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Abstract 

The analysis of the dynamic predator-prey model with functional response is proposed in this 

paper. A mathematical model is constructed through the interaction of one prey and two 

predator systems to study the influence of prey refuge, migration of the first predator and 

immigration of the second predator. The model examines the Holling type I functional 

responses for predation between the prey and predator’s. The prey refuge component is 

essential for managing the predator species and achieving prey-predator balances within the 

habitat. The system investigates the mortality rate, effects of migration and immigration, 

positiveness, boundedness, and asymptotic behaviour at every potential equilibrium point for 

the species survival in the ecology. Consequently, the stability study of the coexistence of the 

three species is carried out for positive interior equilibrium points both at a local and global 

level using the Routh Hurwitz criterion and the Lyapunov function. Furthermore, numerical 

simulations are performed to analyze the behavior of the system. 

Keywords: Predator, Prey, Holling Type I Functional Response, Refuge, Migration, 

Immigration, Routh Hurwitz Criterion, Lyapunov Function. 

1. Introduction 

In dynamic ecological systems, predator-prey interactions play a pivotal role in driving population 

dynamics, significantly influencing the abundance, distribution, and behavior of species. These interactions 

are characterized by oscillatory patterns, where changes in predator and prey populations reciprocally 

affect each other. The abundance of one species can profoundly influence the population dynamics of the 

other. This delicate balance involves predators regulating prey populations while prey influencing the 

growth and survival of predators. Such complex interplay leads to diverse and fascinating outcomes, 

including population cycles, trophic cascades, and species coexistence. The ecological system consists of 

numerous interactions among organisms within a habitat. Key factors such as predation, intra-specific 

competition, migration, immigration, and prey refuge are essential in shaping population dynamics and 

maintaining ecosystem stability. 

Predation is a vital part of nature where predators hunt and eat prey. These interactions affect the 

populations and evolutionary changes of species over time. It puts pressure on prey to develop ways to 

survival strategies, such as hiding or running faster. Concurrently, predators improve their skills at 

catching prey, leading to a constant race for survival between them. Predation also leads to fluctuations in 

prey numbers. When prey populations increase, predator populations also grow due to the abundance of 

food. As the number of predators rises, the prey population decreases because of higher predation pressure. 

The decrease in prey numbers results in a subsequent reduction in predator numbers due to food scarcity, 

allowing the prey population to recover, and the cycle restarts. This cycle helps keep the environment 

balanced. Besides population dynamics, predation influences how prey behaves. Prey may adapt their 
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foraging strategies and hiding places to avoid predators. This adaptive behavior enhances their survival and 

prevents one species from dominating, which promote the overall health and resilience of the ecosystem. 

These interactions can be influenced by various factors, including the availability of resources, habitat 

structure, and environmental conditions. 

Intra-specific competition, or competition within a species, also plays a significant role. Individuals of the 

same species compete for the same resources, such as food, shelter, and mate. This competition can limit 

population growth and lead to natural selection, where only the fittest individuals survive and reproduce, 

thereby enhancing the adaptive capacity of the species. Migration and immigration add further complexity 

to these dynamics, as species may relocate to new areas in search of resources, breeding opportunities, or 

more favorable living conditions, which can introduce new predator-prey relationships and alter existing 

ones. The arrival of new individuals can lead to increased competition for resources, both within and 

between species, affecting population growth and survival rates. Prey refuge is another critical aspect of 

predator-prey interactions. Refuges provide prey species with areas where they can avoid predators, 

reducing predation pressure and allowing prey populations to sustain themselves. These refuges can be 

physical spaces, such as burrows or dense vegetation, or temporal, such as adopting behaviors that help 

prey avoid predators active during daylight hours. 

In this discussion, investigating the significance of each factor within biological contexts leads to the 

introduction of differential equations that capture their effects on population dynamics. Differential 

equations serve as powerful tools for modeling ecological systems, allowing quantification of the effects of 

migration, immigration, predation, intra-specific competition, and prey refuge on species abundance and 

distribution over time. By integrating these factors into ecological models, researchers gain understanding 

of the complex interactions between species and their environment. Scientists dedicate significant research 

efforts to understanding predator-prey systems within ecological contexts, exploring the intricate dynamics 

between predators and prey, and examining various aspects such as population dynamics, behavioral 

interactions, prey refuge and evolutionary adaptations [2, 8, 19, 22, 31]. Recent studies highlight the 

significance of prey refuges in predator-prey dynamics, uncovering complex behaviors such as unbounded 

solutions, multiple equilibria, and limit cycles [6]. Evaluation of prey-predator models that integrate 

Holling type II and III responses with prey refuges aim to provide mathematical view of biological 

dynamics, revealing multiple limit cycles around positive equilibria influenced by refuge [15,16,30,36]. 

Notably, Zhihui Ma et al. analyze a predator-prey system with Holling type function response and prey 

refuge, highlighting the influence of functional response shape and noting prey refuge's destabilizing effect 

under certain conditions [37]. Mussa Amos Stephano et al. highlight how the influence of refuge prey on 

system stability varies according to the functional response type. The observation is that as predator 

populations rise, an increase in refuge-seeking prey diminishes the risk of prey extinction. This emphasizes 

the crucial function of prey refuges in controlling predator populations and maintaining ecological balance 

in ecosystems [23]. 

Additionally, Debaldev Jana et al. study the impacts of prey refuge usage on prey-predator dynamics, 

exploring interspecific competition and refuge patch positioning through mathematical and numerical 

analyses [4]. Longxing Qi et al. present a model considering Allee effect and prey carrying capacity, 

revealing Hopf bifurcation dynamics dependent on these factors, while Ghosh, Sahoo, and Poria 

investigate how additional food for predators affects prey-predator dynamics, emphasizing stability 

behaviors and Hopf bifurcation conditions [17,18]. Md. Manarul Haque et al. inspect a prey refuge and 

independent harvesting, revealing refuge's stabilizing effect and optimal harvesting policies, whereas 

Odhiambo Francis et al. analyze a multi-species system with prey refuge and Holling type III response, 

emphasizing refuge's role in enhancing   dynamic stability [21,25].  

Furthermore, Robert M May's works explore into the dynamics of model ecosystems, exploring stability, 

complexity, and the presence of multiple stable states [27,28]. Yuming Chen and Fengqin Zhang propose a 

delayed predator-prey model with migration, revealing backward bifurcation and delay-dependent stability 

of positive equilibrium, while Gang Zhu et al. investigate a predator-prey system with delayed dynamics, 

uncovering fixed point and Hopf bifurcations linked to critical time delays [34,35,9]. Figen Kangalgil et al. 

explore a discrete-time predator-prey system with prey immigration, analyzing fixed points and 

bifurcations, whereas Naveed Ahmad Khan et al. analyze a prey-predator system with immigrant prey, 

introducing a novel algorithm for solution approximation [7,24]. Gui-Quan Suna et al. examine spatial 

patterns in a predator-prey model with migration and diffusion, revealing migration's significant influence 

on pattern formation [10].  
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Moreover, Debasis Mukherjee investigates the influence of immigration and refuge on a three-species 

system, demonstrating that increasing refuges enhance system stability, whereas Banani Roy explores a 

prey-predator model with a reserved predator region, analyzing equilibria and local stability [5,3]. 

Alebraheem J introduces an autonomous predator-prey model, analyzing dynamic behaviors and stability, 

while Salih Djilali study the impact of fractional time derivative memory on temporal behavior [1,29]. 

Xiangdong Xie et al. and Qin Yue propose modified Leslie-Gower predator-prey models, analyzing 

equilibrium structure, stability, and the influence of prey refuge [26,32]. Ultimately, Maruthai Selvaraj 

Surendar et al. analyze stability, bifurcation, and spatial pattern dynamics, demonstrating non-convergence 

of populations in the Turing domain [20]. Finally, Ying Huang et al. and Hafizul Molla et al. inspect the 

predator-prey models with Allee effect and prey refuge, determining stability conditions and identifying 

complex system dynamics [14,33]. Gunasekaran M et al. explore stability analysis of ecological models 

with various prey-predator dynamics, contributing to understanding ecosystem behaviors [11-13]. 

2. Structural Analysis of the Mathematical Model  

      The proposed ecological model depicts the dynamics of three interacting species: prey (u), migration of 

the first predator (v) and immigration of the second predator (w). Within this framework, interspecific 

predation occurs between the different groups of species. The model utilizes the Holling Type I functional 

response to communicate the species interaction in the ecology. The growth of the prey species is 

influenced by predation pressure from the first predator, as well as by the presence of refuge areas and 

natural interactions with the second predator. Notably, there is no direct contact between the predators. 

