemes for the numerical resolution of
specific PDEs and ODEs has been conducted. Well-selected
numerical examples have been proposed, and numerical
implementation of different examples has been carried out using
MATLAB. Our study concluded that the numerical methods of finite
difference schemes for numerical accuracy of definite PDEs and
ODEs have had good effectiveness and this has been verified by the
numerical examples that have been implemented using MATLAB
software.
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1. Introduction

The study of Partial Differential Equations (PDESs) has long been a fundamental area of
interest within mathematics and various applied sciences. Theoretical advancements, along with
the development of numerical methods, have played a significant role in enabling the analysis
and solution of these equations across disciplines such as physics, engineering, biology, and
economics (Brezis,1983; Ciarlet, P.G. (1978; Ciarlet, 1991; Godlewski & Raviart, 1991;
Godunov, 1976; Herbin). PDEs are crucial in modeling a wide range of phenomena, from fluid
dynamics and heat conduction to electromagnetism and population dynamics. This broad
relevance has motivated extensive research into the existence, uniqueness, and stability of their
solutions, as well as the numerical methods required for their practical resolution (Atkinson,
1978; Bartle, 1976; Boehm & Pautzsch, 1993; Burden & Douglas , 2001; Evans, 1995; Gautschi,
1997; Maron, 1982; Quarteroni, Sacco, & Saleri, 2000; Rappaz & Picasso, 1998; Stewart, 1996).

The finite difference method, one of the most widely used numerical techniques, offers an
effective framework for solving both ordinary and partial differential equations (Butcher, 1987,
Hairer & Wanner, 1996; Henrici, 1962; Lambert, 1991; Stroud, 1974). This method
approximates the derivatives in differential equations by employing Taylor series expansions,
transforming continuous problems into discrete ones that can be solved using computational techniques.
For instance, the derivative of a function u(w) with respect to w is approximated as:

U(w)=~ M)—u@), as h—0.

Such approximations introduce discretization errors, which must be carefully analyzed to
ensure the accuracy and stability of the numerical solution (Causon & Mingham, n.d.). In this
work, we focus on a comprehensive analysis of finite difference schemes for solving specific
types of PDEs and ordinary differential equations (ODESs). We also evaluate the effectiveness of
these schemes through various numerical experiments implemented in Matlab. Key properties such
as consistency, stability, and convergence are studied in detail for each method.

This study aims to provide a detailed comparison of these numerical schemes, highlighting
their advantages and limitations. By analyzing their error behavior and computational efficiency,
we aim to offer insights that will aid in selecting the most appropriate method for solving different
types of PDEs in various practical applications.

In this section, we provide a general overview of Partial Differential Equations (PDES).
First, we present the general definition of a PDE. Then, we classify PDEs into three major
categories: parabolic, hyperbolic, and elliptic equations.

1.1 Partial Differential Equations
A system of partial differential equations has the following generic form:

2w dw dw e 9w o
(t7x7y17 . 0 o )'

EZS Ix’ dy’ Ixl’ Iy oxy’

(1)

The independent variables t € Dy, x € Dy and y € Dy, where the D;, D, Dy are some
domains that can be bounded or unbounded. The variable o = w(t, X, y)€ R" is a solution to the
system (1) for all (t, x,y)€ Dy x Dy x Dy, and the function Se R" is a second member of the
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system (1). In general, the variable t denotes time, and the variables x, y denote spatial variables.
If time exists among the independent variables, we refer to the system as time-dependent or
evolutionary; otherwise, system (1) is referred to as steady-state or equilibrium.

The solution of the system (1) is called a field. The field is scalar-valued if the system (1) is
scalar (n =1), and vector-valued if (1) represents a system of PDEs (n>2).

1.2 Classification

A scalar-valued partial differential equation with constant coefficients of order two has the general form:

aa:ﬂ) 583m %w Sam Gam © = 2(x.y)
Frl E)xc?_v+y ylJr ax " 3y+'u = 8-

(2)

« If at least one of the scalars a, B, y is nonzero, then we have:

_ The equation (2) is hyperbolic if: B2 —4ay >0,
— The equation (2) is parabolic if: B2 —4ay =0,
_ The equation (2) is elliptic if: B2 —4ay <0.
o Ifa=p=y=0, but e£0 and 0, then (2) is hyperbolic.

