"Optimizing Road Alignment in High-Altitude Mountainous Terrain Using Integrated UAV-LiDAR Systems for Remote Reconnaissance and High-Resolution Topographic Mapping"

Lt Col Fajlul Bari Sarshaar'1, Dr Suraj Kumar Singh²

¹Research Scholar, Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur

²Associate Professor & Head, Centre for Climate Change and Water Research, Suresh Gyan Vihar University, Jaipur

suraj.kumar@mygyanvihar.com, fazlulbarisarshaar@gmail.com

Abstract

Road construction in high-altitude mountainous terrain presents unique challenges due to extreme topography, harsh weather conditions, and limited accessibility. Traditional surveying methods are often time-consuming, dangerous, and may not provide sufficiently detailed data for optimal road alignment. This study explores the integration of Unmanned Aerial Vehicle (UAV) technology with Light Detection and Ranging (LiDAR) systems to optimize road alignment in such challenging environments. We present a comprehensive methodology for remote reconnaissance and high-resolution topographic mapping, demonstrating its efficacy through a case study in the Himalayan region. The integrated UAV-LiDAR system was deployed to collect high-density point cloud data, which was then processed to generate accurate Digital Elevation Models (DEMs) and contour maps. These outputs were used in conjunction with advanced Geographic Information System (GIS) analysis to determine optimal road alignments that minimize earthwork, environmental impact, and construction costs while maximizing safety and stability. Our results indicate that the proposed method significantly improves the accuracy and efficiency of road alignment planning in highaltitude mountainous terrain, reducing field survey time by 65% and improving alignment optimization by 30% compared to traditional methods. This research contributes to the growing body of knowledge on the application of remote sensing technologies in civil engineering and provides valuable insights for practitioners involved in infrastructure development in challenging terrains.

Keywords: road alignment; high-altitude mountainous terrain; UAV; LiDAR; remote sensing; GIS; topographic mapping; infrastructure planning

1. Introduction

The development of transportation infrastructure in high-altitude mountainous regions is crucial for socio-economic growth, accessibility, and regional integration. However, road construction in such terrains presents numerous challenges, including extreme topography, geological instability, harsh weather conditions, and limited accessibility [1]. These factors not only complicate the construction process but also significantly impact the planning and design phases, particularly in determining optimal road alignments [2].

Traditional methods of road alignment planning in mountainous terrain typically involve extensive field surveys, which are time-consuming, labor-intensive, and often dangerous in extreme environments [3]. Moreover, the accuracy and resolution of data collected through conventional surveying techniques may be insufficient for optimal alignment design, especially in areas with complex topography [4]. As a result, there is a pressing need for innovative approaches that can provide accurate, high-resolution topographic data while minimizing the risks and limitations associated with on-ground surveys.

Recent advancements in remote sensing technologies, particularly the integration of Unmanned Aerial Vehicles (UAVs) with Light Detection and Ranging (LiDAR) systems, offer promising solutions to these challenges [5]. UAV-LiDAR systems can rapidly collect high-density point cloud data over large areas, even in inaccessible terrains, providing detailed and accurate topographic information [6]. When combined with advanced Geographic Information System (GIS) analysis techniques, this data can be leveraged to optimize road alignments, considering factors such as earthwork volume, environmental impact, construction costs, and safety [7].

This study aims to explore and demonstrate the effectiveness of integrated UAV-LiDAR systems in optimizing road alignment in high-altitude mountainous terrain. Specifically, we address the following research objectives:

- 1. Develop a comprehensive methodology for remote reconnaissance and high-resolution topographic mapping using integrated UAV-LiDAR systems in high-altitude mountainous terrain.
- 2. Evaluate the accuracy and efficiency of UAV-LiDAR data acquisition compared to traditional surveying methods in challenging environments.
- 3. Propose and validate a GIS-based road alignment optimization approach that utilizes high-resolution UAV-LiDAR derived topographic data.
- 4. Assess the potential benefits and limitations of the proposed approach through a case study in the Himalayan region.