Additionally, the model incorporates intraspecific competition among the same group of predators and 

takes into account the natural growth rate of immigrating predators. Furthermore, the model examines the 

effects of predator death rate, migration, immigration on the habitat and all the equilibrium point 

elucidating how these factors impact the environment naturally. By integrating these components, the 

model provides a deeper understanding the complex dynamics of predator-prey interactions and their 

implications for ecosystem stability and functioning. The presented model constructs the set of equations 

represents a system of ordinary differential equations describing the dynamics of three interacting variables 

(u), (v), and (w) over time (t). This system can be expressed in a standard form, which is a common way to 

organize and present systems of differential equations. The standard form for a system of three first-order 

differential equations is: 

𝑑𝑢

𝑑𝑡
= 𝑋(𝑢, 𝑣,𝑤, 𝑡) 

𝑑𝑣

𝑑𝑡
= 𝑌(𝑢, 𝑣,𝑤, 𝑡) 

𝑑𝑤

𝑑𝑡
= 𝑍(𝑢, 𝑣,𝑤, 𝑡) 

Rephrase the given equations using a conventional format. 

Equation for (u):   
𝑑𝑢

𝑑𝑡
= 𝑢 (𝑟 −

𝑢

𝑘
) − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − ℎ𝑢 

Equation for (v):   
𝑑𝑣

𝑑𝑡
= −𝑒𝑣2 + 𝑓𝑏(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣 

Equation for (w):  
𝑑𝑤

𝑑𝑡
= 𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤                                                                  …(2.1)

Here, X (u, v, w, t), Y (u, v, w, t) and Z (u, v, w, t) represent the functions defining the rate of change of u, 

v and w respectively, with respect to time t. The parameters r, k, b, 𝜌, c, h, e, f, 𝑚1, 𝑑1, s, 𝑙 , g, 𝑚2, and 𝑑2  

are constants that affect the behavior of the system. 

This system extends the above model by incorporating a refuge protecting 𝜌u of the prey, where 𝜌 ∈ [0,1)  
is constant. This leaves (1 − 𝜌)𝑢 of the prey available to the first level predator, and modifying system 

(2.1) accordingly yields the system: 

Now, let's rewrite the given equations in standard form: 

    
𝑑𝑢

𝑑𝑡
= 𝑢 (𝑟 −

𝑢

𝑘
) − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − ℎ𝑢 

𝑑𝑣

𝑑𝑡
= −𝑒𝑣2 + 𝑓𝑏(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣 

                                                    
𝑑𝑤

𝑑𝑡
= 𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤                                            …(2.2) 
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To determine the stability for the following assumption 

1

𝑘
= 𝑎, ℎ = 𝑞𝐸, 𝑓𝑏 = 𝑛   

         
𝑑𝑢

𝑑𝑡
= 𝑟𝑢 − 𝑎𝑢2 − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − 𝑞𝐸𝑢 

  
𝑑𝑣

𝑑𝑡
= −𝑒𝑣2 + 𝑛(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣 

                                                     
𝑑𝑤

𝑑𝑡
= 𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤                                           …(2.3)                                          

These equations describe the rates of change of the variables u, v, and w with respect to time t, under the 

condition that 𝑢 (𝑡) ≥ 0, 𝑣(𝑡) ≥ 0, 𝑤(𝑡) ≥ 0. The system operates under certain initial conditions and 

parameter values. 

3. The Mathematical Symbolism of the Equation System 

The system of differential equations describes the dynamics of an ecological model with three interacting 

species: prey (u), first predator (v), and second predator (w). 

(i) The prey population, governed by logistic growth, is influenced by its intrinsic growth rate (r), 

carrying capacity (k), intra-specific competition (a), interactions with both predators (modulated 

by parameters b and c), prey refuge parameter (1 − ρ), where ρ lies in the interval [0,1) as well 

as external factors such as harvesting (qE).      

(ii) The first predator's population dynamics are affected by its intra-specific competition (e), 

predation on prey (n), migration (m1) and mortality (d1). 

(iii) The second predator's population growth is influenced by its interaction with prey (g), natural 

growth (s), intra-specific competition (l), migration (m2), and mortality (d2). 

(iv) The parameters ρ, r, s, and qE represent ecological parameters, while a, b, c, e, n, l, g, m1, m2, d1 

and d2 are coefficients governing species interactions and vital rates. 

4. Equilibrium state: 

(i). Trivial equilibrium state 𝐸𝑞1(0,0,0)  all the species extinct state. 

(ii). Semi trivial equilibrium state 𝐸𝑞2 (
(𝑟−𝑞𝐸)

𝑎
, 0, 0) prey species is livelihood  

(iii). Semi trivial equilibrium state  𝐸𝑞3 (0,
−(𝑚1+𝑑1)

𝑒
, 0) first predator is survival  

(iv). Semi trivial equilibrium state  𝐸𝑞4 (0, 0,
 (𝑠+ 𝑚2−𝑑2)

 𝑙
) second predator is survival   

(v). Planar equilibrium state  𝐸𝑞5 (
(𝑟−𝑞𝐸)𝑒+𝑏(1−𝜌)(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
,
(𝑟−𝑞𝐸)𝑛(1−𝜌)−𝑎(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
, 0) prey and first 

predator exists state. 

(vi). Planar equilibrium states  𝐸𝑞6 (0,
−(𝑚1+𝑑1)

𝑒
,
(𝑠+𝑚2−𝑑2)

𝑙
) both predators exist state. 

(vii). Planar equilibrium state  𝐸𝑞7 (
(𝑟−𝑞𝐸)𝑙−𝑐 (𝑠+𝑚2−𝑑2)

𝑎𝑙+𝑐𝑔
, 0 ,

(𝑟−𝑞𝐸)𝑔+𝑎(𝑠+𝑚2−𝑑2)

𝑎𝑙+𝑐𝑔
) prey and second 

predator exists state. 

(viii). All the species exist 𝐸𝑞8(𝑢
∗, 𝑣∗, 𝑤∗) 

𝑢∗ =
𝑙𝑒(𝑟 − 𝑞𝐸) + 𝑙𝑏 (1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒 (𝑠+𝑚2−𝑑2)

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
,          

  𝑣∗ =
𝑙𝑛(𝑟 − 𝑞𝐸)(1 − 𝜌) − 𝑙𝑎 (𝑚1 + 𝑑1) − 𝑐𝑛 (1 − 𝜌) (𝑠+𝑚2−𝑑2) − 𝑐𝑔(𝑚1 + 𝑑1) 

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
, 

𝑤∗ =
(𝑟 − 𝑞𝐸)𝑒𝑔 + 𝑎𝑒  (𝑠+𝑚2−𝑑2) + 𝑛𝑏 (1 − 𝜌)2 (𝑠+𝑚2−𝑑2) + 𝑔𝑏 (1 − 𝜌)(𝑚1 + 𝑑1)

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
 



3472  M.Gunasekaran  A Mathematical Analysis of Refuge  
 

 

Nanotechnology Perceptions 20 No.6 (2024) 3468-3487 

5. Positivity and Boundedness of the system 

Lemma: 5.1 

All the solutions of (u(t), v(t),w(t)) of system (2.3) with initial value (u0, v0, w0)  ∈ ℝ+
3  remains positive 

for all  𝑡 ≥ 0. 

Proof: 

The right-hand sides of systems are continuous and satisfy a Lipschitz condition on ℝ+
3 . Hence, the 

solution  (u(t), v(t),w(t)) of system (2.3) exists and are unique on the interval [0, 𝑇) where 0 < 𝑇 < ∞ . 

Positivity of 𝐮(𝐭): 

From the first equation of system (2.3),  
𝑑𝑢

𝑑𝑡
= 𝑟𝑢 − 𝑎𝑢2 − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − 𝑞𝐸𝑢 

The solution is given by 

u(t) = 𝑢(0) exp [∫ {𝑟 − 𝑎𝑢(𝜃) − 𝑏(1 − 𝜌)𝑣(𝜃) − 𝑐𝑤(𝜃) − 𝑞𝐸}
t

0

d𝜃] > 0 

Since  u(0) > 0, the exponential term is always positive. Thus, u(t) > 0 for all  𝑡 > 0. 

Positivity of 𝐯(𝐭): 

From the second equation of the system (2.3),  
𝑑𝑣

𝑑𝑡
= −𝑒𝑣2 + 𝑛(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣 

The solution is given by 

v(t) = v(0) exp [∫ {−𝑒𝑣(𝜃) + 𝑛(1 − 𝜌)𝑢(𝜃) − 𝑚1 − 𝑑1}
t

0

d𝜃] > 0 

Since  v(0) > 0, the exponential term is always positive. Thus, v(t) > 0 for all  𝑡 > 0. 

Positivity of 𝐰(𝐭):

From the third equation of the system (2.3),  

𝑑𝑤

𝑑𝑡
= 𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤 

The solution is given by 

w(t) = w(0) exp [∫ {𝑠 − 𝑙𝑤(𝜃) + 𝑔𝑢(𝜃) + 𝑚2 − 𝑑2}
t

0

d𝜃] > 0 

Since  w(0) > 0, the exponential term is always positive. Thus, 𝑤(t) > 0 for all  𝑡 > 0. 

Since u(t) > 0, 𝑣(t) > 0, w(t) > 0  for all 𝑡 ≥ 0. The interior of ℝ+
3  is an invariant set of system (2.3). 

