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Abstract

The analysis of the dynamic predator-prey model with functional response is proposed in this
paper. A mathematical model is constructed through the interaction of one prey and two
predator systems to study the influence of prey refuge, migration of the first predator and
immigration of the second predator. The model examines the Holling type | functional
responses for predation between the prey and predator’s. The prey refuge component is
essential for managing the predator species and achieving prey-predator balances within the
habitat. The system investigates the mortality rate, effects of migration and immigration,
positiveness, boundedness, and asymptotic behaviour at every potential equilibrium point for
the species survival in the ecology. Consequently, the stability study of the coexistence of the
three species is carried out for positive interior equilibrium points both at a local and global
level using the Routh Hurwitz criterion and the Lyapunov function. Furthermore, numerical
simulations are performed to analyze the behavior of the system.

Keywords: Predator, Prey, Holling Type | Functional Response, Refuge, Migration,
Immigration, Routh Hurwitz Criterion, Lyapunov Function.

1. Introduction

In dynamic ecological systems, predator-prey interactions play a pivotal role in driving population
dynamics, significantly influencing the abundance, distribution, and behavior of species. These interactions
are characterized by oscillatory patterns, where changes in predator and prey populations reciprocally
affect each other. The abundance of one species can profoundly influence the population dynamics of the
other. This delicate balance involves predators regulating prey populations while prey influencing the
growth and survival of predators. Such complex interplay leads to diverse and fascinating outcomes,
including population cycles, trophic cascades, and species coexistence. The ecological system consists of
numerous interactions among organisms within a habitat. Key factors such as predation, intra-specific
competition, migration, immigration, and prey refuge are essential in shaping population dynamics and
maintaining ecosystem stability.

Predation is a vital part of nature where predators hunt and eat prey. These interactions affect the
populations and evolutionary changes of species over time. It puts pressure on prey to develop ways to
survival strategies, such as hiding or running faster. Concurrently, predators improve their skills at
catching prey, leading to a constant race for survival between them. Predation also leads to fluctuations in
prey numbers. When prey populations increase, predator populations also grow due to the abundance of
food. As the number of predators rises, the prey population decreases because of higher predation pressure.
The decrease in prey numbers results in a subsequent reduction in predator numbers due to food scarcity,
allowing the prey population to recover, and the cycle restarts. This cycle helps keep the environment
balanced. Besides population dynamics, predation influences how prey behaves. Prey may adapt their
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foraging strategies and hiding places to avoid predators. This adaptive behavior enhances their survival and
prevents one species from dominating, which promote the overall health and resilience of the ecosystem.
These interactions can be influenced by various factors, including the availability of resources, habitat
structure, and environmental conditions.

Intra-specific competition, or competition within a species, also plays a significant role. Individuals of the
same species compete for the same resources, such as food, shelter, and mate. This competition can limit
population growth and lead to natural selection, where only the fittest individuals survive and reproduce,
thereby enhancing the adaptive capacity of the species. Migration and immigration add further complexity
to these dynamics, as species may relocate to new areas in search of resources, breeding opportunities, or
more favorable living conditions, which can introduce new predator-prey relationships and alter existing
ones. The arrival of new individuals can lead to increased competition for resources, both within and
between species, affecting population growth and survival rates. Prey refuge is another critical aspect of
predator-prey interactions. Refuges provide prey species with areas where they can avoid predators,
reducing predation pressure and allowing prey populations to sustain themselves. These refuges can be
physical spaces, such as burrows or dense vegetation, or temporal, such as adopting behaviors that help
prey avoid predators active during daylight hours.

In this discussion, investigating the significance of each factor within biological contexts leads to the
introduction of differential equations that capture their effects on population dynamics. Differential
equations serve as powerful tools for modeling ecological systems, allowing quantification of the effects of
migration, immigration, predation, intra-specific competition, and prey refuge on species abundance and
distribution over time. By integrating these factors into ecological models, researchers gain understanding
of the complex interactions between species and their environment. Scientists dedicate significant research
efforts to understanding predator-prey systems within ecological contexts, exploring the intricate dynamics
between predators and prey, and examining various aspects such as population dynamics, behavioral
interactions, prey refuge and evolutionary adaptations [2, 8, 19, 22, 31]. Recent studies highlight the
significance of prey refuges in predator-prey dynamics, uncovering complex behaviors such as unbounded
solutions, multiple equilibria, and limit cycles [6]. Evaluation of prey-predator models that integrate
Holling type Il and Il responses with prey refuges aim to provide mathematical view of biological
dynamics, revealing multiple limit cycles around positive equilibria influenced by refuge [15,16,30,36].
Notably, Zhihui Ma et al. analyze a predator-prey system with Holling type function response and prey
refuge, highlighting the influence of functional response shape and noting prey refuge's destabilizing effect
under certain conditions [37]. Mussa Amos Stephano et al. highlight how the influence of refuge prey on
system stability varies according to the functional response type. The observation is that as predator
populations rise, an increase in refuge-seeking prey diminishes the risk of prey extinction. This emphasizes
the crucial function of prey refuges in controlling predator populations and maintaining ecological balance
in ecosystems [23].

Additionally, Debaldev Jana et al. study the impacts of prey refuge usage on prey-predator dynamics,
exploring interspecific competition and refuge patch positioning through mathematical and numerical
analyses [4]. Longxing Qi et al. present a model considering Allee effect and prey carrying capacity,
revealing Hopf bifurcation dynamics dependent on these factors, while Ghosh, Sahoo, and Poria
investigate how additional food for predators affects prey-predator dynamics, emphasizing stability
behaviors and Hopf bifurcation conditions [17,18]. Md. Manarul Haque et al. inspect a prey refuge and
independent harvesting, revealing refuge's stabilizing effect and optimal harvesting policies, whereas
Odhiambo Francis et al. analyze a multi-species system with prey refuge and Holling type 11l response,
emphasizing refuge's role in enhancing dynamic stability [21,25].