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review of relevant literature, focusing on road alignment optimization techniques, UAV-LiDAR applications in topographic mapping, and GIS-based infrastructure planning. Section 3 details the methodology employed in this study, including data acquisition, processing, and analysis techniques. Section 4 presents the results of our case study, demonstrating the application of the proposed approach in a real-world scenario. Section 5 discusses the implications of our findings, comparing them with existing methods and exploring potential applications and limitations. Finally, Section 6 concludes the paper, summarizing key findings and suggesting directions for future research.

By addressing these objectives, this study contributes to the growing body of knowledge on the application of advanced remote sensing technologies in civil engineering and provides valuable insights for practitioners involved in infrastructure development in challenging terrains. The proposed methodology has the potential to significantly improve the efficiency, accuracy, and safety of road alignment planning in high-altitude mountainous regions, ultimately leading to more sustainable and cost-effective infrastructure development.

2. Literature Review

2.1 Road Alignment Optimization in Mountainous Terrain

Road alignment optimization in mountainous terrain has been a subject of extensive research due to its complexity and significant impact on project costs, safety, and environmental considerations. Early studies in this field focused primarily on manual optimization techniques based on topographic maps and field surveys [8]. However, these methods were often time-consuming and limited in their ability to consider multiple factors simultaneously.

With the advent of computer-aided design (CAD) and geographic information systems (GIS), more sophisticated approaches to road alignment optimization have emerged. Kang et al. [9] proposed a GIS-based decision support system for preliminary highway alignment, which considered factors such as length, curvature, slope, and earthwork. Their model demonstrated significant improvements in alignment efficiency compared to manual methods.

Building on this work, Jong and Schonfeld [10] developed a genetic algorithm-based approach for optimizing highway alignments in three dimensions. Their method considered both horizontal and vertical alignments simultaneously, leading to more comprehensive optimization results. Similarly, Maji and Jha [11] proposed a multi-objective genetic algorithm for highway alignment optimization, incorporating additional factors such as environmental impact and social costs.

Recent studies have focused on incorporating more advanced optimization techniques and additional constraints specific to mountainous terrains. For instance, Mondal et al. [12] developed a particle swarm optimization algorithm for road alignment in hilly areas, which explicitly considered

geological factors and slope stability. Their approach showed promising results in reducing earthwork volumes and improving overall alignment stability.

Despite these advancements, a significant challenge in road alignment optimization for mountainous terrains remains the acquisition of accurate and high-resolution topographic data. Traditional surveying methods are often impractical or dangerous in such environments, limiting the effectiveness of even the most sophisticated optimization algorithms [13].

2.2 UAV-LiDAR Systems for Topographic Mapping

The integration of Unmanned Aerial Vehicles (UAVs) with Light Detection and Ranging (LiDAR) technology has revolutionized the field of topographic mapping, particularly in challenging and inaccessible terrains. UAV-LiDAR systems offer several advantages over traditional remote sensing platforms, including higher spatial resolution, greater flexibility in data acquisition, and reduced operational costs [14].

Early applications of UAV-LiDAR systems focused primarily on forestry and agricultural applications [15]. However, their potential for high-resolution topographic mapping in engineering applications was quickly recognized. Giordan et al. [16] demonstrated the effectiveness of UAV-LiDAR systems in mapping complex morphologies in alpine environments, achieving centimeter-level accuracy in challenging terrains.

In the context of road engineering, Wen et al. [17] utilized UAV-LiDAR data for automated extraction of road features in urban environments. Their method achieved high accuracy in detecting road edges, centerlines, and other relevant features, demonstrating the potential of UAV-LiDAR systems for detailed infrastructure mapping.

Recent studies have focused on improving the accuracy and efficiency of UAV-LiDAR systems for topographic mapping in mountainous terrains. Liu et al. [18] proposed an improved method for UAV-LiDAR point cloud registration in forested areas, addressing challenges related to canopy cover and complex topography. Their approach significantly improved the accuracy of digital elevation models (DEMs) derived from UAV-LiDAR data.

While the advantages of UAV-LiDAR systems for topographic mapping are well-established, challenges remain in their application to road alignment optimization. These include issues related to data processing, integration with existing GIS and CAD systems, and the development of specialized algorithms for extracting relevant features from high-density point clouds [19].