Lemma: 5.2 

The set 𝐷 = {(u, v,w ) ∈ ℝ+
3 : 0 ≤ δ = pu + v + w ≤

𝜏

η
 } is positively invariant and serves as the region 

of attraction for all solution originating in the interior of the positive orthant, where 

• η > 0 is a constant such that η < min(𝑑1, 𝑑2  𝑚1), and 

• 𝜏 =
p(r+η)2

4a
+

(𝑠+𝑚2+η)2

4𝑙
+

η2

4e
. 

Proof: 

Let δ = pu + v + w  and consider the time derivative:   

d δ

dt
= p

du

dt
+

dv

dt
+ 

dw

dt
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       = p[ru − au2 − b(1 − ρ)uv − cuw − qEu] + [−ev2 + n(1 − ρ)uv − m1v − d1v] 

          +[sw − 𝑙w2 + guw + m2w − d2w] 

d δ

dt
+ ηδ = p[ru − au2 − qEu] + [−ev2 − m1v − d1v] + [sw − 𝑙w2 + m2w − d2w] + ηp(u) + ηv + ηw 

d δ

dt
+ ηδ = [−pa(u −

(r + η) − qE

2a
)

2

− e(v −
η − (m1 + d1)

2e
)

2

− 𝑙 (w −
(s + m2 − d2) + η

2𝑙
)

2

+ 
p((r + η) − qE)

2

4a
+

(η − (m1 + d1))
2

4e
+

((s + m2 − d2) + η)
2

4𝑙
] 

  
d δ

dt
+ ηδ = [

p((r + η) − qE)
2

4a
+

(η − (m1 + d1))
2

4e
+

((s+m2 + η) − d2)
2

4𝑙
] 

The maximum value of the quadratic terms is given by  

d δ

dt
+ ηδ ≤ τ  (constant )  

where   τ =
p(r + η)2

4a
+

η2

4e
+

(s + m2 + η)2

4l
. 

Which is linear differential equation in δ, by solving it gives δ ≤
τ

η
+ Ce−ηt at t = 0 & δ = 0 As a result 

 C = −
τ

η
.  Therefore, δ ≤

τ

η
(1 − e−ηt)  and since δ ≥ 0 , it follows that 0 ≤ δ ≤

τ

η
(1 − e−ηt).  As t → ∞,  

δ ≤
τ

η
  ensuring δ remains bounded for all t ≥ 0 . Hence all solutions of the system are bounded. 

6. Steady State Analysis and Feasibility  

To investigate the dynamic equilibrium states of the model under consideration, the analysis involves 

examining the Jacobian matrix at various points, which is indicated by 

J = [

𝑟 − 2𝑎𝑢 − 𝑏(1 − 𝜌)𝑣 − 𝑐𝑤 − 𝑞𝐸 −𝑏(1 − 𝜌)𝑢 −𝑐𝑢

𝑛(1 − 𝜌)𝑣 −2𝑒𝑣 + 𝑛(1 − 𝜌)𝑢 − 𝑚1 − 𝑑1 0
𝑔𝑤 0 𝑠 − 2𝑙𝑤 + 𝑔𝑢 + 𝑚2 − 𝑑2

] 

This matrix facilitates understanding the stability and characteristics of the equilibrium points. By 

analyzing the resultant deviation matrices, each equilibrium state within the model can be effectively 

characterized. 

Proposition: 6.1 The trivial equilibrium point 𝐸𝑞1 (0,0,0) is inherently unstable under conditions where            

𝑟 > 𝑞𝐸  and 𝑠 + 𝑚2 > 𝑑2 , given the positive growth rate of each species. 

Proof: The jacobian matrix evaluated at the trivial equilibrium point 𝐸𝑞1 is expressed as 

𝐽(𝐸𝑞1) = [

𝑟 − 𝑞𝐸 0 0

0 −(𝑚1 + 𝑑1) 0
0 0 𝑠 + 𝑚2 − 𝑑2

] 

The eigen values of the above matrix λ1 = r − qE,  λ2 = −(m1 + d1) and λ3 = s + m2 − d2. Since            

growth rate of each species exceed their respective mortality rates and harvesting rate. It is noted that 

second eigen values is negative, while the other two eigen values are produce positive if r > qE  and       

s + m2 > d2.  Therefore, the jacobian matrix at  𝐽(𝐸𝑞1) is unstable. 

Proposition: 6.2 The semi trivial equilibrium state in which prey exist equilibrium point 𝐸𝑞2 (
𝑟−𝑞𝐸

𝑎
, 0, 0) 

is unstable. If  𝑛(1 − 𝜌) (𝑟 − 𝑞𝐸)  > 𝑎(𝑚1 + 𝑑1) and  𝑠+𝑚2 > 𝑑2. 

Proof: The jacobian matrix at the semi trivial equilibrium point 𝐸𝑞2 for the prey existence state is 

characterized by 
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𝐽(𝐸𝑞2) =

[
 
 
 
 
 −(𝑟 − 𝑞𝐸)

−𝑏(1 − 𝜌)(𝑟 − 𝑞𝐸)

𝑎

−𝑐(𝑟 − 𝑞𝐸)

𝑎

0
𝑛(1 − 𝜌)(𝑟 − 𝑞𝐸) − 𝑎(𝑚1 + 𝑑1)

𝑎
0

0 0
𝑎(𝑠+𝑚2 − 𝑑2) + 𝑔(𝑟 − 𝑞𝐸)

𝑎 ]
 
 
 
 
 

 

The eigen values of the above matrix  can be expressed as  λ1 = −(𝑟 − 𝑞𝐸),    λ2 =
𝑛(1−𝜌)(𝑟−𝑞𝐸)−𝑎(𝑚1+𝑑1)

𝑎
 

and  𝜆3 =
𝑎(𝑠+𝑚2−𝑑2)+𝑔(𝑟−𝑞𝐸)

𝑎
.  Since  𝜆1 < 0, 𝜆2 > 0,  𝜆3 > 0. As a result, the equilibrium of the system 

𝐽(𝐸𝑞2) is unstable, with presence of saddle points.  

 Proposition: 6.3 The semi trivial equilibrium state where first predator exists at equilibrium point                            

𝐸𝑞3 (0,
−(𝑚1+𝑑1)

𝑒
, 0) is inherently unstable under the condition  𝑟 > 𝑞𝐸, 𝜌 < 1 and 𝑠+𝑚2 > 𝑑2. 

Proof: The Jacobian matrix at the semi-trivial equilibrium point 𝐸𝑞3 where the first predator exists is 

determined by 

𝐽(𝐸𝑞3) =

[
 
 
 
 
𝑒(𝑟 − 𝑞𝐸) + 𝑏(1 − 𝜌)(𝑚1 + 𝑑1)

𝑒
0 0

−
𝑛(1 − 𝜌)(𝑚1 + 𝑑1)

𝑒
(𝑚1 + 𝑑1) 0

0 0 𝑠+𝑚2 − 𝑑2]
 
 
 
 

 

The eigen values of the above jacobian matrix 𝜆1 =
𝑒(𝑟−𝑞𝐸)+𝑏(1−𝜌)(𝑚1+𝑑1)

𝑒
,  𝜆2 = (𝑚1 + 𝑑1) and                  

 𝜆3 = 𝑠+𝑚2 − 𝑑2.  it observed that all the eigen values are positive if 𝑟 > 𝑞𝐸, 𝜌 < 1 and 𝑠+𝑚2 > 𝑑2.      

So,  𝜆1 > 0, 𝜆2 > 0,  𝜆3 > 0. Consequently, the steady state of the system 𝐽(𝐸𝑞3) is unstable. 

Proposition: 6.4 The semi trivial equilibrium state where the second predator exists at equilibrium point                    

𝐸𝑞4 (0, 0,
 (𝑠+ 𝑚2−𝑑2)

 𝑙
)  is stable, if  

 𝑙(𝑟−𝑞𝐸)− 𝑐 (𝑠+ 𝑚2−𝑑2)

 𝑙
< 0. Otherwise it is unstable. 

Proof: The Jacobian matrix of the system at the semi-trivial equilibrium point 𝐸𝑞4,  where the second 

predator exists, is identified by 

J(𝐸𝑞4) =

[
 
 
 
 
 𝑙(𝑟 − 𝑞𝐸) −  𝑐 (𝑠 + 𝑚2 − 𝑑2)

 𝑙
0 0

0 −(𝑚1 + 𝑑1) 0

g (𝑠 + 𝑚2 − 𝑑2)

 𝑙
0 − (𝑠 + 𝑚2 − 𝑑2)]

 
 
 
 

 

The eigen value of the matrix are  λ1 =
 𝑙(𝑟−𝑞𝐸)− 𝑐 (𝑠+ 𝑚2−𝑑2)

 𝑙
,   λ2 = −(𝑚1 + 𝑑1) and  

 λ3 = − (𝑠 + 𝑚2 − 𝑑2).  It’s observed that the root λ2, λ3 are negative.  

If, λ1 < 0  ( ie. ,
 𝑙(𝑟−𝑞𝐸)− 𝑐 (𝑠+ 𝑚2−𝑑2)

 𝑙
< 0), it follows that  λ2 < 0 and   λ

3
< 0. Consequently, the semi 

trivial state of the system J(𝐸𝑞4) is asymptotically stable.   