Furthermore, Robert M May's works explore into the dynamics of model ecosystems, exploring stability,
complexity, and the presence of multiple stable states [27,28]. Yuming Chen and Fenggin Zhang propose a
delayed predator-prey model with migration, revealing backward bifurcation and delay-dependent stability
of positive equilibrium, while Gang Zhu et al. investigate a predator-prey system with delayed dynamics,
uncovering fixed point and Hopf bifurcations linked to critical time delays [34,35,9]. Figen Kangalgil et al.
explore a discrete-time predator-prey system with prey immigration, analyzing fixed points and
bifurcations, whereas Naveed Ahmad Khan et al. analyze a prey-predator system with immigrant prey,
introducing a novel algorithm for solution approximation [7,24]. Gui-Quan Suna et al. examine spatial
patterns in a predator-prey model with migration and diffusion, revealing migration's significant influence
on pattern formation [10].
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Moreover, Debasis Mukherjee investigates the influence of immigration and refuge on a three-species
system, demonstrating that increasing refuges enhance system stability, whereas Banani Roy explores a
prey-predator model with a reserved predator region, analyzing equilibria and local stability [5,3].
Alebraheem J introduces an autonomous predator-prey model, analyzing dynamic behaviors and stability,
while Salih Djilali study the impact of fractional time derivative memory on temporal behavior [1,29].
Xiangdong Xie et al. and Qin Yue propose modified Leslie-Gower predator-prey models, analyzing
equilibrium structure, stability, and the influence of prey refuge [26,32]. Ultimately, Maruthai Selvaraj
Surendar et al. analyze stability, bifurcation, and spatial pattern dynamics, demonstrating non-convergence
of populations in the Turing domain [20]. Finally, Ying Huang et al. and Hafizul Molla et al. inspect the
predator-prey models with Allee effect and prey refuge, determining stability conditions and identifying
complex system dynamics [14,33]. Gunasekaran M et al. explore stability analysis of ecological models
with various prey-predator dynamics, contributing to understanding ecosystem behaviors [11-13].

2. Structural Analysis of the Mathematical Model

The proposed ecological model depicts the dynamics of three interacting species: prey (u), migration of
the first predator (v) and immigration of the second predator (w). Within this framework, interspecific
predation occurs between the different groups of species. The model utilizes the Holling Type | functional
response to communicate the species interaction in the ecology. The growth of the prey species is
influenced by predation pressure from the first predator, as well as by the presence of refuge areas and
natural interactions with the second predator. Notably, there is no direct contact between the predators.
Additionally, the model incorporates intraspecific competition among the same group of predators and
takes into account the natural growth rate of immigrating predators. Furthermore, the model examines the
effects of predator death rate, migration, immigration on the habitat and all the equilibrium point
elucidating how these factors impact the environment naturally. By integrating these components, the
model provides a deeper understanding the complex dynamics of predator-prey interactions and their
implications for ecosystem stability and functioning. The presented model constructs the set of equations
represents a system of ordinary differential equations describing the dynamics of three interacting variables
(u), (v), and (w) over time (t). This system can be expressed in a standard form, which is a common way to
organize and present systems of differential equations. The standard form for a system of three first-order
differential equations is:

du_X .
dt_ (ulvywl )

dv_Y .
dt_ (uyvlwy )

W—Z t
dt - (uyvlwy )

Rephrase the given equations using a conventional format.

Equation for (u): % =u (r - %) —b(1 - p)uv — cuw — hu
Equation for (v): % = —ev?+ fb(1 — p)uv — myv — dyv
aw

Equation for (w): — = sw — Iw? + guw + m,w — d,w ...(2.1)

dt
Here, X (u, v, w, 1), Y (u, v, w, t) and Z (u, v, w, t) represent the funttions defining the rate of change of u,
v and w respectively, with respect to time t. The parametersr, k, b, p, ¢, h, e, f, my, dy, s, 1, g, m, and d,
are constants that affect the behavior of the system.

This system extends the above model by incorporating a refuge protecting pu of the prey, where p € [0,1)
is constant. This leaves (1 — p)u of the prey available to the first level predator, and modifying system
(2.1) accordingly yields the system:

Now, let's rewrite the given equations in standard form:

d
d_’::u(r—%)—b(l—p)uv—cuw—hu
dv

== —ev?+ fb(1 — p)uv — myv — dyv
dw

- = sw — lw? + guw + myw — d,w ...(2.2)
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To determine the stability for the following assumption

1
E:a’ hqu, fb:n
% =ru—au?—-b(1l—p)uv — cuw — qEu
dU_ 2
= evt+ n(l—p)uv —mv —dyv
dW_ 2
o= SW— w? + guw + myw — d,w ...(2.3)

These equations describe the rates of change of the variables u, v, and w with respect to time t, under the
condition thatu (t) = 0, v(t) =0, w(t) = 0. The system operates under certain initial conditions and
parameter values.

3. The Mathematical Symbolism of the Equation System
The system of differential equations describes the dynamics of an ecological model with three interacting
species: prey (u), first predator (v), and second predator (w).

(i)

(i)
(iii)
(iv)

The prey population, governed by logistic growth, is influenced by its intrinsic growth rate (r),
carrying capacity (k), intra-specific competition (a), interactions with both predators (modulated
by parameters b and c), prey refuge parameter (1 — p), where p lies in the interval [0,1) as well
as external factors such as harvesting (qE).

The first predator's population dynamics are affected by its intra-specific competition (e),
predation on prey (n), migration (m;) and mortality (d,).

The second predator's population growth is influenced by its interaction with prey (g), natural
growth (s), intra-specific competition (I), migration (m,), and mortality (d,).

The parameters p, I, S, and qE represent ecological parameters, while a, b, ¢, e, n, I, g, m;, m,, d;
and d, are coefficients governing species interactions and vital rates.

4. Equilibrium state:

(D).
(ii).
(iii).
(iv).
).

(vi).
(vii).

(viii).

e o Mo —aE)A —p) —la(my+dy) —cn (1 — p) (s+my—d,) — cg(my + dy)

Trivial equilibrium state Eq,(0,0,0) all the species extinct state.

(r—qE)
a

Semi trivial equilibrium state Eq, ( ,0, 0) prey species is livelihood

Semi trivial equilibrium state Eqs (O,M, 0) first predator is survival

+my—d . :
(Sm—fZ)) second predator is survival

Semi trivial equilibrium state Eq, (0, 0,

(r-qE)e+b(1-p)(my+dy) (r—qE)n(1-p)—a(m;+d,)

Planar equilibrium state Eq5( ,O) prey and first

ae+bn(1-p)2 ’ ae+bn(1-p)2
predator exists state.
Planar equilibrium states Eqg (0, _(ml:dl),(”mlz_d”) both predators exist state.
Planar equilibrium state Eg, ((T_qE)l_C(Hmz_dZ), 0, (T_qE)nga(”mz_dZ)) prey and second
al+cg al+cg

predator exists state.
All the species exist Eqg(u*, v*,w*)
, le(r—qE)+1b(1-p)(m +d,)—ce(s+my—d;)
= ale + lbn(1 — p)? + ceyg ’

)

ale + lbn(1 — p)? + ceg

*

_ (r—qE)eg +ae (stmy;—d;) +nb (1 - p)? (s+my—d,) + gb (1 — p)(my + dy)
- ale + Ibn(1 — p)? + ceg
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5. Positivity and Boundedness of the system

Lemma: 5.1

All the solutions of (u(t), v(t),w(t)) of system (2.3) with initial value (ug, v, wy) € R3 remains positive
forall t = 0.