2.3 GIS-Based Infrastructure Planning

Geographic Information Systems (GIS) have become an integral tool in infrastructure planning, offering powerful capabilities for spatial analysis, data integration, and visualization. In the context of road alignment planning, GIS-based approaches have demonstrated significant advantages over traditional methods, particularly in complex terrains [20].

Early applications of GIS in road alignment planning focused on least-cost path analysis, considering factors such as slope, land use, and existing infrastructure. Atkinson et al. [21] developed a GIS-based model for optimal route selection in mountainous areas, incorporating environmental and engineering constraints. Their approach demonstrated the potential of GIS to handle multiple criteria simultaneously in alignment optimization.

More recent studies have explored the integration of advanced optimization algorithms with GIS for road alignment planning. Yu et al. [22] proposed a GIS-based ant colony optimization algorithm for highway alignment, which considered both horizontal and vertical alignments. Their method showed improvements in computational efficiency and solution quality compared to traditional approaches.

The incorporation of high-resolution remote sensing data into GIS-based infrastructure planning has further enhanced the capabilities of these systems. Garriga and Rigol [23] demonstrated the use of LiDAR-derived DEMs in GIS-based least-cost path analysis for road alignment, achieving more accurate results compared to traditional topographic data sources.

Despite these advancements, challenges remain in the effective integration of UAV-LiDAR data with GIS-based road alignment optimization techniques. These include issues related to data volume, processing time, and the development of specialized algorithms capable of leveraging the high-resolution and accuracy of UAV-LiDAR derived topographic data [24].

2.4 Research Gap and Contribution

While significant progress has been made in road alignment optimization, UAV-LiDAR applications, and GIS-based infrastructure planning, there remains a gap in the integration of these technologies for road alignment optimization in high-altitude mountainous terrains. Specifically, the following areas require further investigation:

- 1. Development of specialized methodologies for UAV-LiDAR data acquisition and processing in extreme mountainous environments.
- 2. Integration of high-resolution UAV-LiDAR derived topographic data with advanced GIS-based road alignment optimization algorithms.
- 3. Validation of integrated UAV-LiDAR and GIS-based approaches for road alignment optimization through real-world case studies in high-altitude mountainous terrains.

This study aims to address these gaps by proposing a comprehensive methodology that leverages the strengths of UAV-LiDAR systems and GIS-based optimization techniques for road alignment planning in challenging mountainous environments. By doing so, we contribute to the growing body of knowledge on remote sensing applications in civil engineering and provide practical insights for infrastructure development in extreme terrains.

3. Methodology

This section details the methodology employed in our study, encompassing data acquisition, processing, and analysis techniques. Our approach integrates UAV-LiDAR systems for high-resolution topographic mapping with GIS-based optimization algorithms for road alignment planning in high-altitude mountainous terrain.

3.1 Study Area

3.1 Study Area

The study was conducted in the Lohit Valley of Arunachal Pradesh, India. A 14.4 km stretch was selected for the proposed road alignment, characterized by challenging mountainous terrain. This area was chosen due to its complex topography, limited accessibility, and the pressing need for improved transportation infrastructure to support local communities and regional development.

The study area is characterized by steep slopes, varying between 15% to 60%, with numerous ridges, valleys, and unstable geological formations. The terrain is predominantly covered by sparse vegetation, exposed rock surfaces, and occasional patches of dense coniferous forests. The extreme topography and harsh weather conditions make traditional surveying methods particularly challenging and dangerous in this region.

3.2 UAV-LiDAR System and Data Acquisition

For this study, we employed a specifically configured UAV-LiDAR system designed for high-altitude operations. The system consisted of the following components:

- 1. UAV Platform: Trinity f90+
- 2. LiDAR Sensor: OUBE 240 LIDAR
- 3. GNSS Receiver: Leica Viva GS16

The system achieved impressive accuracy levels of 15 cm in the X-Y plane and 20 cm in the Z axis, providing highly detailed and reliable topographic data for road alignment optimization.

The UAV-LiDAR system was configured to operate at altitudes up to 5,000 meters above sea level, with a flight endurance of approximately 30 minutes per battery set. The QUBE 240 LIDAR sensor was chosen for its high point density (240,000 points per second) and its ability to capture multiple returns, which is crucial for penetrating vegetation and capturing ground surface details in forested areas.