If, λ1 > 0 ( ie.,
 𝑙(𝑟−𝑞𝐸)− 𝑐 (𝑠+ 𝑚2−𝑑2)

 𝑙
> 0) it follows that   λ2 < 0 and   λ

3
< 0.  consequently, the semi 

trivial state of the system J(𝐸𝑞4) is unstable and saddle point exists. 

Proposition: 6.5 The planar equilibrium state at the second predator extinct state, given by 

𝐸𝑞5 (
(𝑟−𝑞𝐸)𝑒+𝑏(1−𝜌)(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
,
𝑛(𝑟−𝑞𝐸)(1−𝜌)−𝑎(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
, 0) is  unstable. 

Proof: The Jacobian matrix at the planar equilibrium point where the prey and the first predator coexist, 

denoted as 𝐸𝑞5, is determined by 
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𝐽(𝐸𝑞5) =

[
 
 
 
 
 − (

(𝑟−𝑞𝐸)ae+ab(1−ρ)(m1+d1)

ae+bn(1−ρ)2
) −(

(𝑟−𝑞𝐸)be(1−ρ)+b2(1−ρ)2 (m1+d1)

ae+bn(1−ρ)2
) −(

(𝑟−𝑞𝐸)ec+bc(1−ρ) (m1+d1)

ae+bn(1−ρ)2
)

(
(𝑟−𝑞𝐸)n2(1−ρ)2−an(1−ρ)(m1+d1)

ae+bn(1−ρ)2
) (

−(𝑟−𝑞𝐸)en(1−ρ)+ae(m1+d1)

ae+bn(1−ρ)2
) 0

0 0
(𝑠+𝑚2−𝑑2)(𝑎𝑒+𝑏𝑛(1−𝜌)2)+(𝑟−𝑞𝐸)𝑔𝑒+𝑔𝑏(1−𝜌)(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
 ]
 
 
 
 
 

   

The characteristic equation of the above matrix  J(𝐸𝑞5) is define by 

λ1,2
2 − trace J(u, v))λ1,2 + det J  (u, v) = 0 and  

λ3 = 
(𝑠+𝑚2 − 𝑑2)(𝑎𝑒 + 𝑏𝑛(1 − 𝜌)2) + (𝑟 − 𝑞𝐸)𝑔𝑒 + 𝑔𝑏(1 − 𝜌)(𝑚1 + 𝑑1)

𝑎𝑒 + 𝑏𝑛(1 − 𝜌)2
 

The eigen values of this equation are 

λ1 =
1

2
[−(trace (u, v)) + √(trace (u, v))2 − 4(det (u, v))] < 0, 

λ2 =
1

2
[−(trace (u, v)) − √(trace (u, v))2 − 4(det (u, v))] < 0 and 

 λ3 =
(𝑠+𝑚2−𝑑2)(𝑎𝑒+𝑏𝑛(1−𝜌)2)+(𝑟−𝑞𝐸)𝑔𝑒+𝑔𝑏(1−𝜌)(𝑚1+𝑑1)

𝑎𝑒+𝑏𝑛(1−𝜌)2
> 0. 

Where [trace (u, v)2 − 4(det (u, v))]  > 0,  −trace (u, v) < 0  and 

           √(trace (u, v))2 − 4(det (u, v)) < trace (u, v). 

Where (trace (u, v)) = (
−(r−qE)(ae+en(1−ρ))+(m1+d1)(ae−ab(1−ρ))

ae+bn(1−ρ)2
) < 0 and 

(det(u, v))

=

(

 
 
 
 

((−(𝑟 − 𝑞𝐸)ae − ab(1 − ρ)(m1 + d1))(−(𝑟 − 𝑞𝐸)en(1 − ρ) + ae(m1 + d1)))

+ (((𝑟 − 𝑞𝐸)be(1 − ρ) + b2(1 − ρ)2 (m1 + d1))((𝑟 − 𝑞𝐸)n2(1 − ρ)2 − an(1 − ρ)(m1 + d1)))

ae + bn(1 − ρ)2

)

 
 
 
 

> 0 

Given that λ1 < 0, λ2 < 0  and λ3 > 0 (always), the system of planar equilibrium point J( Eq5) is 

unstable, indicating the presence of a saddle point. 

Proposition: 6.6 The planar equilibrium state where the prey washed out, this state denoted as                        

𝐸𝑞6 (0,
−(𝑚1+𝑑1)

𝑒
,
(𝑠+𝑚2−𝑑2)

𝑙
) is unstable. 

Proof: The Jacobian matrix at the planar equilibrium point where the first and second predator coexist, 

identified as 𝐸𝑞6, is characterized by 

𝐽( 𝐸𝑞6) =

[
 
 
 
 
 
𝑒𝑙(𝑟 − 𝑞𝐸) + 𝑏𝑙(1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒(𝑠+𝑚2 − 𝑑2)

𝑒𝑙
0 0

−
𝑛(1 − 𝜌)(𝑚1 + 𝑑1)

𝑒
(𝑚1 + 𝑑1) 0

g (𝑠 + 𝑚2 − 𝑑2)

 𝑙
0 −(𝑠+𝑚2 − 𝑑2)]

 
 
 
 
 

 

The characteristic polynomial of the above matrix is 

[
𝑒𝑙(𝑟 − 𝑞𝐸) + 𝑏𝑙(1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒(𝑠+𝑚2 − 𝑑2)

𝑒𝑙
− 𝜆1] [ (𝑚1 + 𝑑1) −  𝜆2][−(𝑠+𝑚2 − 𝑑2) − 𝜆3] = 0 

The eigen values corresponding of this characteristic’s polynomial are 
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 𝜆1 =
𝑒𝑙(𝑟−𝑞𝐸)+𝑏𝑙(1−𝜌)(𝑚1+𝑑1)−𝑐𝑒(𝑠+𝑚2−𝑑2)

𝑒𝑙
,   𝜆2 = (𝑚1 + 𝑑1)   and  𝜆3 = −(𝑠+𝑚2 − 𝑑2). 

It is observed that one eigen value (λ
3

< 0 ) is negative, while the other two eigen values are 

positive (λ
1

> 0, λ
2

> 0). Therefore, the steady state of the system J(Eq6) is unstable, indicating the 

presence of saddle points. 

Proposition: 6.7 The planar equilibrium state of the first predator is washed out, represented as                                    

𝐸𝑞7 (
(𝑟−𝑞𝐸)𝑙−𝑐 (𝑠+𝑚2−𝑑2)

𝑎𝑙+𝑐𝑔
, 0 ,

(𝑟−𝑞𝐸)𝑔+𝑎(𝑠+𝑚2−𝑑2)

𝑎𝑙+𝑐𝑔
) is stable if  λ2 < 0. otherwise it is unstable. 

Proof: The Jacobian matrix at the planar equilibrium point where the prey and the second predator coexist, 

denoted as 𝐸𝑞7, is determined by 

𝐽( 𝐸𝑞7)

=

[
 
 
 
 
 
 
 
−𝑎𝑙(𝑟 − 𝑞𝐸) + 𝑎𝑐(𝑠+𝑚2−𝑑2)

𝑎𝑙 + 𝑐𝑔

−𝑏(1 − 𝜌)(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2))

𝑎𝑙 + 𝑐𝑔

−𝑐(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2))

𝑎𝑙 + 𝑐𝑔

0
𝑛(1 − 𝜌)(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2)) − (𝑎𝑙 + 𝑐𝑔)(𝑚1 + 𝑑1)

𝑎𝑙 + 𝑐𝑔
0

𝑔((𝑟 − 𝑞𝐸)𝑔 + 𝑎(𝑠+𝑚2−𝑑2))

𝑎𝑙 + 𝑐𝑔
0 −(

𝑎𝑙(𝑠+𝑚2−𝑑2) + 𝑔𝑙(𝑟 − 𝑞𝐸)

𝑎𝑙 + 𝑐𝑔
)
]
 
 
 
 
 
 
 

 

The characteristic equation of the above matrix  J(𝐸𝑞7) is 

λ1,3
2 − trace J(u, v))λ1,3 + det J  (u, v) = 0 and  

λ2 = 
𝑛(1 − 𝜌)(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2)) − (𝑎𝑙 + 𝑐𝑔)(m1 + d1)

𝑎𝑙 + 𝑐𝑔
 

The eigen values of this equation is 

λ1 =
1

2
[−(trace (u, v)) + √(trace (u, v))2 − 4(det (u, v))] < 0, 

λ3 =
1

2
[−(trace (u, v)) − √(trace (u, v))2 − 4(det (u, v))] < 0 and 

λ2 = 
𝑛(1 − 𝜌)(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2)) − (𝑎𝑙 + 𝑐𝑔)(m1 + d1)

𝑎𝑙 + 𝑐𝑔
 

Where [trace (u, v)2 − 4(det (u, v))]  > 0,  −trace (u, v) < 0  and 

           √(trace (u, v))2 − 4(det (u, v)) < trace (u, v). 