1.2.1 Parabolic PDE

The parabolic equations (Bensoussan, Prato, Delfour, & Mitter 1992; Cazenave &
Haraux, 1990; Evans, 1990; Neittaanmaki &Tiba, 1994) govern evolutionary or unsteady
problems in which diffusion or dissipation mechanisms are involved. These problems are
typically defined on a spatial domain Q = (¢, L) with a boundary I', where the unknown is subject
to boundary conditions of the Dirichlet or Neumann type, along with initial conditions.

+ Dirichlet boundary problem:

o 0%w

a5t e T @)
®(X,0) = wo(X), 4)
(D(&t) = q(’(t)! (D(L! t) = qL(t)v (5)

where o = o(x,t), (x,t) € Q x [0, T], f, wo, g¢, and q. are known functions, and c is a
positive constant.

« Neumann boundary problem:

o® 0%

5t o2 - F ©)
@(X,0) = wo(X), (7
®'(60) = 2(t), (L, 1) = 2. (0), 8)

where z; and z,_ are known functions.
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1.2.2. Hyperbolic PDE

The hyperbolic equations model wave propagation without dissipation (Godlewski and P.
A. Raviart, 1991; Godlewski & Raviart, 1996; Lions, 1971; Pazy, 1983). For instance, sound
propagation in a homogeneous medium. These equations also describe conservation laws, such as mass,
momentum, and energy conservation in compressible fluids.

« Homogeneous wave equation:

0%w
2
——C2 0°®
or C_ _
ox? 0,
5lo}
O‘)(Xl 0) = (DO(X)’ St (X’ 0) = rO(X)’

o

o, = qud, ol = q),
where (x,t) e Qx[0,T]and c €R.

« Advection equation:

ow ow
ot TEax T

o(x,0) = o),

o) = qe),

where (x,t) € Q %[0, T]and a is a positive constant.

1.2.3. Elliptic PDE

The elliptic equations govern stationary problems (Ciarlet, 1978; Ciarlet, 1991; Lions, 1971, Pazy,
1983) defined on a spatial domain Q < R" with boundary ', where the unknown is subjected to
Dirichlet or Neumann boundary conditions.

Dirichlet problem:

Neumann problem:

0o
on = g, onT,

where _y» 2% and nis the normal vector to the boundary T".
Aw =Y, T

In this section, we provided a general overview of the definition of partial differential
equations and their classifications. We outlined the main categories: parabolic, hyperbolic, and
elliptic equations, each representing different types of physical phenomena. These equations have
been extensively studied across various scientific fields, including mathematics, engineering,
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physics, and beyond.

2.  Finite difference approximations

It’s well known that the finite differential method is an excellent tool for solving several different
ODEs and PDEs (Butcher, 1987; Hairer & Wanner, 1996; Henrici, 1962; Lambert, 1991;
Stroud, 1974). In fact, this method is based on the expansion of differential operators in Taylor
series (Causon, & Mingham n.d.). For example: for x € R and using the definition of % (x) =
u'(x), we get:

du ) . u(x+h)—ux)
E()‘) =ul)= h]inu h

Then, we can consider the following approximation of the first derivative:

u’(x)zmx—mz:—u@, as h—0.

The domain, (on which the problem is defined), is partitioned in space and time, and
approximations of the answer are computed at the space or time points. The error resulting between the
exact and numerical solutions is determined by transforming a PD operator to a finite difference
operator. In this case, the error that occurs is referred to as the discretization error or truncated error,
indicating that only a finite portion of the Taylor series (Causon, & Mingham n.d.) is employed in
the approximation.