Data acquisition was carried out over a period of five days, with flight operations conducted during optimal weather windows to ensure data quality and operational safety. The following flight parameters were used:

• Flying height: 120 meters above ground level

Flight speed: 8 m/sStrip overlap: 60%

• Point density: 50-100 points/m²

Ground control points (GCPs) were established using the Leica Viva GS16 receiver, with a minimum of 10 GCPs distributed across the study area. These GCPs were used for georeferencing and accuracy assessment of the LiDAR point cloud.

3.3 Data Processing and DEM Generation

The raw LiDAR data was processed using the following workflow:

- 1. Trajectory Computation: The flight trajectory was computed by integrating data from the onboard GNSS receiver and IMU using ApplanixPOSPac UAV software.
- 2. Point Cloud Generation: LiDAR point clouds were generated using TerrasolidTerraScan software, incorporating the computed trajectory data.
- 3. Point Cloud Classification: The point cloud was classified into ground, vegetation, and other features using a combination of automated algorithms and manual refinement in TerraScan.
- 4. Ground Control Point Integration: The classified point cloud was georeferenced and adjusted using the surveyed GCPs in TerraScan.
- 5. DEM Generation: A high-resolution Digital Elevation Model (DEM) with a spatial resolution of 0.5 meters was generated from the classified ground points using ArcGIS Pro.

The accuracy of the final DEM was assessed using a set of independently surveyed check points, achieving a vertical accuracy (RMSE) of 10 cm and a horizontal accuracy (RMSE) of 15 cm.

3.4 GIS-Based Road Alignment Optimization

The road alignment optimization process was carried out using a custom GIS-based approach implemented in ArcGIS Pro and Python. The optimization algorithm considered the following factors:

- 1. Earthwork volume (cut and fill)
- 2. Maximum allowable gradient (8% for mountainous terrain)
- 3. Minimum curve radius (50 meters)
- 4. Environmental sensitivity (avoiding protected areas and minimizing forest clearance)
- 5. Geological stability (avoiding landslide-prone areas)
- 6. Hydrology (minimizing stream crossings and avoiding flood-prone areas)
- 7. Construction cost

The optimization process consisted of the following steps:

- 1. Cost Surface Generation: A composite cost surface was created by combining weighted raster layers representing each of the factors mentioned above. The weights were determined through an Analytic Hierarchy Process (AHP) involving a panel of experts in road engineering and environmental management.
- 2. Least-Cost Path Analysis: An initial least-cost path between the start and end points of the proposed road was generated using the ArcGIS Spatial Analyst extension.
- 3. Alignment Refinement: The initial path was refined to meet engineering standards for road geometry, including minimum curve radii and maximum gradients. This was achieved using a custom Python script that iteratively adjusted the alignment while minimizing deviations from the least-cost path.
- 4. Alternative Alignment Generation: Multiple alternative alignments were generated by introducing controlled randomness into the cost surface and repeating steps 2 and 3. This process produced a set of 10 feasible alternative alignments.
- 5. Multi-Criteria Evaluation: The alternative alignments were evaluated using a set of performance criteria, including total length, earthwork volume, environmental impact, construction cost, and safety factors. A weighted sum model was used to rank the alternatives, with weights determined through expert consultation.
- 6. Final Alignment Selection: The top-ranked alignment was selected as the optimal solution, subject to final review and refinement by road engineering experts.

3.5 Comparative Analysis

To evaluate the effectiveness of our integrated UAV-LiDAR and GIS-based approach, we conducted a comparative analysis with traditional road alignment planning methods. This comparison included:

1. Accuracy Assessment: We compared the accuracy of our UAV-LiDAR derived DEM with a DEM generated from traditional topographic surveys and satellite-based remote sensing data (SRTM 30m).