Where (trace (u, v)) = (
−𝑎𝑙(𝑟−𝑞𝐸)+𝑎𝑐(𝑠+𝑚2−𝑑2)−𝑎𝑙(𝑠+𝑚2−𝑑2)−𝑔𝑙(𝑟−𝑞𝐸)   

𝑎𝑙+𝑐𝑔
) < 0 and  

Where (trace (u, v)) = (
−(𝑟−𝑞𝐸)(𝑎𝑙+𝑔𝑙)+(𝑠+𝑚2−𝑑2)(𝑎𝑐−𝑎𝑙)   

𝑎𝑙+𝑐𝑔
) < 0 and  

det(u, v) =

(

 
 

((−𝑎𝑙(𝑟−𝑞𝐸)+𝑎𝑐(𝑠+𝑚2−𝑑2))(−𝑎𝑙(𝑠+𝑚2−𝑑2)−𝑔𝑙(𝑟−𝑞𝐸)))

+(𝑐(𝑙(𝑟−𝑞𝐸)−𝑐(𝑠+𝑚2−𝑑2))) (𝑔((𝑟−𝑞𝐸)𝑔+𝑎(𝑠+𝑚2−𝑑2)))

𝑎𝑙+𝑐𝑔

)

 
 

> 0  

Since λ1 < 0, λ3 < 0  and  λ2 < 0 (if (𝑛(1 − 𝜌)(𝑙(𝑟 − 𝑞𝐸) − 𝑐(𝑠+𝑚2−𝑑2)) − (𝑎𝑙 + 𝑐𝑔)(m1 + d1)) < 0). 

Therefore, the system of equilibrium point J( 𝐸𝑞7) is asymptotically stable. Otherwise, it is unstable             

(if  λ2 > 0) and saddle point exist. 

Proposition: 6.8 The Positive interior equilibrium point  𝐸𝑞8(𝑢
∗, 𝑣∗, 𝑤∗) is defined by 

𝑢∗ = (
𝑙𝑒(𝑟 − 𝑞𝐸) + 𝑙𝑏 (1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒 (𝑠+𝑚2−𝑑2)

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
),    
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   𝑣∗ = (
𝑙𝑛(𝑟−𝑞𝐸)(1−𝜌)−𝑙𝑎 (𝑚1+𝑑1)−𝑐𝑛 (1−𝜌) (𝑠+𝑚2−𝑑2)−𝑐𝑔(𝑚1+𝑑1) 

𝑎𝑙𝑒+𝑙𝑏𝑛(1−𝜌)2+ 𝑐𝑒𝑔
),    

𝑤∗ = (
(𝑟−𝑞𝐸)𝑒𝑔+𝑎𝑒  (𝑠+𝑚2−𝑑2)+𝑛𝑏 (1−𝜌)2 (𝑠+𝑚2−𝑑2)+𝑔𝑏 (1−𝜌)(𝑚1+𝑑1)

𝑎𝑙𝑒+𝑙𝑏𝑛(1−𝜌)2+ 𝑐𝑒𝑔
)  this equilibrium is locally 

asymptotically stable If  𝑥1 > 0, 𝑥3 > 0, and  (𝑥1𝑥2 − 𝑥3) > 0. 

Proof:  let us assume that prey and both predator’s species coexist at equilibrium point 𝐸𝑞8 is defined by  

𝐽(𝐸𝑞8) = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 0
𝑎31 0 𝑎33

] 

Where 

𝑎11 = (
−𝑎𝑒𝑙(𝑟 − 𝑞𝐸) − 𝑎𝑏𝑙(1 − 𝜌)(𝑚1 + 𝑑1) + 𝑎𝑐𝑒(𝑠+𝑚2 − 𝑑2)

𝑎𝑒𝑙 + 𝑙𝑏𝑛(1 − 𝜌)2 + 𝑐𝑒𝑔
) , 

 𝑎12 = −𝑏(1 − 𝜌) (
𝑒𝑙(𝑟 − 𝑞𝐸) + 𝑏𝑙(1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒(𝑠+𝑚2 − 𝑑2)

𝑎𝑒𝑙 + 𝑙𝑏𝑛(1 − 𝜌)2 + 𝑐𝑒𝑔
), 

 𝑎13 = −𝑐 (
𝑒𝑙(𝑟 − 𝑞𝐸) + 𝑏𝑙(1 − 𝜌)(𝑚1 + 𝑑1) − 𝑐𝑒(𝑠+𝑚2 − 𝑑2)

𝑎𝑒𝑙 + 𝑙𝑏𝑛(1 − 𝜌)2 + 𝑐𝑒𝑔
), 

𝑎21 = 𝑛(1 − 𝜌) (
𝑙𝑛(𝑟 − 𝑞𝐸)(1 − 𝜌) − 𝑙𝑎 (𝑚1 + 𝑑1) − 𝑐𝑛 (1 − 𝜌) (𝑠+𝑚2−𝑑2) − 𝑐𝑔(𝑚1 + 𝑑1) 

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
), 

 𝑎22 = (
(𝑎𝑒𝑙 + 𝑐𝑒𝑔)(𝑚1 + 𝑑1) − 𝑒𝑙𝑛 (𝑟 − 𝑞𝐸)(1 − 𝜌) + 𝑐𝑒𝑛(1 − 𝜌)(𝑠+𝑚2 − 𝑑2)

𝑎𝑒𝑙 + 𝑙𝑏𝑛(1 − 𝜌)2 + 𝑐𝑒𝑔
 ) , 

  

𝑎31 = 𝑔(
(𝑟 − 𝑞𝐸)𝑒𝑔 + 𝑎𝑒  (𝑠+𝑚2−𝑑2) + 𝑛𝑏 (1 − 𝜌)2 (𝑠+𝑚2−𝑑2) + 𝑔𝑏 (1 − 𝜌)(𝑚1 + 𝑑1)

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
), 

𝑎33 = −(
(𝑟 − 𝑞𝐸)𝑒𝑔𝑙 + 𝑎𝑒𝑙  (𝑠+𝑚2−𝑑2) + 𝑛𝑏𝑙 (1 − 𝜌)2 (𝑠+𝑚2−𝑑2) + 𝑔𝑏𝑙 (1 − 𝜌)(𝑚1 + 𝑑1)

𝑎𝑙𝑒 + 𝑙𝑏𝑛(1 − 𝜌)2 +  𝑐𝑒𝑔
) 

The characteristic equation of the jacobian matrix 𝐽(𝐸𝑞8) is expressed as 

𝜆3 + 𝑥1𝜆
2 + 𝑥2𝜆 + 𝑥3 = 0 

Where, 

𝑥1 = (𝑎11 + 𝑎22+𝑎33) 

𝑥2 = (𝑎22𝑎33) + (𝑎11𝑎33 − 𝑎13𝑎31) + (𝑎11𝑎22 − 𝑎12𝑎21) 

𝑥3 = 𝑎11𝑎22𝑎33 − 𝑎12(𝑎21𝑎33) + 𝑎13(−𝑎22𝑎31) 

The result of the Routh-Hurwitz criterion indicates that the coexistence steady state, when it exists as a 

positive interior equilibrium with negative real parts, occurs if and only if 𝑥1 > 0,𝑥3 > 0, (𝑥1𝑥2 − 𝑥3) > 0 

and 𝑥3(𝑥1𝑥2 − 𝑥3) > 0. Consequently, if all three eigenvalues are negative, the equilibrium point J(Eq8) is 

always asymptotically stable. Otherwise, it is unstable. 

7. Global Stability Analysis 

This section aims to demonstrate the global stability of all equilibrium states in a three-species ecosystem 

model. A Lyapunov function, used to analyze system stability, will be employed to establish that the 

equilibrium states remain stable across different scenarios, providing clear perspective into the dynamics 

of the ecosystem. 

Theorem: 7.1 The planar equilibrium state 𝐸𝑞5  (𝑢∗, 𝑣∗) is globally asymptotically stable. 

Proof:  Apply the Lyapunov function to analyze stability of the interior equilibrium points 𝐸𝑞5 in the 

following manner. 

 𝐿( 𝑢∗, 𝑣∗) = {𝑢 − 𝑢∗ − 𝑢∗ln (
u

𝑢∗)} + {𝑣 − 𝑣∗ − 𝑣∗ ln (
v

𝑣∗)} 
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By differentiating L with respect to t  

 
𝑑𝐿

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
[1 −

𝑢∗

𝑢
] +

𝑑𝑣

𝑑𝑡
[1 −

𝑣∗

𝑣
] 

       = [𝑢 − 𝑢∗][𝑟 − 𝑎𝑢 − 𝑏(1 − 𝜌)𝑣 − 𝑞𝐸] + [𝑣 − 𝑣∗][−𝑒𝑣 + 𝑛(1 − 𝜌)𝑢 − 𝑚1 − 𝑑1] 

Substituting      𝑟 − 𝑞𝐸 = 𝑎𝑢∗ + 𝑏(1 − 𝜌)𝑣∗ and –𝑚1 − 𝑑1 = 𝑒𝑣∗ − 𝑛(1 − 𝜌)𝑢∗          

 
 𝑑𝐿

𝑑𝑡
≤ − [[𝑢 − 𝑢∗]2 (a +

(b − n)(1 − 𝜌)

2
) + [𝑣 − 𝑣∗]2  (e +

(b − n)(1 − 𝜌)

2
)]  

Which can be written as of –𝛼𝑇𝑋𝛼.  where 𝛼𝑇 = (𝑢 − 𝑢∗  𝑣 − 𝑣∗), 𝑋 = (
𝑎

(b−n)(1−𝜌)

2
(b−n)(1−𝜌)

2
𝑒

) 

Hence, the planer equilibrium state 𝐸𝑞5 is globally asymptotically stable if  
𝑑𝐿

𝑑𝑡
< 0 . This condition is 

satisfied if the matrix X is positive definite. In this case, it is essential that all the principal minors of the 

matrix X are positive. 