2.1 Taylor series
2.2.1 Approximation of the first derivative

Let Iy, =]o - h, © + h[ be neighborhood of ®. Consider a function u C?%(ly). Then, for all h >0,
we have the following development:

)

. ! h=
u(a)—l—h)7u(m)+hu(m)+3u (@+hy) )

where h;€ (0,h). To solve problems containing the first derivative u, it is appropriate to keep the
first two terms of equation (9)
u(w +h) = u(®)+hu'(w)+O(h?) .

Note that O( h?) is the error of the approximation. From the relation (9), we can deduce without
difficulty that: a 3 constant C >0:

u(w+h)—ulw)

p —u'(w)|<Ch, C=05 sup |u"(y)
1

vE[w,+hg)]

for hy > h (where hy is a given strictly positive real number). The error caused after compensation
the derivative with the differential product is of order h. We say that the approximation of the first
derivative u’ at the spatial point o is consistent to the first order. This type of approximation is
called forward difference approximation of the first derivative u. In generally, we have the
following definition for the order.
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Definition 1. (Abramowitz, 1970; Greenberg, 1998; Roy, 2021) We say that the
approximation of the first derivative u'(o) is of order r(r > 0), if 3 a strictly positive constant
K > 0, indepéndent of h, such that the error between the derivative and its approximation is
bounded by the term Kh" (i.e. is exactly O (h") ).

In a similar way, we define a backward difference approximation of u(w) as follows:

u(® —h) = u(®)—hu'(©)+0(h?)
Moreover, we can define a central difference approximation. Assume that the function u is three
times differentiable in I,. We have:
’ }1?2 ” h} (;) +
ulw+h)=ul@)+h'(o)+ —u (@) + ra (EF)
.j

2

L

h? h3 3 B
u(w—h)=u(w)—h'(w)+ ?u”((o) — F”(k) (fg‘ )

where £t € Jo,0 +h[and &~ €] —h,o[. From these two equations, we get:
u(o +h)—u(e —h)

=u'(@)+h2u®)e)
2h

where ® —h <& < +h. Then, for every 0 <h <hg, we have:

1
6 ye|

u(w—+h)—ulw—nh)
2h

—(w)|<Ch., C= sup ‘um(_\')‘

w—hp,®+ho]

Thus, the approximation is consistent of second order.

Remark 1. 1. Letwand v be two functions. Then, we say that:

w©) =0(Mv(©),  ¢—0,

if there exists a constant C:

‘%‘ <C, V¢

sufficiently small.

2. Let wand v be two functions. Then, we say that:

W) =o(©),  {—0,

if we have:

‘M
(&)

3. If w(Q)=0(v({)), then w({) =O(v({)). The converse may not be true.

‘ﬁo, {—0

2.1.2 Approximation of the second derivative

Let Ihg =[® —ho,® +hg], ho >0. Then, we have:
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Lemma 1. (Abramowitz, 1970; Greenberg, 1998; Roy, 2021) Suppose u € C*(Ing ). Then, 3 a
constant M >0: vh €]0, ho[, we have:

‘ (u((o +h)—2u(®)+u(w— h))h_2 — u”((o)‘ < MW’ (10)

Then, the quotient  (u(w +h)—2u(w) +u(w —h))h? is a consistent second order approximation
of u(w).

Proof. By Taylor expansions, we get:

h? oo 3) A
w(w+h) =u(w)+h'(w)+ 7:(”(&)) + gu( (o) —l-ﬂu( ) (M)

TR A
u(w—h)=ulw)—h'(w)+ %u”(a)) — %11(3)((0) + 2?—4u(4) (&)

where &7 €]x,x+h[and & €]x—h,x[. Using the mean value theorem:

(u((o +h)—2u(w)+ulw-— h))h_z —u"(®)+ ‘T_;u(al)(fé)

where & € Jo —h,® +h[. Hence, we deduce the relation (10) with the constant

|
M=— sup
12 ye[w—hy,0+hg)

u™ (y) ‘ .

2.2 Finite difference schemes for first order ODES
Consider a first-order ordinary differential equation [17-21]:

V(x) = flx,y(x)), forx € [a,b]
v(ia)=a €R.