Proof:

The right-hand sides of systems are continuous and satisfy a Lipschitz condition on R3. Hence, the
solution (u(v),v(t), w(t)) of system (2.3) exists and are unique on the interval [0, T) where 0 < T < oo
Positivity of u(t):

From the first equation of system (2.3),

du
i ru —au?® — b(1 — p)uv — cuw — qEu

The solution is given by
u(t) = u(0) exp U {r—au(®) — b1 —p)v(0) —cw(0) —qE}dO| >0
0

Since u(0) > 0, the exponential term is always positive. Thus, u(t) > 0 forall ¢t > 0.
Positivity of v(t):
From the second equation of the system (2.3),

v
i —ev?+n(1—p)uv — myv —dyv

The solution is given by

v(t) = v(0) exp Ut{—ev(e) +n(1—-pu@) —my —d;}do| >0
0

Since v(0) > 0, the exponential term is always positive. Thus, v(t) > 0 forall ¢t > 0.

Positivity of w(t):

From the third equation of the system (2.3),
dw
Ezsw—lwz+guw+mzw—dzw

The solution is given by
t
w(t) = w(0) exp U {s —Ilw(0) + gu() + m, —d,}dé( >0
0

Since w(0) > 0, the exponential term is always positive. Thus, w(t) > 0 forall ¢t > 0.
Since u(t) > 0, v(t) > 0, w(t) > 0 forall t > 0. The interior of R3 is an invariant set of system (2.3).
Lemma: 5.2
The set D = {(u, vww)ER:0<S=put+v+w<s TZ]} is positively invariant and serves as the region
of attraction for all solution originating in the interior of the positive orthant, where

e 1> 0isa constant such thatn < min(d,,d, m,), and

r+n)? | (s+my+n)? 2
= p(r+n + 2tn n~
4a 41 4e

Proof:
Let § = pu+ v+ w and consider the time derivative:

dé du dv dw

a Pactae T @
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= p[ru —au? — b(1 — p)uv — cuw — qEu] + [—ev? + n(1 — p)uv — m;v — d,v]

+[sw — Iw? + guw + myw — d,w]
dé

T n& = p[ru — au? — qEu] + [—ev? — myv — dyv] + [sw — Iw? + myw — d,w] + np(u) + nv + nw

48 s | _pafy W —dE Z_e L= (my+dy) 2—1 o tmy—dy) 2
dt ne= p 2a 2e 21

, P+ - qE)’ L= (m+ dp))° L (Gtmy—dy)+ )
43 4e 4]

p((r +n) — qE)’ (=G + d)’ RELEDE d,)”

s 5=
a T 4a 4e 41

dt

The maximum value of the quadratic terms is given by

% + 16 < 1 (constant)

pr+m? n? (s+m;+n)?
h =t —
where T 4a + e + 41

Which is linear differential equation in 8, by solving it gives § < % +Ce™Matt=0& § =0 As a result
C= —TT—]. Therefore, § < :—](1 —e ) and since § > 0, it follows that 0 < § < %(1 —e™ ), Ast > oo,

6 < % ensuring & remains bounded for all t = 0 . Hence all solutions of the system are bounded.

6. Steady State Analysis and Feasibility

To investigate the dynamic equilibrium states of the model under consideration, the analysis involves
examining the Jacobian matrix at various points, which is indicated by

r—2au—b(1—p)v—cw —qE —b(1—plu —cu
]= n(l—p)v —2ev+n(l—-plu—my —d; 0
gw 0 s=2lw+gu+m,—d,

This matrix facilitates understanding the stability and characteristics of the equilibrium points. By
analyzing the resultant deviation matrices, each equilibrium state within the model can be effectively
characterized.

Proposition: 6.1 The trivial equilibrium point Eq, (0,0,0) is inherently unstable under conditions where
r > qE and s + m, > d, , given the positive growth rate of each species.

Proof: The jacobian matrix evaluated at the trivial equilibrium point Eq, is expressed as

r—qFE 0 0
J(Eq) =] O —(my +dy) 0
0 0 s+m,—d,

The eigen values of the above matrix A, =r—qE, A, = —(m; +d;) and A; =s+ m, —d,. Since
growth rate of each species exceed their respective mortality rates and harvesting rate. It is noted that
second eigen values is negative, while the other two eigen values are produce positive if r > qE and
s + m, > d,. Therefore, the jacobian matrix at J(Eq) is unstable.

Proposition: 6.2 The semi trivial equilibrium state in which prey exist equilibrium point Eq, (% 0, O)
is unstable. If n(1 —p) (r — qE) > a(m; +d,) and s+m, > d,.

Proof: The jacobian matrix at the semi trivial equilibrium point Eq, for the prey existence state is
characterized by
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—(r —qE) —b(1 = p)(r — qF) et —aq)
q - :
J(Eqz) = 0 n(l—p)r—qE) —almy, +d,) .
a
0 0 a(s+m, —dy) + g(r — qE)
a

" = n(1-p)(r-qE)—a(m,+d,)
I a

The eigen values of the above matrix can be expressed as A; = —(r — qE),

and A3 =
J(Eq,) is unstable, with presence of saddle points.

a(s+my—d,)+g(r—qE)

. Since 4; <0, 4, > 0, A3 > 0. As a result, the equilibrium of the system

Proposition: 6.3 The semi trivial equilibrium state where first predator exists at equilibrium point
Eqs (O,M,O) is inherently unstable under the condition r >gqE, p<1 and s+m, > d,.
Proof: The Jacobian matrix at the semi-trivial equilibrium point Eq; where the first predator exists is
determined by

e(r —qE) + b(1—p)(my +dy)

p 0 0
E = n(l—p)(my+d
J(Eqs) - n( P)((g 1+dy) (o +dy) 0
0 0 s+m, —d,
The eigen values of the above jacobian matrix A, = £C=4E0bA=p)matdy) 5 _ (1 4 d.)and

e

A3 =s+m, — d,. it observed that all the eigen values are positive if r > gE, p < 1 and s+m, > d,.
So, 4, >0, 1, > 0, 43 > 0. Consequently, the steady state of the system J(Eq5) is unstable.
Proposition: 6.4 The semi trivial equilibrium state where the second predator exists at equilibrium point

Eq4 (0’ 0, (s+ mz—dz)) l(r—qE)- cl(s+ my—dsy)

is stable, if < 0. Otherwise it is unstable.