Theorem: 7.2 The planar equilibrium state 𝐸𝑞6 (𝑣
∗, 𝑤∗) is globally asymptotically stable. 

Proof: Apply the Lyapunov function to analyze the interior equilibrium points 𝐸𝑞6 as follows 

 𝐿(𝑣∗, 𝑤∗) = {𝑣 − 𝑣∗ − 𝑣∗ ln (
v

𝑣∗)} + {𝑤 − 𝑤∗ − 𝑤∗ ln (
w

𝑤∗)} 

By differentiating L with respect to t 

 
𝑑𝐿

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
[1 −

𝑣∗

𝑣
] +

𝑑𝑤

𝑑𝑡
[1 −

𝑤∗

𝑤
] 

        = [𝑣 − 𝑣∗][−𝑒𝑣 − 𝑚1 − 𝑑1] + [𝑤 − 𝑤∗][𝑠 − 𝑙𝑤 + 𝑚2 − 𝑑2] 

Substituting   –𝑚1 − 𝑑1 = 𝑒𝑣∗  and 𝑠 + 𝑚2 − 𝑑2 = 𝑙𝑤∗     

 
 𝑑𝐿

𝑑𝑡
≤ −[[𝑣 − 𝑣∗]2 (e) + [𝑤 − 𝑤∗]2 (𝑙)]  

Which can be written as – 𝛽𝑇𝑌𝛽.   Where 𝛽𝑇 = (𝑣 − 𝑣∗  𝑤 − 𝑤∗), 𝑌 = (
𝑒 0
0 𝑙

) 

Therefore, the Planer equilibrium state 𝐸𝑞6 is globally asymptotically stable when  
𝑑𝐿

𝑑𝑡
< 0 . This condition 

is satisfied if the matrix 𝑌 is positive definite. In this case, it is essential that all the principal minors of the 

matrix 𝑌 are positive. 

Theorem: 7.3 The planar equilibrium state 𝐸𝑞7 (𝑢
∗, 𝑤∗) is globally asymptotically stable.

Proof: Applying the Lyapunov function to analyze the interior equilibrium points 𝐸𝑞7 yields the following 

 𝐿( 𝑢∗, 𝑤∗) = {𝑢 − 𝑢∗ − 𝑢∗ln (
u

𝑢∗)} + {𝑤 − 𝑤∗ − 𝑤∗ ln (
w

𝑤∗)} 

By differentiating L with respect to t 

𝑑𝐿

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
[1 −

𝑢∗

𝑢
] +

𝑑𝑤

𝑑𝑡
[1 −

𝑤∗

𝑤
] 

      = [𝑢 − 𝑢∗][𝑟 − 𝑎𝑢 − 𝑐𝑤 − 𝑞𝐸] + [𝑤 − 𝑤∗][𝑠 − 𝑙𝑤 + 𝑔𝑢 + 𝑚2 − 𝑑2] 

Substituting   𝑟 − 𝑞𝐸 = 𝑎𝑢∗ + 𝑐𝑤∗  and 𝑠 + 𝑚2 − 𝑑2 = 𝑙𝑤∗ − 𝑔𝑢∗        

 
 𝑑𝐿

𝑑𝑡
≤ − [[𝑢 − 𝑢∗]2 (a +

(c − g)

2
) + [𝑤 − 𝑤∗]2  (𝑙 +

(c − g)

2
)]  

Which can be written as of – 𝛾𝑇𝑍𝛾.  where 𝛾𝑇 = (𝑢 − 𝑢∗  𝑤 − 𝑤∗), 𝑍 = (
𝑎

(c−g)

2
(c−g)

2
𝑙

) 
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Hence, the planar equilibrium state 𝐸𝑞7 is globally asymptotically stable if  
𝑑𝐿

𝑑𝑡
< 0 . This condition is 

satisfied if the matrix 𝑍 is positive definite. In this case, it is essential that all the principal minors of the 

matrix 𝑍 are positive. 

Theorem: 7.4 The positive interior equilibrium state 𝐸𝑞8  (𝑢∗, 𝑣∗, 𝑤∗)  is shown to be globally 

asymptotically stable. 

Proof: The Lyapunov function is applied to analyze the stability of the positive interior equilibrium points 

𝐸𝑞8 as detailed below 

  𝐿 (𝑢∗, 𝑣∗, 𝑤∗) = {𝑢 − 𝑢∗ − 𝑢∗ln (
u

𝑢∗)} + {𝑣 − 𝑣∗ − 𝑣∗ ln (
v

𝑣∗)} + {𝑤 − 𝑤∗ − 𝑤∗ ln (
w

𝑤∗)} 

By differentiate L with respect to t  

 
𝑑𝐿

𝑑𝑡
=

𝑑𝑢

𝑑𝑡
[1 −

𝑢∗

𝑢
] +

𝑑𝑣

𝑑𝑡
[1 −

𝑣∗

𝑣
] +

𝑑𝑤

𝑑𝑡
[1 −

𝑤∗

𝑤
] 

       = [[𝑢 − 𝑢∗][𝑟 − 𝑎𝑢 − 𝑏(1 − 𝜌)𝑣 − 𝑐𝑤 − 𝑞𝐸] + [𝑣 − 𝑣∗][−𝑒𝑣 + 𝑛(1 − 𝜌)𝑢 − 𝑚1 − 𝑑1]

+ [𝑤 − 𝑤∗][𝑠 − 𝑙𝑤 + 𝑔𝑢 + 𝑚2 − 𝑑2]] 

Substituting       𝑟 − 𝑞𝐸 = 𝑎𝑢∗ + 𝑏(1 − 𝜌)𝑣∗ + 𝑐𝑤∗, –𝑚1 − 𝑑1 = 𝑒𝑣∗ − 𝑛(1 − 𝜌)𝑢∗    

                                    and  𝑠 + 𝑚2 − 𝑑2 = 𝑙𝑤∗ − 𝑔𝑢∗        

 𝑑𝐿

𝑑𝑡
≤ − [[𝑢 − 𝑢∗]2 (a +

(b − n)(1 − 𝜌) + (c − g)

2
) + [𝑣 − 𝑣∗]2  (e +

(b − n)(1 − 𝜌)

2
)

+ [𝑤 − 𝑤∗]2  (𝑙 +
(c − g)

2
)]  

Which can be written as  – 𝜇𝑇𝐷 𝜇.   

Where 𝜇𝑇 = (𝑢 − 𝑢∗  𝑣 − 𝑣∗  𝑤 − 𝑤∗), 𝐷 =

(

 
 

𝑎
(b−n)(1−𝜌)

2

(c−g)

2
(b−n)(1−𝜌)

2
𝑒 0

(c−g)

2
0 𝑙

)

 
 

 

Hence, the equilibrium state 𝐸𝑞8 is globally asymptotically stable when  
𝑑𝐿

𝑑𝑡
< 0 . This stability is 

guaranteed if the matrix D is positive definite, which requires that all of its principal minors of the matrix 

D are positive. 

8. Bionomic Equilibrium  

The bionomic equilibrium represents the integration of biological and economic equilibrium. The 

biological equilibrium is characterized by  
𝑑𝑢

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
=

𝑑𝑤

𝑑𝑡
= 0 , indicating that the total revenue from 

selling the harvested biomass equal to the total cost of harvesting. Achieving this balance signifies that the 

bionomic equilibrium is attained 

Let 𝐶1 = the harvesting cost per unit effort of prey species. 

      𝑃1 = price per unit biomass of prey species.  

Then the economic rent (or) net revenue at any time t is given by 

𝐵(𝑢, 𝑣,𝑤, 𝐸) = (𝑃1qu − 𝐶1)𝐸 

The bionomic equilibrium ((𝑢)∞, (𝑣)∞, (𝑤)∞, (𝐸)∞) is the positive solution of  

𝑑𝑢

𝑑𝑡
=

𝑑𝑣

𝑑𝑡
=

𝑑𝑤

𝑑𝑡
= 𝐵 = 0 

𝑖𝑒              𝑟𝑢 − 𝑎𝑢2 − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − 𝑞𝐸𝑢 = 0 

                               −𝑒𝑣2 + 𝑛(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣 = 0 

                                  𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤 = 0                                                                …(8.1) 
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                                                         𝐵 = (𝑃1q𝑢 − 𝐶1)𝐸 = 0 

To determine the bionomic equilibrium, we consider the following two cases. 