We introduce an equidistant grid points (x;), 0<j <N defined as follows:

X =kh +a, k=0,1,2,3,...,N,

the spacial step Ax = h is defined as follows:
_b-a

N

h

In general, remark that we have:

h=xj1—xj, Vj=0,--.N.
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2.2.1 The Forward Euler Method

For more details about this method, we refer the author to (Butcher, 1987; Hairer & Wanner, 1996;
Henrici, 1962; Lambert, 1991; Stroud, 1974).

At
the point (x;), we have:

y () = f(x3,y(x) (11)

Now, using the Taylor series (Causon & Mingham, n.d.) to approximate y(x;) yields:

Y (xj) = L300 (12)
From relations (11) and (12), we deduce that:
y (Xje1) =y (x) + AXT (X, y (x3)) (13)

Let us denote: y; =y (x;). So, we obtain, From (13), that:
Y =Y+ Axf(x5y;), d=0,...,N-1
and Yo =Y(Xo) =y(a) = a. Then, the forward EuLer method is given

by:
y yo=«u
Vipr =y +Axf(x;,y;), d=0,..., N—1

2.2.2 The backward Euler method

For more details about this method, we refer the author to (Butcher, 1987; Hairer & Wanner, 1996;
Henrici, 1962; Lambert, 1991; Stroud, 1974).
At the grid point x;, we have:

y (%)) = f (x3,y (x)))- (14)

Then, we can approximate y (x;) by:
y o 2C0) =)

(15)
So, from relations (14) and (15), we get:
YENIG) iy )
Consequently, we get the following scheme:
Vo = o,
vi=yi+Af(xpy), J=1...., N.
(16)

Notice that y; is the unknown in the system (16). Consequently, (16) is a nonlinear system, that can be solved
by Newton’s method or fixed-point iteration method.

Nanotechnology Perceptions 20N 0.6 (2024) 3384-3404



Study and Comparison of Finite Difference Reef Ghazi Albarak 216

2.3 Finite difference schemes for second order ODEs

For more details about finite difference schemes for second order ODEs, we refer the author to
(Butcher, 1987; Hairer & Wanner, 1996; Henrici, 1962; Lambert, 1991; Stroud, 1974).
Consider the interval Q =]a,b[ and the problem:

—i"(@)+c(ouow)=flo), ©®cQ
D ula) = o

u(lb)=p

where c(o) >0 forall @ €Q.
Consider the sequence of points (X)) 0 <q<N:

Xq=gh+a, q=0,1,23,... N, h=(b—a)/N.
At each points xq, numerical value of the solution is given by:
Ug=~u(xg), q=1,..,N-1
Assume that the boundary condition satisfies:
uX)=a, u(xn)=0p.

The unknown of the discrete problem is the vector; u, = (Uy,Us,...,ux1) € RV ™.
By Taylor series (Causon & Mingham, n.d.), we have:
u(xgr)) = ulxg+h).

5]

h? L0 4
= ul(xy)+h (xg)+ S (xg) + HAWC) (x]) + 6 (h).

2 6 4
17)
In the same way, we get:
u(xg—1) = ulx,—h).
. i /o )’12 "o h (3] K 4
= u(xy) —hu' (x;)+ S (xg) — = (xg) + 6 (A7)
(18)
Then, from equations (17) and (18), we deduce that:
U" (Xq) = U (Xgqr1) —2U (Xg) +U (Xg-1)h > +01(h*) +6,(h°).
As 0,(h%)+6,(h®) tends to 0 when h tends to 0, then we can write the following approximation:
u(xjer) —2u(x;) +ulxj—1)
”H («\_,r') ~~ / hg / /
Wiy —2uj+uj_y
Finally, the discrete problem, h? (associated to the continuous

problem D), is given by:
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o —2u i .
_”J'f:#_;_(( Dui= f(x;) j=1,..., N—1
Dy, : up=uo

[{i\r _= B

The problem Dy, can be transformed into algebric linear system as follows:
AhUh = bh, (19)
where A, is a (N —1) % (N —1) tridiagonal matrix defined by:

24+ he(xy) —1 0
A = -1 24 he(x) -1

0 —1 2+ he(xn_1)

and the second member Uy, by € R"™:
U, = (up.-- .u,\r,])r.
b, = (h:f (X)) 4+ o WP f () W (xy_a) W2 f () + ﬁ)T :

This formulation poses a question regarding whether a systemic solution exists (Trefethen & Bau,
1997).