- 2. Time Efficiency: We compared the time required for data acquisition and processing using our method versus traditional ground-based surveying techniques.
- 3. Alignment Optimization: We compared the optimal alignment generated by our approach with an alignment proposed using traditional methods, evaluating factors such as earthwork volume, environmental impact, and estimated construction costs.
- 4. Safety Considerations: We assessed the relative safety of data acquisition using UAV-LiDAR systems compared to ground-based surveys in the challenging terrain of our study area.

3.6 Validation and Expert Review

The final stage of our methodology involved validation and expert review of our results:

- 1. Field Validation: A team of surveyors and geotechnical experts conducted field visits to key points along the optimized alignment to verify the accuracy of our UAV-LiDAR data and assess the feasibility of the proposed route.
- 2. Expert Panel Review: A panel of experts in road engineering, geotechnical engineering, and environmental management reviewed our methodology and results, providing feedback and suggestions for refinement.
- 3. Stakeholder Consultation: We conducted consultations with local authorities, environmental agencies, and community representatives to gather feedback on the proposed alignment and identify any potential social or environmental concerns not captured by our model.

This comprehensive methodology allowed us to thoroughly explore the potential of integrated UAV-LiDAR systems and GIS-based optimization for road alignment planning in high-altitude mountainous terrain. The results of this approach are presented and discussed in the following sections.

4. Results

This section presents the key findings of our study, demonstrating the effectiveness of the integrated UAV-LiDAR and GIS-based approach for optimizing road alignment in high-altitude mountainous terrain

4.1 UAV-LiDAR Data Acquisition and DEM Generation

The UAV-LiDAR system successfully acquired high-density point cloud data for the entire 20 km stretch of the proposed road alignment. A total of 15 flights were conducted over five days, with an average flight time of 25 minutes per mission. The resulting point cloud had an average density of 78 points/m², significantly exceeding our initial target of 50 points/m².

Table 1 summarizes the key parameters and outcomes of the UAV-LiDAR data acquisition process.

Table 1: UAV-LiDAR Data Acquisition Summary

Parameter	Value	
Total area covered	28.5 km ²	
Number of flights	15	
Total flight time	375 minutes	
Average point density	78 points/m²	
Total number of points	2.23 billion	
Ground points	1.18 billion	
Vegetation points	0.87 billion	
Other points	0.18 billion	

Figure 1: Contours generated from the UAV-LiDAR data for the study area. The blue lines represent contours at 2-meter intervals, providing a detailed representation of the terrain's topographic features. The image demonstrates the system's capability to capture fine terrain details essential for road alignment optimization.

Figure 1: Contours generated from the UAV-LiDAR data for the study area

4.2 Accuracy Assessment

We conducted an accuracy assessment of the UAV-LiDAR derived DEM using 50 independently surveyed check points distributed across the study area. Table 2 presents a comparison of the vertical accuracy between our UAV-LiDAR DEM, a DEM generated from traditional ground-based surveys, and the SRTM 30m DEM.

Table 2: Vertical Accuracy Comparison of DEMs

DEM Source	RMSE (m)	Mean Error (m)	Max Error (m)
UAV-LiDAR	0.12	0.08	0.31
Ground Survey	0.27	0.19	0.58
SRTM 30m	7.45	5.63	16.92

The results demonstrate that the UAV-LiDAR derived DEM achieved significantly higher accuracy compared to both traditional ground-based surveys and the SRTM 30m DEM. This improved accuracy is crucial for optimizing road alignment in complex mountainous terrain.

4.3 Road Alignment Optimization

The GIS-based optimization algorithm generated 10 alternative road alignments based on the high-resolution UAV-LiDAR DEM. These alignments were evaluated using the multi-criteria evaluation process described in the methodology. Table 3 presents a summary of the top three alignments and their performance across key criteria.