Proof: The Jacobian matrix of the system at the semi-trivial equilibrium point Eq,, where the second
predator exists, is identified by

I(r—qE)— c(s+ m, —d,)

; 0 0
J(Eq,) = 0 —(my +dy) 0
s+ m,—d
g ( 2 2) 0 — (s + my—dy)

l
l(r—qE)- c (s+ my—d;)

The eigen value of the matrix are A; = .

) >\12 = _(m1 + dl) and

A3 = — (s + m, —d,). It’s observed that the root A,, A5 are negative.

If, 1, <0 (ie., l(r_qE)_Cl(H my~de) o 0), it follows that A, < 0and A, < 0. Consequently, the semi

trivial state of the system J(Eq,) is asymptotically stable.

If, A, >0 (ie., l(r_qE)_Cl(SJ' mpd) -, 0) it follows that A, < Oand A, <O0. consequently, the semi

trivial state of the system J(Eq,) is unstable and saddle point exists.

Proposition: 6.5 The planar equilibrium state at the second predator extinct state, given by

Eqs ((r—qE)e+b(1—p)(m1+d1) n(r—qE)(1-p)-a(m;+d,)

ae+bn(1-p)? , ae+bn(1—p)? ) O) is unstable.

Proof: The Jacobian matrix at the planar equilibrium point where the prey and the first predator coexist,
denoted as Eqs, is determined by
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J(Eqs) =
(r—qE)ae+ab(1—p)(m;+dq) (r—qE)be(1—p)+b?(1—p)? (my+d;) (r—qE)ec+bc(1—p) (m;+dq)
- ( ae+bn(1—p)?2 ) - ( ae+bn(1—p)2 ) - ( ae+bn(1—p)2 )
((r—qE)n2(1—p)z—an(1—p)(m1+d1)) (—(r—qE)en(l—p)+ae(m1+d1)) 0
ae+bn(1-p)? ae+bn(1-p)?
l 0 0 (s+m2—dz)(ue+bn(l—p)z)+(r—qE)ge+gb(1—p)(m1+d1)J
ae+bn(1-p)?

The characteristic equation of the above matrix J(Eqs) is define by
A%, —trace J(u,v))Ay , + det] (u,v) = 0 and

_ (st+my —dy)(ae + bn(1 —p)?) + (r — qE)ge + gb(1 — p)(my + d,)
a ae + bn(1 — p)?

3

The eigen values of this equation are

M= %[—(trace (w,v)) + +/(trace (u,v))? — 4(det (u,v))] < 0,

Ay = %[—(trace (u,v)) — / (trace (u,v))2 — 4(det (u, v))] < 0and

Ao = (s+my—dy)(ae+bn(1—p)*)+(r-qE)ge+gb(1-p)(my+d,) >0
3 ae+bn(1—p)? '

Where [trace (u,v)? — 4(det (u,v))] > 0, —trace (u,v) <0 and

J/(trace (u,v))2 — 4(det (u,v)) < trace (u, v).

—(r—qE)(ae+en(1-p))+(m, +d,)(ae—ab(1-p))
ae+bn(1-p)?

Where (trace (u,v)) = ( ) < 0and

(det(u, v))
((—(r — qE)ae —ab(1 — p)(m, + dl))(—(r —qE)en(1 —p) + ae(m, + dl)))
_| (@ = amrbe - p) + 020 = )% (my + 4D)(0 — gBINP(L = —anL = (m + ) |

\ ae + bn(1 — p)? ) >

Given that A; <0, A, <0 andX; > 0 (always), the system of planar equilibrium point J(Eqs) is
unstable, indicating the presence of a saddle point.

Proposition: 6.6 The planar equilibrium state where the prey washed out, this state denoted as

—(my+dq) (s+my—dy)) -
Eqq (0, P . )IS unstable.

Proof: The Jacobian matrix at the planar equilibrium point where the first and second predator coexist,
identified as Eqq, is characterized by

el(r —qE) + bl(1 — p)(my + d;) — ce(s+m, — d5)

2l 0 0
J(Eqe) = - n(1- P)£m1 t ) (my +dy) 0
B(s ¥ m; — dy) 0 —(s+m; —dy)

l
The characteristic polynomial of the above matrix is

el(r —qE) + bl(1 — p)(my + d;) — ce(s+m, — d,)
el

M| [(my +dy) — A][—(s+my —dy) — 23] =0

The eigen values corresponding of this characteristic’s polynomial are
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el(r—qE)+bl(1-p)(m,+d,)—ce(s+my,—d,)
el

2.1 = y AZ = (m1 + dl) and 13 = _(S+m2 - dz)

It is observed that one eigen value (A, <0)is negative, while the other two eigen values are
positive (A, > 0, xz > 0). Therefore, the steady state of the system J(Eqg) is unstable, indicating the

presence of saddle points.

Proposition: 6.7 The planar equilibrium state of the first predator is washed out, represented as

Eq7 ((r—qE)l—c (s+m2—d2), 0, (r—-qE)g+a(s+my—d,)

) is stable if A, < 0. otherwise it is unstable.
al+cg al+cg

Proof: The Jacobian matrix at the planar equilibrium point where the prey and the second predator coexist,
denoted as Eq-, is determined by

J(Eqy)
[—al(r — qE) + ac(s+m,—d;) —-b(1 - p)(l(r —qE) — c(s+m2—d2)) —c(l(r —qE) — C(s+m2—d2)) 1
al+cg al +cg al +cg I
B 0 n(1 - p)(I(r — qE) — c(s+m,—d,)) — (al + cg)(m; + dy) 0
al +cg
[g((r —qE)g + a(s+mz—dz)) 0 : (al(s+m2—d2) +gl(r— qE))J
al +cg al +cg

The characteristic equation of the above matrix J(Eq;) is
ki3 —trace J(u,v))A; 3 + det] (u,v) = 0and

n(l-— p)(l(r —qE) — c(s+m2—d2)) —(al+ cg)(m; +d,)

A, =
2 al +cg

The eigen values of this equation is

M= %[—(trace (w,v)) + 4/ (trace (u,v))2 — 4(det (u, v))] <0,

Ag = %[—(trace (u,v)) — /(trace (u,v))2 — 4(det (u, V))] < 0and

n(l - p)(l(r —qE) — c(s+m2—d2)) —(al+ cg)(m; +d,)
al +cg

Where [trace (u,v)? — 4(det (u,v))] > 0, —trace (u,v) <0 and

7\42=

J(trace (u,v))2 — 4(det (u,v)) < trace (u, v).