Definition 2. (Faddeev & Faddeeva, 1963; Golub & Van Loan, 1989; Stewart, 1973; Trefethen
& Bau, 1997) Let A = (a;, j)1<i, j<n De @ square matrix real or complex of order n. The matrix A is
said to have a strictly dominant diagonal, if:

|a,-7,-| > Z |('{,:_‘j|.

J#

From the definition of the function c(X), it’s clear that the matrix Ay is a strictly dominant diagonal
matrix. Then, Ay is invertible. Consequently, the linear system has a unique solution.

Remark 2. (Faddeev & Faddeeva, 1963; Golub & Van Loan, 1989; Stewart, 1973; Trefethen
& Bau, 1997) The linear system can be solved by several methods. Direct methods such as the
Cramer’s method, the Gauss elimination method, the Gauss-Jordan method, the LU method,
etc... Iterative methods such as the Gauss-Seidel method, the Jaccobi method, etc...

2.4 Finite difference schemes for the Heat equation

Consider a time-dependent boundary value problem governed by the heat equation (Larrouturou, 1998;
Rappaz, 1998; Raviart, n.d.) posed in a bounded domain: Q =]a,b[

Findu: Q x[0,T]-— R such that
U (. 1) — \7( t)=f(x.r). on Qx|[0.T]
(P) - { ot cg\ (20)
g1(t),1

u(x,0) = on Q,
ula,t) = ((b,t)=gs(r), on [0,T],
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where v>0, f(x,t)is a given source term.

To solve numerically the problem (20), we first need to consider a set of points in D =Q X [0,T] as
follows:
Xj=jh+a, j=0123,... N, h=(b—-a)/N,

th=nAt, n=0,123,...,M, At=T/M.

Figure 1: Finite difference grid.
The partial derivative 5
d<u
dx?

Uyy =

is always approximated by central difference quotient at the grid point (Xj,ty):

no AN n
Wiy Zlf‘f—l—uj_]

Uy (X It fn) ~ (Ax)2 ’ (21)

where we assume that;

Wy =u(xj.t,).

2.4.1 Explicit schem (ES)

The term u; can be approximated by a Forward difference quotient, (LeVeque, n.d.; LeVeque,
1992), in time at the grid point (Xg,tn):

n+1 n
g — g

U (Xg.1n) = Ar

then, the corresponding finite difference scheme to problem (20), using the identity (21), at grid point
(Xg,tn) takes the following form:
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—1 1 =2 "
At (ujﬁ — u;) — VAx (ug_] — 2uy + u;_]) = f(xg.10),
(22)

or equivalently: forallg=1,....N-landn=1,...,M

ui;_] = Aty + (1 =24 )uy + Aug | + At f (xg.tn),

where & = VAY/(AX)?.
At the time to =0, the initial condition is given by:

ul=u"(xy), ¢=0,1,2,3,....N.

The boundary conditions are:
uy=gi(ty)., uy=g (), n=0,..., M.

Thus, we can solve explicitly the equation (22).

2.4.2 Implicit scheme (IS)

A backward difference quotient is used to approximate the term u, (LeVeque, n.d.; LeVeque, 1992),
at the point (Xq,t):

Wt — un—]
uz(xq, ) =~ %
In this case, we have:
a1 —2Ug + gy

x (xq » tﬂ) ~

(Ax)?