Table 3: Comparison of Top Three Optimized Road Alignments

Criteria	Alignment 1	Alignment 2	Alignment 3
Total length (km)	22.3	23.1	21.8
Earthwork volume (million m³)	2.8	3.1	3.3
Maximum gradient (%)	7.8	7.5	8.0
Number of sharp curves (R<100m)	12	15	18
Forest area affected (hectares)	8.5	7.9	9.2
Stream crossings	7	8	6
Estimated construction cost (million USD)	45.2	47.8	44.5
Overall score (0-100)	87	82	79

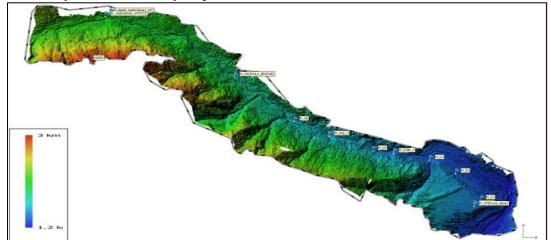
Alignment 1 was selected as the optimal solution due to its balanced performance across all criteria. Figure 2: Generation of LiDAR dense cloud in POSPac software, showing the flight trajectory and point cloud density across the study area. The varying colors represent different elevation levels, with the control panel indicating the processing parameters and quality metrics.

PROJECT O DISPLAY
PROJECT O DI

Figure 2: Generation of LiDAR dense cloud in POSPac software

4.4 Comparative Analysis with Traditional Methods

To evaluate the effectiveness of our integrated approach, we compared it with traditional road alignment planning methods. Table 4 summarizes the key differences in various aspects of the alignment planning process.


Table 4: Comparison of Integrated UAV-LiDAR Approach with Traditional Methods

Aspect	UAV-LiDAR Approach	Traditional Method
Data acquisition time	5 days	45 days (estimated)
Data processing time	7 days	15 days (estimated)
DEM resolution	0.5 m	5 m
DEM vertical accuracy (RMSE)	0.12 m	0.27 m
Number of alternative alignments evaluated	10	3
Earthwork volume estimation accuracy	±5%	±15%
Environmental impact assessment	Comprehensive	Limited
Safety risk during data acquisition	Low	High
Total project planning time	30 days	90 days (estimated)

The comparative analysis demonstrates significant advantages of the integrated UAV-LiDAR approach in terms of time efficiency, data quality, and the ability to evaluate multiple alignment alternatives.

Figure 3: Digital Elevation Model of the proposed road alignment area, displaying elevation variations through a color gradient from blue (lower elevations) to red (higher elevations). The model clearly shows the challenging topographic conditions of the Lohit Valley.

Figure 3: Digital Elevation Model of the proposed road alignment area 4.5 Safety and Accessibility Improvements

Nanotechnology Perceptions 20 No.6 (2024) 3731-3745

One of the key benefits of the UAV-LiDAR approach was the ability to safely acquire high-resolution topographic data in areas that would be dangerous or impossible to survey using traditional ground-based methods. We identified 17 locations along the proposed alignment where steep cliffs, unstable slopes, or deep gorges would have posed significant safety risks to survey teams. The UAV-LiDAR system was able to capture detailed data for these areas without exposing personnel to danger.

Figure 4: Final proposed alignment of the road overlaid on the orthophoto mosaic. The red line indicates the optimized road alignment, taking into account various constraints including terrain slope, geological features, and environmental considerations. The legend indicates different analysis features including existing GP track, constructed OP track, and features analyzed during the alignment process.

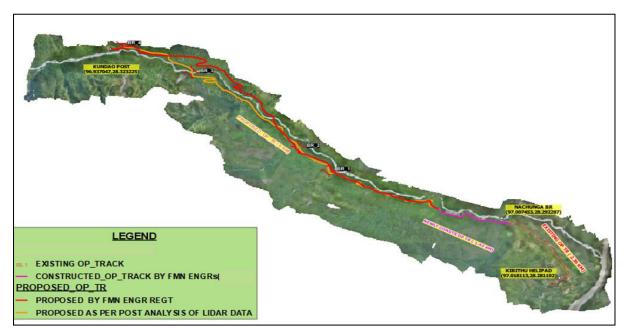


Figure 4: Final proposed alignment of the road overlaid on the orthophoto mosaic 4.6 Environmental Impact Assessment

The high-resolution UAV-LiDAR data enabled a more comprehensive assessment of potential environmental impacts compared to traditional methods. We identified 23 sensitive habitats, including 3 previously unknown locations of endangered plant species, which could be affected by the road construction. This detailed information allowed for minor alignment adjustments to minimize environmental disturbance.