—al(r—qE)+ac(s+my—d,)—al(s+my,—d,)—gl(r—qE)
al+cg

Where (trace (u,v)) = ( ) < 0and

—(r—qE)(al+gl)+(s+m,—d,)(ac—al)
al+cg

Where (trace (u,v)) = ( ) < 0and

((—al(r—qE)+ac(s+m2—dz))(—al(s+m2—dz)—gl(r—qE)))

+(c(l(r—qE)—c(s+m2 —dz))) (g((r—qE)g+a(s+m2—d2)))
al+cg

det(u,v) = >0

Since & <0, A3 <0 and A, <0 (if (n(l — p)(l(r —qE) — c(s+m2—d2)) —(al + cg)(m; + dl)) < 0).

Therefore, the system of equilibrium point J( Eq;) is asymptotically stable. Otherwise, it is unstable
(if A, > 0) and saddle point exist.

Proposition: 6.8 The Positive interior equilibrium point Eqg(u*, v*,w*) is defined by

. (le(r—qE) +1b (1—p)(my +dy) — ce (s+m,—d;)
= ale + Ibn(1 — p)2 + ceg ’
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- (ln(r—qE)(l—p)—la (my+dy)—cn (1-p) (s+m,—d,)—cg(m,+d,) )
ale+lbn(1-p)2+ ceg ’

. _ ((r—qE)eg+ae (s+my—dy)+nb (1—p)? (s+my—dy)+gb (1—p)(m,+d,)
W= ale+lbn(1-p)3+ ceg
asymptotically stable If x; > 0, x5 > 0,and (x;x, —x3) > 0.

Proof: let us assume that prey and both predator’s species coexist at equilibrium point Eqg is defined by

) this equilibrium is locally

aj; Q2 a13l

](Eq8)=[a21 Az O
as, 0 as;

B —ael(r — qE) — abl(1 — p)(m, + d,) + ace(s+m, — d,)
a1 = ael + lbn(1 — p)? + ceg ’
el(r —qE) + bl(1 — p)(my + d;) — ce(s+m, — d;)
az = —b(1—p) > )
ael + Ibn(1 — p)? + ceg
<el(r —qE) + bl(1 — p)(my + d;) — ce(s+m, — d2)>
a13 = —C )

ael + Ibn(1 — p)? + ceg
3 In(r —qE)(1 —p) —la(m; +d;) —cn (1 - p) (stmy—dy) —cg(my +dy)
az; =n(l—p) 2 ’
ale + lbn(1 — p)? + ceg
_ (ael + ceg)(my +dy) —eln (r —qE)(1 — p) + cen(1 — p)(s+m, — d;)
2z = ael + lbn(1 — p)? + ceg ’

_ ((r—qE)eg +ae (st+my—d;) +nb (1 - p)? (s+my—d,) + gb (1 — p)(my +d;)
%1 =4 ( ale + lbn(1 — p)? + ceg )

B (r — qE)egl + ael (s+my,—d,) +nbl (1 —p)? (s+my—d,) + gbl (1 — p)(m; + d;)
33 = _< ale + lbn(1 — p)? + ceg >

The characteristic equation of the jacobian matrix J(Eqg) is expressed as

13 +x112 +x22,+X3 = 0
Where,
x1 = (a1 + azztass)
Xz = (A32a33) + (@133 — A13a31) + (@112 — A12021)
X3 = (11022033 — A12(A21a33) + a13(—az2031)
The result of the Routh-Hurwitz criterion indicates that the coexistence steady state, when it exists as a
positive interior equilibrium with negative real parts, occurs if and only if x; > 0,x3 > 0, (x;x, —x3) >0
and x5 (x;x, — x3) > 0. Consequently, if all three eigenvalues are negative, the equilibrium point J(Eqg) is
always asymptotically stable. Otherwise, it is unstable.

7. Global Stability Analysis

This section aims to demonstrate the global stability of all equilibrium states in a three-species ecosystem
model. A Lyapunov function, used to analyze system stability, will be employed to establish that the
equilibrium states remain stable across different scenarios, providing clear perspective into the dynamics
of the ecosystem.

Theorem: 7.1 The planar equilibrium state Eqs (u*, v*) is globally asymptotically stable.

Proof: Apply the Lyapunov function to analyze stability of the interior equilibrium points Eqs in the
following manner.

L(u,v") = {u —u* —u'ln (ui)} + {v —v*—v*In (UL)}
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By differentiating L with respect to t

dL du ul] dv v*
praterd el v (e
=u—u'llr—au—b(1—p)v—qE]+[v—v*][—ev+n(1l—pu—m,; —d,]

u 4

Substituting r —qE = au* +b(1 —p)v*and-m; —d; = ev* —n(1 — p)u*

dL (b—n)(1-p) (b—n)(1-p)

- < = _ %12 S~ AN _ *12 S~ AN

= [[u u](a—l— > +[v—v*]? e+ >

(b—n)(1-p)
2

. - _ T T — _ * _ * o
Which can be written as of -a’ Xa. wherea’ = (u—u* v —v*), X (b=m)(1p)

2

Hence, the planer equilibrium state Eqs is globally asymptotically stable if % < 0. This condition is

satisfied if the matrix X is positive definite. In this case, it is essential that all the principal minors of the
matrix X are positive.

Theorem: 7.2 The planar equilibrium state Eq, (v*, w*) is globally asymptotically stable.
Proof: Apply the Lyapunov function to analyze the interior equilibrium points Eq, as follows
L(v*,w*) = {v —v*—v*In (VL)} + {W —w*—=w"In (Wﬁ)}

By differentiating L with respect to t

dL _dv [1 v*] 4 dw [1 W*]

dt  dt vl dt w

=[v—v][-ev—m; —di] +[w—w*][s —lw+m, —d,]

Substituting -m,; —d, = ev* ands +m, —d, = lw*

dL
= < —[[v-=v*1%(e) + [w—w*]? (D]
Which can be written as - BTYB. Where T = (v —v* w—w*), Y = (8 (l))

Therefore, the Planer equilibrium state Eq, is globally asymptotically stable when % < 0. This condition

is satisfied if the matrix Y is positive definite. In this case, it is essential that all the principal minors of the
matrix Y are positive.