Then, the corresponding difference equation to the problem (20) at grid points (Xq,tn) is:

_ _ )
At '(ui;fu’,; ‘)fv(A,r) '(zr:j+]—2uf;+ui;,]) = F(xgutn)

(23)
or equivalently: for all q=1,2,3,...,N—1and forall n=1,....M

—Aig_q + (1424 )y — Auigyq = u};_1 +ALf (xg,1),

Where A= Ve

_ T N—-1
Let U'= (wf,uf,..uy_ ) €R

be the unknown vector. Then, the equations (23)
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can be written in matrix form:
AU"=U""+b",

where A is a square tridiagonal matrix of order N—1 and is given by the following form:

1+24 -2 0
A= A . =2
0 A 1424

and the second member b” € RY is defined by:

b — (/1 WL ATF(01 1) A F (0000 ), oo Aty + A F (11, )) .

2.4.3 Some practical remarks

In the presence of so many possible methods for solving problem (Stroud, 1974), the
question of choosing between all these schemes arises? We will see that the numerical analysis
results of the next sections will allow us to propose some criteria for choosing between all these
schemes. Some of these criteria already appear, since it is clear that the implementation of an implicit
schema is more costly than that of an explicit schema, because it requires the resolution of a linear
system at each time step; it is also clear that the use of a three-level schema will require more space in

memory to store the information necessary for calculating the new values u™*.

2.5 Discrete maximum principle
In this section we will study the two schemes (22) and (23) from the previous section. We will see
that the convergence of these two schemes is based on a principle property of the discrete
maximum.

2.5.1 Consistency and precision

Let’s begin the analysis of explicit (22) by defining the important notions of consistency, precision
and truncation error.

We give the following definition using the explicit scheme (22), (for the system (20)), to fix the
ideas, but the reader will easily transpose it to other schemes.

Definition 3. (Causon & Mingham, n.d.; Larrouturou, 1998; Rappaz & Picasso, 1998; Raviart
&Thomas, n.d.; LeVeque, n.d.; LeVeque, 1992; Crank & Nicolson, 1947; Teukolsky, 2000). We
say that the scheme:

n+l _ n noo_ 0y n
i ifj_vffj+1 21ty

At (Ax)?

(24)

a2z

8 —_—
25 V24 if for any function v =V(w,s),

defines a consistent approximation of the operator
(sufficiently regular), the difference:

(1-‘(&).3‘ —|—A£ —v(w.s) y v(io+Aw,s) — Tii);) +v(w —Aw..s}) — (v = Vo) (@.5)
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(25)
tends towards O when Am and As tend towards O independently.
The difference (25) is called the truncation error of the scheme, (for function v).

We further say that scheme (24) defines an approximation precise to order p in space and to

order q in time for 2 _ 1 2% operator
] o Vozr P

if and only if, for any regular function v, the truncation error (25) tends towards 0 like O(AX" +
At%) when Ax and At tend towards 0 independently.

Table 1: Table of some numerical finite difference schemes.

Scheme Truncation error
Explicit (22) O(AX2 + At)
Implicit (23) O(Ax2 + At)

To clarify this definition, let us verify the following Lemma.

Lemma 2. (Causon & Mingham, n.d.; Larrouturou, 1998; Rappaz & Picasso, 1998; Raviart
&Thomas, n.d.; LeVeque, n.d.; LeVeque, 1992; Crank & Nicolson, 1947; Teukolsky). The
explicit scheme (23) is consistent, precise to order two in space and one in time, for solving numerically
the one-dimensional heat equation u; —vuy = 0.

Proof It is enough to write Taylor expansions [22]. For any function v of class C*, we easily obtain:

v(x,t +At) —v(x,1) y v(x+Ax, 1) = 2v(x.t) +v(x—Ax,1)
At (Ax)?
VAV

24

_ At
= (v = Vi) (x,1)+ V(¥ + 0At) —

(r,l,n.,r(.r 0. AGE) + V(v 4 60 Ax, :)) . (26)

Where 0< 6 <land —1<6; <0<6f <Ax.

Note that all these schemes are consistent, precise to order one or two in space and time, with the
exception of the Dufort-Frankel scheme which is inconsistent.

3. Numerical examples

In the following, let Q = (a,b) = (0, 1).

Example 1. Consider afirst-order differential equation:

yx) = fx,y(x),
y(0) = a,

where the exact solution:

y(x) = sin(nx) + x2,
the initial condition y, = 0, and the second member

f(x,y(x)) = 7 cos(nx) + 2x.
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Figure 3: The exact solution and the numerical
so- solution obtained by Rung-Kutta method.