(i) If 𝐶1 > 𝑃1qu then the cost is greater than revenue for the prey species. ie., prey species is not harvested. 

(ii) If 𝐶1 < 𝑃1qu  then the cost is less than the revenue. ie., if the net revenue is positive then the system 

will be in operation. 

      From equation (8.1)                     (𝑢)∞ =
𝐶1

𝑃1q
⁄  

        (𝑣)∞ =
1

𝑒
[
𝐶1 𝑛(1 − 𝜌) − (𝑚1 + 𝑑1)𝑃1q

𝑃1q
] 

(𝑤)∞ =
1

𝑙
[
𝑔𝐶1 + (𝑠 + 𝑚2 − 𝑑2)𝑃1q

𝑃1q
] 

By substituting ((𝑢)∞, (𝑣)∞, (𝑤)∞, (𝐸)∞) in equation (8.1) 

(𝐸)∞ =
1

𝑞
[𝑟 − 𝑎(𝑢)∞ − 𝑏(1 − 𝜌)(𝑣)∞ − 𝑐(𝑤)∞]

 

𝑖𝑒. , (𝐸)∞ =
1

𝑞
[𝑟 −

𝑎𝐶1

𝑃1q
− 𝑏(1 − 𝜌)(

𝐶1 𝑛(1 − 𝜌) − (𝑚1 + 𝑑1)𝑃1q

𝑒𝑃1q
) − 𝑐 (

𝑔𝐶1 + (𝑠 + 𝑚2 − 𝑑2)𝑃1q

𝑙𝑃1q
)] 

It is observe that  (𝐸)∞ > 0 ,  if  𝑟 > (
𝑎𝐶1

𝑃1q
+ 𝑏(1 − 𝜌)(𝑣)∞ + 𝑐(𝑤)∞)                                               … ( 8.2) 

Thus, the non-trivial bionomic equilibrium point ((𝑢)∞, (𝑣)∞, (𝑤)∞, (𝐸)∞) exist if the condition (8.2) 

holds. 

9. Optimal harvesting policy 

In this, the objective is to maximize the present value J of continuous time stream of revenues given by  

                                                   𝐽 = ∫ 𝑒−𝛽𝑡(𝑃1q𝑢 − 𝐶1)
∞

0
 𝐸(𝑡)𝑑𝑡                                                   … (9.1) 

Where 𝛽 denotes the instantaneous annual rate of discount, 𝑒−𝛽𝑡 is depreciation, q is the catchability 

coefficient of the biomass of (u) and 𝑃1 is the selling price of unit biomass of (u). The aim is to maximize 

equation (9.1) subject to the state equation of the given model by applying pontryagin’s maximum 

principle. 

The hamiltonian for the problem is given by  

                  𝐻 = 𝑒−𝛽𝑡[(𝑃1q𝑢 − 𝐶1)𝐸] + λ1[𝑟𝑢 − 𝑎𝑢2 − 𝑏(1 − 𝜌)𝑢𝑣 − 𝑐𝑢𝑤 − 𝑞𝐸𝑢]

+ λ2[−𝑒𝑣2 + 𝑛(1 − 𝜌)𝑢𝑣 − 𝑚1𝑣 − 𝑑1𝑣] + λ3[𝑠𝑤 − 𝑙𝑤2 + 𝑔𝑢𝑤 + 𝑚2𝑤 − 𝑑2𝑤] 

Where  λ1,  λ2, and  λ3 are the adjoint variable.  

 By using pontryagin’s maximum principle. 

 
∂H

 ∂E
= 0;   

dλ1

dt
= −(

∂H

∂u
);   

dλ2

dt
= −(

∂H

∂v
) ;   

dλ3

dt
= −(

∂H

∂w
) 

The control variable 𝐸(𝑡) is subjected to the constraints  0 ≤ 𝐸(𝑡) ≤ (𝐸)𝑚𝑎𝑥 . 

And the switching function is given by  

∂H

∂E
= φ(t) = e−βt(𝑃1qu − 𝐶1) − λ1qu 

                                                              λ1 = e−βt (𝑃1 −
𝐶1

qu
)                                                                      …(9.2) 

Now the aim is to find an optimal equilibrium ((𝑢)∞, (𝑣)∞, (𝑤)∞)  to maximize the hamiltonian H. since 

the hamiltonian H is linear in the control variable E. The optimal control can be extreme control (or) the 

singular control, thus we have  

(𝐸) = (𝐸)𝑚𝑎𝑥  where φ(t) > 0,   λ1e
βt < (𝑃1 −

𝐶1

qu
) 
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(𝐸) = (𝐸)𝑚𝑖𝑛 , where φ(t) < 0,   λ1e
βt > (𝑃1 −

𝐶1

qu
) 

(𝐸) = 0 ,           where φ(t) = 0,   λ1e
βt = (𝑃1 −

𝐶1

qu
) 

By pontryagin’s maximum principle, the adjoint equations are, 

dλ1

dt
= −(

∂H

∂u
) 

dλ1

dt
= (λ1au − λ2(𝑛(1 − 𝜌)𝑣) − λ3gw−e−βt𝑃1qE)                                                                                  …(9.3) 

dλ2

dt
= −(

∂H

∂v
) 

dλ2

dt
= (λ1b(1 − 𝜌)u + λ2ev)                                                                                                                            …(9.4) 

dλ3

dt
= −(

∂H

∂w
) 

  
dλ3

dt
= (λ1cu + λ3lw)                                                                                                                                       …(9.5) 

From equation (9.2) and (9.4) 

dλ2

dt
− λ2ev = B1 e

−βt 

where B1 = (𝑃1 −
𝐶1

qu
)b(1 − 𝜌)u 

the above equation is linear in λ2 and its solution 

                                                                            λ2 =
−B1 

β+ev
e−βt                                                                      …(9.6) 

Now the equation (9.2) and (9.5) then we have  

dλ3

dt
− λ3𝑙w = B2 e

−βt 

where B2 = (𝑃1 −
𝐶1

qu
) cu 

the above equation is linear in λ3 and its solution 

                                                                 λ3 =
−B2 

β+𝑙w
e−βt                                                                    …(9.7) 

Now the equation (9.2), (9.6) and (9.7) substitute in equation (9.3) then we obtain 

dλ1

dt
− λ1au = B3 e

−βt                         

where B3 = (
B1 𝑛(1 − 𝜌)𝑣

β + ev
+

B2 gw

β + 𝑙w
− 𝑃1qE) 

the above equation is linear in λ1 and its solution 

                                                                λ1 =
−B3 

β+𝑎𝑢
e−βt                                                                       ….(9.8) 

From equation (9.2) and (9.8), we obtain a singular path 

e−βt (𝑃1 −
𝐶1

qu
)  =

−B3 

β + 𝑎𝑢
e−βt 

Which gives          F(u∗) = (𝑃1 −
𝐶1

qu∗) +
B3 

β+𝑎u∗                                                                                  ….(9.9) 

There exist unique positive roots u∗ = (u)β,   if F(u∗) = 0 in the interval   0 ≤ u∗ ≤ K1. 

If the following inequality hold  F(0) < 0,   F(K1) > 0, where K1 =
r

a
 , and F′(u∗) > 0,  for (u∗) > 0. 
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For u∗ = (u)β, v∗ = (v)β, w∗ = (w)β,   and we get 

                                                 (𝐸)𝛽 =
1

𝑞
[𝑟 − 𝑎(𝑢)𝛽 − 𝑏(1 − 𝜌)(𝑣)𝛽 − 𝑐(𝑤)𝛽] 

 Where                                            (𝑢)𝛽 =
𝐶1

𝑃1q
⁄  

                                                 (𝑣)𝛽 =
1

𝑒
[
𝐶1 𝑛(1−𝜌)−(𝑚1+𝑑1)𝑃1q

𝑃1q
] 

                                                (𝑤)𝛽 =
1

𝑙
[
𝑔𝐶1+(𝑠+𝑚2−𝑑2)𝑃1q

𝑃1q
] 

Here (𝐸)𝛽 > 0    if    𝑟 > (
𝑎𝐶1

𝑃1q
+ 𝑏(1 − 𝜌)(𝑣)𝛽 + 𝑐(𝑤)𝛽) 

Hence the optimal equilibrium ((u)β, (v)β, (w)β, (E)β) is determined, the optimal harvesting effort (E)β 

Can be determined. We note that λi(t)e
−βt (i = 1,2,3) is independent of time in an optimal equilibrium. 

Hence the equation satisfies the transversality condition at ∞ , indicating that the value remain bounded as 

t → ∞. 

From equation (9.9),  (P1 −
C1

qu∗)  =
−B3 

β+au∗  → 0 as  β → ∞.  

Thus, the net economic revenue is B(u, v, w, E) = 0 this implies that an infinite discount rate tends to the 

net economic revenue tending to zero and the fishery would remain closed. 