Theorem: 7.3 The planar equilibrium state Egq, (u*,w*) is globally asymptotically stable.

Proof: Applying the Lyapunov function to analyze the interior equilibrium points Eq- yields the following
L(u*,w*) = {u —u* —u'ln (ul)} + {w —w'—w"In (Wi)}
By differentiating L with respect to t

dL_du1 u* +dW1 w*
dt_dt[ u] dt w]

=u—u'llr—au—cw—qE]l+ [w—w*][s —lw+ gu+m, — d,]

Substituting r —gE = au® + cw* ands + m, —d, = lw* — gu”

E<—[[u—u*]z(a+(C_g)>+[w—w*]2 <l+(c_g)>]

dt — 2 2
(c—g)
Which can be written as of -yTZy. wherey” = (u —u* w—w*), Z = (c—g)
— l
2
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Hence, the planar equilibrium state Eq, is globally asymptotically stable if % < 0. This condition is
satisfied if the matrix Z is positive definite. In this case, it is essential that all the principal minors of the
matrix Z are positive.

Theorem: 7.4 The positive interior equilibrium state Eqg (u*,v*,w*) is shown to be globally
asymptotically stable.

Proof: The Lyapunov function is applied to analyze the stability of the positive interior equilibrium points
Eqg as detailed below

L vw") = {u —u*—u'ln (ui)} + {v —v*—v*In (vl)} + {W —w'—w"In (Wﬁ)}
By differentiate L with respect to t

dL_du1 u’ dvl v* dw1 w*
prer Lt R Een Rl K
=[[u—u*][r—au—b(l—p)v—cw—qE]+[v—v*][—ev+n(1—p)u—m1—dl]

+ [W—W*][s—lw+gu+m2—d2]]
Substituting r—gqE =au*+b(1 —p)v* +cw*, -my —d; = ev* —n(1 — p)u*
and s +m, —d, =Ilw* — gu”
dL b—n)(1—p)+ (c— b—n)(1-—
gt —[[u—u*]2<a+( ) Zp) (c g)>+ [v—v*]? <e+—( n)z( p))

+ [w —w*]? (l + (c ; g))]

Which can be written as - u”D p.
(b-n)(1-p) (c—g)

a

2 2
Where " = (u—u* v—v* w—-w"), D = -(b_n)z(l_p) e 0
(c-8) 0 l

2
Hence, the equilibrium state Eqg is globally asymptotically stable when %< 0. This stability is

guaranteed if the matrix D is positive definite, which requires that all of its principal minors of the matrix
D are positive.

8. Bionomic Equilibrium
The bionomic equilibrium represents the integration of biological and economic equilibrium. The
biological equilibrium is characterized by % = % = ‘Z—‘f = 0 , indicating that the total revenue from
selling the harvested biomass equal to the total cost of harvesting. Achieving this balance signifies that the
bionomic equilibrium is attained
Let C; = the harvesting cost per unit effort of prey species.

P; = price per unit biomass of prey species.
Then the economic rent (or) net revenue at any time t is given by

B(u,v,w,E) = (P,qu— C))E

The bionomic equilibrium ((4)., ()., (W), (E).,) is the positive solution of

du_av_dw _ o _,
dt dt dt
ie ru—au?—b(1 —p)uv —cuw — qEu =0
—ev?+n(1—puwwv—mv—d,v=20
sw—lw? + guw + myw —d,w = 0 ...(8.1)
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To determine the bionomic equilibrium, we consider the following two cases.
(i) If C; > Pyqu then the cost is greater than revenue for the prey species. ie., prey species is not harvested.

(i) If C; < P;qu then the cost is less than the revenue. ie., if the net revenue is positive then the system
will be in operation.

From equation (8.1) (W. = Cl/plq
_1[¢ n(1—=p) — (my +dy)Piq
(v)oo -
e Piq
1[gC, + (s + m, — dy)Piq
(W)oo = 7 P
19

By substituting ((¢t) o0, (1) o0, (W), (E) &) in equation (8.1)

(mw=%v—aw%—bu—pxww—dwn]

. 1 aCy C;n(1—p)—(my +dy)Piq g€ + (s + my —d;)Piq
ie.,(E)y=—|r——=———0b(1-p) —-c
q Piq ePiq lPq

aCq

2t b(1= P+ c(W).,) .. (82)

Thus, the non-trivial bionomic equilibrium point ((w)., (V)e, (W), (E),) exist if the condition (8.2)
holds.
9. Optimal harvesting policy

It is observe that (E), >0, if r > (

In this, the objective is to maximize the present value J of continuous time stream of revenues given by
] = Jy e P(Pyqu—C;) E(t)dt .. (9.1)

Where B denotes the instantaneous annual rate of discount, e At is depreciation, q is the catchability
coefficient of the biomass of (u) and P; is the selling price of unit biomass of (u). The aim is to maximize
equation (9.1) subject to the state equation of the given model by applying pontryagin’s maximum
principle.
The hamiltonian for the problem is given by

H = e P[(P,qu — C,)E] + M [ru — au? — b(1 — p)uv — cuw — qEu]

+ M [—ev? + n(1 — p)uv — myv — dyv] + A3[sw — Iw? + guw + muw — d,w]

Where A, A,,and A5 are the adjoint variable.
By using pontryagin’s maximum principle.
OH _ g S (OH). db, _ (OHY, dhs _ (OH
i (au)’ at (av)' dc (6w)
The control variable E (t) is subjected to the constraints 0 < E(t) < (E)max -
And the switching function is given by

oH e
Frohe o(t) = e P (Piqu—C;) —Mqu
_ C
A =e B (P1 - E) ..(9.2)

Now the aim is to find an optimal equilibrium ((u)., (v),, (W).,) to maximize the hamiltonian H. since
the hamiltonian H is linear in the control variable E. The optimal control can be extreme control (or) the
singular control, thus we have

(E) = (E)max Where ¢(t) >0, Left < (p1 — %)
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(E) = (E)min » Where o(t) < 0, 1,eft > (P, — <)

qu
- = pt — (p, — &

(E)=0, where ¢(t) = 0, e (P1 qu)