Figure 2: The exact solution and the
numerical solution obtained by forward

== = Forward method | :
s RUNG-Kutta mathod | | i
. Exact solution

Figure 5: The error between the exact
solution and the numerical solution obtained
by different methods.

Figure4. The exact solution and the numerical
solutions obtained by forward method and
Rung- Kutta method

Figures 2, 3, and 4 depict both the exact solution and the numerical solutions yielded by various
numerical methods. Additionally, Figure 5 illustrates the error between the exact solution and the nu-
merical solutions. The comprehensive analysis of these figures reveals that all employed numerical
methods provide an outstanding approximation of the exact solution.

Example 2. Consider the Dirichlet boundary problem:

—u"(0) + cl@u(w) = f(o),
u(0) = a,
u1) = B

where u(0) = 1and u(1) = 0. The exact solution:

ulw) = -cos(no)+ w3,
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clw) = o,
and the source term:

f(®) = o3c(®) — 60 + c(®w) + w2 cos(nw).
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Figure 6: The exact solutionand oy
™ the numerical solutions. o
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Figure 7: The error between the exact
solution and the numerical solution
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In Figure 6, we plotted the exact solution and the numerical solution obtained by different
numerical method. Also, in Figure 7, we plotted the error between the exact solution and the
numerical solution. We can deduce from all those figures that the numerical method gives an

excellent approximation of the exact solution.

Example 3. Consider the heat equation:

ou 0%
o0~V

,t) f(x,0, (27)

u(x,0) = u’(x),
u(0,t) = gu(t),
u(1,t) = go(b).

OX?
(28)

(29)
(30)

The exact solution of the system was chosen as follows:

ux,t) = (1 +t)2x[1 + sin(2nx)],

and consequently, we get:

up(x)
g1(7)
Fx.)

x(1+sin(27x)),

0, g(t)=(1+1)%

2(1 +1)x(1+sin(27x)) — 4z v (1 +1)?[cos(27x) — mxsin(27x)], v =0.002.

= = = Nymerical solution

- solution
= Exact solution

e EYACT SOIUTION

-0

Figure 8: The exact solution and the numerical
solution obtained by explicit scheme.

Figure 9: The exact solution and the
numerical solution obtained by implicit
scheme.
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Figure 12: The error between the exact solution and Figure 13: The evolution, in time on [0,2], of the
the numerical solutions obtained by different schemes. numerical solution obtained by explicit scheme.

Figure 15: The evolution, in time on [0, 2],
of numerical solution obtained by implicit
scheme.

Figure 14: The evolution, in time on [0,2], of the
the numerical solution obtained by Crank-Nicolson
scheme.

In Figures 8, 9, 10 and 11, we plotted the exact solution and the numerical solutions
obtained by different numerical methods. Also, in Figure 12, we plotted the error between the exact
solution and the numerical solutions. We can deduce from all those figures that all the numerical
methods give an excellent approximation of the exact solution. Also, we plotted in Figures 13 to 15
the evolution of the numerical solution in time for t € [0,2] given by the above numerical methods.

In this section, we have achieved several goals. Firstly, we gave a general study of some
finite difference schemes for the numerical resolution of certain EPDs and ODEs. Then, we
proposed some well-chosen numerical examples to show the effectiveness of these numerical

methods. The numerical implementation of the different examples was carried out using Matlab
software.
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4. Conclusion

In this research, we provided a comprehensive overview of the definition and numerical resolution of partial
differential equations (PDEs). We briefly reviewed the most significant categories of PDEs that have been
extensively studied across various scientific fields, including mathematics, engineering, medicine, and
physics. We achieved several objectives in this work. Firstly, we conducted a general study of some
finite difference schemes for the numerical resolution of specific PDEs and ordinary differential
equations (ODEs). We proposed well-chosen numerical examples to demonstrate the effectiveness of these
numerical methods, and the numerical implementation of different examples was carried out using
MATLAB software.
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