10. Mathematical Simulation 

In this section, numerical simulations conducted using Python are employed to evaluate the stability of the 

proposed model, perform parameter sensitivity analysis, and investigate the 3D phase plane trajectory to 

understand its behavior and dynamics. 

 

Simulation of Population Dynamics Model - I         

Parameter specification:  

r =  0.5, a =  0.01, b =  0.02, c =  0.01, q =  0.01, E =  1.0, e =  0.1, n =  0.02,m1 =  0.01,   

d1 =  0.01, s =  0.1, l =  0.02, g =  0.02, m2 =  0.01, d2 =  0.01, ρ = 0.5 

Initial conditions u(0)  =  1.0, v(0)  =  0.50, w(0)  =  0.60  

 

 
Figure 1: Simulation of the model - I 

The graph represents the solution of a system of differential equations over time, depicting the behavior of 

three populations: prey (u(t)), migrating predator(v(t)), and immigrating predator (w(t)). Initially, all three 

populations start at low values. The prey population increases rapidly, reaches a peak, and then declines 

slightly. Similarly, the migrating predator population increases quickly but peaks at a lower value than the 

prey and then declines. The immigrating predator population increases at a rate similar to the prey initially 
but levels off more quickly. In the intermediate phase, after their initial peaks, the prey and immigrating 

predator populations approach a stable value and remain there for the rest of the simulation, while the 
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migrating predator population decreases and also approaches a stable value, which is lower than that of the 

prey and immigrating predator populations. Eventually, all three populations reach a steady state where 

their values remain constant. The prey and immigrating predator populations converging to the same value, 

while the migrating predator population converging to a different, lower value, suggesting a model where 

different populations reach equilibrium at distinct levels. 

.  
              Figure 2: Parameter Sensitivity Analysis for r - I                

The graph (figure 2) illustrates a parameter sensitivity analysis for population (u(t)) over time, with 

different curves representing various values of parameter (r) (ranging from 0.40 to 0.60). Initially, all 

populations rapidly increase, with higher (r) values leading to earlier and higher peak populations. After 

peaking, the populations undergo oscillations before stabilizing. Higher (r) values result in reduced 

oscillations and higher equilibrium populations. Overall, the parameter (r) significantly influences the 

speed of growth, peak magnitude, and final stabilized population, with larger (r) values producing faster 

growth and higher steady-state populations. The phase plane plot shows the trajectory of variables (u), (v), 

and (w) over time, indicating cyclic behavior and interactions between the variables. The looped trajectory 

suggests a stable limit cycle, highlighting the system's dynamic nature. 

Simulation of Population Dynamics Model - II         

Parameter specification: 

r =  0.5, a =  0.1, b =  0.02, c =  0.01, q =  0.01, E =  1.0, e =  0.2, n =  0.05,m1 =  0.1,   

d1 =  0.01, s =  0.3, l =  0.05, g =  0.01, m2 =  0.1, d2 =  0.01, ρ = 0.5  

Initial conditions u(0)  =  1.0, v(0)  =  1.0, w(0)  =  1.0  

 
Figure 4: Simulation of the model - II 

The graph depicts simulation results from a proposed model illustrating interactions between prey and two 

types of predators over time. Initially, the prey population (u(t)) starts low but rapidly increases to stabilize 

around 4, suggesting it reaches a stable population level after an initial growth phase. The migrating 

predator population (v(t)) starts at a higher level but quickly declines to near zero, indicating it rapidly 

decreases and becomes negligible. On the other hand, the immigrating predator population (w(t)) starts at a 

minimal level, increases significantly, and stabilizes around 9, indicating substantial growth to a stable 

high population. This simulation indicates that after an initial period of dynamic changes, all three 

  Figure 3: Phase Plane - I 
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populations reach stable values, with the prey stabilizing at a moderate level, the migrating predator 

declining to near extinction, and the immigrating predator achieving a high stable population. 

 

       Figure 5: Parameter Sensitivity Analysis for r- II                             Figure 6: Phase Plane - II

The graph shows a parameter sensitivity analysis for (r) on the prey population (u(t)) over time. Different 

curves represent varying (r) values from 0.40 to 0.60. As (r) increases, the initial growth rate and peak 

height of (u(t)) also increase. Finally, each population stabilizes at a higher constant value, with (r = 0.40) 

stabilizing around 3, and (r = 0.60) around 5. This indicates that higher (r) values lead to faster growth and 

higher equilibrium levels, emphasizing (r)'s role in the prey population dynamics. 

The phase plane plot illustrates the dynamic relationship between the populations over time, forming a 

loop in the phase space that indicates cyclical or oscillatory dynamics among these populations. This 

cyclical pattern suggests that the populations do not reach a steady state but instead undergo continuous 

fluctuations. As the prey population increases, there are corresponding changes in the migrating predator 

population and the immigrating predator population, reflecting their interdependent relationships. The plot 

shows how the populations evolve over time in a three-dimensional space, highlighting the complex 

interactions and continuous cycles among the prey and predator populations. 

Simulation of Population Dynamics Model - III         

Parameter specification: 

 

r =  0.1, a =  0.01, b =  0.02, c =  0.01, q =  0.01, E =  1.0, e =  0.1, n =  0.02,m1 =  0.01,   

d1 =  0.01, s =  0.1, l =  0.02, g =  0.02, m2 =  0.01, d2 =  0.02, ρ = 0.5  

Initial conditions u(0)  =  1.0, v(0)  =  1.0, w(0)  =  1.0  

 
Figure 7: Simulation of the model - III

The graph illustrates the population dynamics of three species over time, each starting with an initial 

population of different values.  The prey population initially increases rapidly, peaking around (t = 25), and 

then stabilizes slightly above its initial level. The migration predator population experiences a rapid initial 

decline, followed by a slower decrease, eventually stabilizing near zero. The immigration predator 

population rises quickly, peaking around (t = 50), and then stabilizes at a much higher population level. 

This behavior indicates a stable equilibrium where the populations of the prey and immigration predator 

remain steady over time, while the migration predator declines significantly, suggesting it is outcompeted 
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by the other two. The chosen parameters lead to a system where each species reaches a steady-state 

population 

             
      Figure 8: Parameter Sensitivity Analysis for r  - III                      Figure 9: Phase Plane - III 

The graph shows a sensitivity analysis of the population model parameter (r) over time, with growth rate 

values ranging from 0.40 to 0.60. Initially, the population grows rapidly for all (r) values, reaching a peak 

that occurs earlier and at a lower value for smaller values. After the peak, the population declines and 

stabilizes, with higher growth rate values leading to higher equilibrium levels. Specifically, (r = 0.40) 

stabilizes around 20,               while (r = 0.60)  stabilizes around 30. This demonstrates that growth rate 

significantly affects both the peak and stable population levels. 

The phase plane plot depicts the relationship between three variables, showing a trajectory that represents 

their evolution over time. The spiral pattern of the trajectory indicates oscillatory behavior, suggesting that 

the system does not settle into a fixed point but continues to oscillate, potentially forming a limit cycle 

where the system's state repeats periodically. The variables are bounded within specific ranges u from 

approximately 1.0 to 2.4,       v from 0.2 to 0.8, and w from 1.0 to 7.0, providing understanding of the 

limits of the system's behavior. This plot helps visualize how changes in one variable affect the others, 

revealing the complex, oscillatory dynamics and feedback mechanisms in the system. Understanding these 

interactions is crucial for comprehending the stability and long-term behavior of the dynamical system. 

11. Conclusion  

Studying the effects of refuge, migration, and immigration on predator-prey dynamics through 

mathematical models emphasizes their critical role in shaping ecosystem stability and maintaining balance 

by managing prey populations and regulating species diversity. The dynamics are influenced by factors 

such as predation intensity, the availability of prey refuges, and competition among prey individuals. 

Mathematical models using differential equations offer a robust framework to comprehend the impact of 

migration, immigration, and other ecological factors on the stability and persistence of predator-prey 

systems. 

Further, the system analysis the equilibrium states that ensure the stability during interactions between prey 

and individual predators within the ecosystem. The presence of prey refuge can increase the stability of the 

system and promote coexistence between predators and prey. The migration of the first predator can lead 

to oscillations in the prey population size, which can make it more difficult for coexistence to occur. The 

immigration of the second predator can stabilize the system and promote coexistence between predators 

and prey. The system's stability is affected by changes in parameters such as predation rates, conversion 

rates, and mortality rates. The stability of equilibrium points is assessed using the Routh-Hurwitz criterion 

and Lyapunov functions. This analysis helps determine the conditions under which the system will return 

to equilibrium after disturbances.  

However, instability among predators is evident due to a lack of communication between them. The model 

demonstrates that the ecosystem exhibits significantly greater stability on a global scale compared to a 

local scale. The system analyzes bionomic equilibrium and optimal harvesting policies for species 

interactions. The simulation demonstrates that prey stabilize at a moderate level after initial growth, while 

migrating predators decline and immigrating predators stabilize at a higher level. Increasing parameter (r) 
accelerates prey growth and raises equilibrium levels. The phase plane plot confirms cyclic dynamics 

among prey and predators, highlighting their interconnected behavior over time.  
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