By pontryagin’s maximum principle, the adjoint equations are,

dy (aH)

dt au
% = (qau — 1, (n(1 — p)v) — Azgw—e PP, qE) ...(9.3)
i, oH
&)
22 = (4b(1 - plu+ hzev) .(9.4)
s oH
(W
22 = (Aycu + Aglw) ..(9.5)
From equation (9.2) and (9.4)
i,

— —\ev=B; et

dt
here B —(P Cl)b(l )
where B; =(P; qu pu

the above equation is linear in A, and its solution

-B —
Ay = ﬁ+elv e Pt ...(9.6)
Now the equation (9.2) and (9.5) then we have
da
d_t3 - 7\13lW = Bz e_Bt

Gy
where B, = (Pl - —) cu
qu

the above equation is linear in A3 and its solution

— "Bz -pt
Ay = i © ...(9.7)
Now the equation (9.2), (9.6) and (9.7) substitute in equation (9.3) then we obtain
dn, B
E—Xlau = B3e p
B,n(1—p)v B,gw
whereB3—< Btev B+lw_quE
the above equation is linear in &, and its solution
— B3 -pt
M= e © ....(9.8)

From equation (9.2) and (9.8), we obtain a singular path

C -B
-t (p __1) — 53
¢ ( 1 qu B+aue

Which gives  F(u*) = (Pl—%)+ Bf;u* ....(9.9)

There exist unique positive roots u* = (u)g, if F(u*) = 0intheinterval 0 <u" < K;.

If the following inequality hold F(0) < 0, F(K;) > 0, where K; = g ,and F'(u*) > 0, for (u*) > 0.
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Foru® = (u)g, v* = (v)g w* = (w)p, and we get

(B)p =2 [r — ap b1 = p)(w)s — c(w)g]

Where Wg = Cl/ P,q
_ 1[¢in(1-p)—(m;+d1)P:q
(v)ﬁ T e [ P1q ]
_1 gCi+(s+my—d;)P1q
(W) T [ P1q ]

aCq

Here (E)g >0 if r>(Pq
1

+b(1—p)(v)g + c(w)ﬁ)

Hence the optimal equilibrium ((u)B, V), (W), (E)B) is determined, the optimal harvesting effort (E)g
Can be determined. We note that A;(t)e ™t (i = 1,2,3) is independent of time in an optimal equilibrium.
Hence the equation satisfies the transversality condition at oo , indicating that the value remain bounded as

t - oo,

From equation (9.9), (P1 — qcul) =2 L 0as B — oo

- p+au*

Thus, the net economic revenue is B(u, v, w, E) = 0 this implies that an infinite discount rate tends to the
net economic revenue tending to zero and the fishery would remain closed.

10. Mathematical Simulation

In this section, numerical simulations conducted using Python are employed to evaluate the stability of the
proposed model, perform parameter sensitivity analysis, and investigate the 3D phase plane trajectory to
understand its behavior and dynamics.

Simulation of Population Dynamics Model - |

Parameter specification:
r = 0.5,a = 0.01,b = 0.02,c = 0.01,qg = 0.0LLE = 1.0,e = 0.1,n = 0.02,m1 = 0.01,

dl = 0.01, s = 01,1 =0.02 g = 0.02, m2 = 0.01, d2 = 0.01, p=0.5
Initial conditions u(0) = 1.0, v(0) = 0.50, w(0) = 0.60

Simulation of the Differential Equations System

50 — u(t)

— v(t)
— w(t)

40 1

30 4

Population

10 1

20 40 60 80 100
Time

Figure 1: Simulation of the model - |

oA

The graph represents the solution of a system of differential equations over time, depicting the behavior of
three populations: prey (u(t)), migrating predator(v(t)), and immigrating predator (w(t)). Initially, all three
populations start at low values. The prey population increases rapidly, reaches a peak, and then declines
slightly. Similarly, the migrating predator population increases quickly but peaks at a lower value than the
prey and then declines. The immigrating predator population increases at a rate similar to the prey initially
but levels off more quickly. In the intermediate phase, after their initial peaks, the prey and immigrating
predator populations approach a stable value and remain there for the rest of the simulation, while the
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migrating predator population decreases and also approaches a stable value, which is lower than that of the
prey and immigrating predator populations. Eventually, all three populations reach a steady state where
their values remain constant. The prey and immigrating predator populations converging to the same value,
while the migrating predator population converging to a different, lower value, suggesting a model where
different populations reach equilibrium at distinct levels.

Parameter Sensitivity Analysis for r Phase Plane: u vs v vs w

—— ult) with r=0.40

ult) with r=0.45
—— ult) with r=0,50
—— ult) with r=0.55
— u(t) with r=0.60

Population

0 20 40 60 80 100
Time

Figure 2: Parameter Sensitivity Analysis for r - | Figure 3: Phase Plane - |

The graph (figure 2) illustrates a parameter sensitivity analysis for population (u(t)) over time, with
different curves representing various values of parameter (r) (ranging from 0.40 to 0.60). Initially, all
populations rapidly increase, with higher (r) values leading to earlier and higher peak populations. After
peaking, the populations undergo oscillations before stabilizing. Higher (r) values result in reduced
oscillations and higher equilibrium populations. Overall, the parameter (r) significantly influences the
speed of growth, peak magnitude, and final stabilized population, with larger (r) values producing faster
growth and higher steady-state populations. The phase plane plot shows the trajectory of variables (u), (v),
and (w) over time, indicating cyclic behavior and interactions between the variables. The looped trajectory
suggests a stable limit cycle, highlighting the system's dynamic nature.

Simulation of Population Dynamics Model - 11

Parameter specification:

r = 0.5a = 0.1,b = 0.02,c = 001, = 0.0LLE = 1.0,e = 0.2,n = 0.05,m1 = 0.1,
dl =001, s =03,1=0.05 g = 0.01, m2 = 0.1, d2 = 0.01, p=0.5

Initial conditions u(0) = 1.0, v(0) = 1.0, w(0) = 1.0

Simulation of the Differential Equations System

— uv)
| — i)
— wit)

@

Population

o] 20 40 60 80 100
Time

Figure 4: Simulation of the model - 11

The graph depicts simulation results from a proposed model illustrating interactions between prey and two
types of predators over time. Initially, the prey population (u(t)) starts low but rapidly increases to stabilize
around 4, suggesting it reaches a stable population level after an initial growth phase. The migrating

predator population (v(t)) starts at a higher level but quickly declines to near zero, indicating it rapidly
decreases and becomes negligible. On the other hand, the immigrating predator population (w(t)) starts at a
minimal level, increases significantly, and stabilizes around 9, indicating substantial growth to a stable
high population. This simulation indicates that after an initial period of dynamic changes, all three
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populations reach stable values, with the prey stabilizing at a moderate level, the migrating predator
declining to near extinction, and the immigrating predator achieving a high stable population.

Parameter Sensitivity Analysis for r

Phase Plane: uvs vvs w

Population
w

— u(t) with r=0.40

ult) with r=0.45
—— ult) with r=0.50
—— u(t) with r=0.55
—— ult) with r=0.60 1o

o 20 40 60 80 100 25
Time

4.0 0.0

Figure 5: Parameter Sensitivity Analysis for r- 11 Figure 6: Phase Plane - 11

The graph shows a parameter sensitivity analysis for (r) on the prey population (u(t)) over time. Different
curves represent varying (r) values from 0.40 to 0.60. As (r) increases, the initial growth rate and peak
height of (u(t)) also increase. Finally, each population stabilizes at a higher constant value, with (r = 0.40)
stabilizing around 3, and (r = 0.60) around 5. This indicates that higher (r) values lead to faster growth and
higher equilibrium levels, emphasizing (r)'s role in the prey population dynamics.

The phase plane plot illustrates the dynamic relationship between the populations over time, forming a
loop in the phase space that indicates cyclical or oscillatory dynamics among these populations. This
cyclical pattern suggests that the populations do not reach a steady state but instead undergo continuous
fluctuations. As the prey population increases, there are corresponding changes in the migrating predator
population and the immigrating predator population, reflecting their interdependent relationships. The plot
shows how the populations evolve over time in a three-dimensional space, highlighting the complex
interactions and continuous cycles among the prey and predator populations.

Simulation of Population Dynamics Model - 111

Parameter specification:

r = 0.1,a = 0.01,b = 0.02,c = 0.01,qg = 0.0LLE = 1.0,e = 0.1,n = 0.02,m1 = 0.01,
dl = 0.01,s =0.1,1 = 0.02, g = 0.02, m2 = 0.01, d2 = 0.02, p=0.5
Initial conditions u(0) = 1.0, v(0) = 1.0, w(0) = 1.0

Simulation of the Differential Equations System

— ut
— v(t)
— wit)

7

6

Population
w - @

~N

o 20 40 60 80 100
Time

Figure 7: Simulation of the model - 111

The graph illustrates the population dynamics of three species over time, each starting with an initial
population of different values. The prey population initially increases rapidly, peaking around (t = 25), and
then stabilizes slightly above its initial level. The migration predator population experiences a rapid initial
decline, followed by a slower decrease, eventually stabilizing near zero. The immigration predator
population rises quickly, peaking around (t = 50), and then stabilizes at a much higher population level.
This behavior indicates a stable equilibrium where the populations of the prey and immigration predator
remain steady over time, while the migration predator declines significantly, suggesting it is outcompeted
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by the other two. The chosen parameters lead to a system where each species reaches a steady-state
population

Parameter Sensitivity Analysis for r Phase Plane: u vs v vs w

— ult) with r=0.40
35 4 u(t) with r=0.45
— u(t) with r=0.50
— u(t) with r=0.55
—— u(t) with r=0.60

w
8

Population
= N ~
G 5 &
8 or———t
N
LI

0 20 40 60 80 100 2
Time

Figure 8: Parameter Sensitivity Analysis for r - 111 Figure 9: Phase Plane - 111

The graph shows a sensitivity analysis of the population model parameter (r) over time, with growth rate
values ranging from 0.40 to 0.60. Initially, the population grows rapidly for all (r) values, reaching a peak
that occurs earlier and at a lower value for smaller values. After the peak, the population declines and
stabilizes, with higher growth rate values leading to higher equilibrium levels. Specifically, (r = 0.40)
stabilizes around 20, while (r = 0.60) stabilizes around 30. This demonstrates that growth rate
significantly affects both the peak and stable population levels.

The phase plane plot depicts the relationship between three variables, showing a trajectory that represents
their evolution over time. The spiral pattern of the trajectory indicates oscillatory behavior, suggesting that
the system does not settle into a fixed point but continues to oscillate, potentially forming a limit cycle
where the system's state repeats periodically. The variables are bounded within specific ranges u from
approximately 1.0 to 2.4, v from 0.2 to 0.8, and w from 1.0 to 7.0, providing understanding of the
limits of the system's behavior. This plot helps visualize how changes in one variable affect the others,
revealing the complex, oscillatory dynamics and feedback mechanisms in the system. Understanding these
interactions is crucial for comprehending the stability and long-term behavior of the dynamical system.

11. Conclusion

Studying the effects of refuge, migration, and immigration on predator-prey dynamics through
mathematical models emphasizes their critical role in shaping ecosystem stability and maintaining balance
by managing prey populations and regulating species diversity. The dynamics are influenced by factors
such as predation intensity, the availability of prey refuges, and competition among prey individuals.
Mathematical models using differential equations offer a robust framework to comprehend the impact of
migration, immigration, and other ecological factors on the stability and persistence of predator-prey
systems.

Further, the system analysis the equilibrium states that ensure the stability during interactions between prey
and individual predators within the ecosystem. The presence of prey refuge can increase the stability of the
system and promote coexistence between predators and prey. The migration of the first predator can lead
to oscillations in the prey population size, which can make it more difficult for coexistence to occur. The
immigration of the second predator can stabilize the system and promote coexistence between predators
and prey. The system's stability is affected by changes in parameters such as predation rates, conversion
rates, and mortality rates. The stability of equilibrium points is assessed using the Routh-Hurwitz criterion
and Lyapunov functions. This analysis helps determine the conditions under which the system will return
to equilibrium after disturbances.

However, instability among predators is evident due to a lack of communication between them. The model
demonstrates that the ecosystem exhibits significantly greater stability on a global scale compared to a
local scale. The system analyzes bionomic equilibrium and optimal harvesting policies for species
interactions. The simulation demonstrates that prey stabilize at a moderate level after initial growth, while
migrating predators decline and immigrating predators stabilize at a higher level. Increasing parameter (r)
accelerates prey growth and raises equilibrium levels. The phase plane plot confirms cyclic dynamics
among prey and predators, highlighting their interconnected behavior over time.
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