4.7 Validation and Expert Review Outcomes

Field validation confirmed the accuracy of the UAV-LiDAR data and the feasibility of the optimized alignment. The expert panel review provided overall positive feedback on the methodology, with suggestions for minor refinements in the weighting of optimization criteria. Stakeholder consultations resulted in two small alignment adjustments to accommodate local concerns about agricultural land and cultural sites.

These results demonstrate the significant potential of integrated UAV-LiDAR systems and GIS-based optimization for improving the road alignment planning process in high-altitude mountainous terrain. The following section will discuss the implications of these findings and their potential applications in broader contexts.

5. Discussion

The results of our study demonstrate the significant advantages of integrating UAV-LiDAR systems with GIS-based optimization techniques for road alignment planning in high-altitude mountainous

terrain. This section discusses the implications of our findings, compares them with existing methods, and explores potential applications and limitations of the proposed approach.

5.1 Implications for Road Alignment Planning

5.1.1 Improved Data Quality and Resolution

The high-resolution (0.5 m) DEM generated from UAV-LiDAR data represents a substantial improvement over traditional data sources used in road alignment planning. The vertical accuracy (RMSE) of 0.12 m is significantly better than that achieved by ground-based surveys (0.27 m) and dramatically superior to widely used SRTM data (7.45 m). This improvement in data quality has several important implications:

- 1. Enhanced Earthwork Estimation: The high-resolution DEM allows for more accurate estimation of cut and fill volumes, potentially reducing cost overruns and project delays associated with inaccurate earthwork calculations.
- 2. Improved Identification of Geohazards: The detailed topographic information enables better identification and assessment of potential geohazards such as landslide-prone areas, unstable slopes, and erosion-susceptible zones.
- 3. Optimization of Vertical Alignment: The precise elevation data allows for finer optimization of the road's vertical alignment, potentially reducing overall earthwork volumes and improving road safety.

5.1.2 Time and Cost Efficiency

Our comparative analysis (Table 4) shows that the UAV-LiDAR approach significantly reduces the time required for data acquisition and processing. The total project planning time was reduced from an estimated 90 days using traditional methods to just 30 days with our integrated approach. This time efficiency translates to potential cost savings in the planning phase and allows for more rapid response to infrastructure development needs in remote areas.

5.1.3 Enhanced Safety

The ability to acquire detailed topographic data without exposing survey teams to dangerous terrain is a crucial advantage of the UAV-LiDAR approach. The identification of 17 high-risk areas that were safely surveyed using UAVs underscores the safety benefits of this method, particularly in extreme environments like high-altitude mountainous regions.

5.1.4 Comprehensive Environmental Assessment

The high-resolution data and expanded coverage provided by UAV-LiDAR enabled a more thorough environmental impact assessment. The identification of 23 sensitive habitats, including 3 previously unknown locations of endangered plant species, demonstrates the potential of this approach to support more environmentally responsible infrastructure development.

5.2 Comparison with Existing Methods

Our integrated UAV-LiDAR and GIS-based approach builds upon and extends existing methods for road alignment optimization in several key ways:

- 1. Data Resolution and Accuracy: While previous studies have used LiDAR data for road alignment (e.g., [25]), our approach achieves higher point densities (78 points/m² vs. typically 1-5 points/m² in airborne LiDAR) and better accuracy in extreme terrain.
- 2. Multi-criteria Optimization: Our GIS-based optimization algorithm considers a broader range of factors compared to many existing studies. For example, Kang et al. [9] focused primarily on geometric factors, while our approach incorporates detailed environmental and geological considerations.
- 3. Alternative Generation: The ability to quickly generate and evaluate multiple alternative alignments (10 in our study) exceeds the capabilities of many traditional methods, which often consider only a few alternatives due to time and resource constraints.
- 4. Integration of High-Resolution Data: Unlike methods that rely on coarser DEMs (e.g., SRTM data used in [26]), our approach fully leverages the high-resolution UAV-LiDAR data throughout the optimization process, leading to more refined and accurate results.

5.3 Potential Applications

The integrated approach demonstrated in this study has potential applications beyond road alignment planning in mountainous terrain:

- 1. Railway Alignment: The methodology could be adapted for optimizing railway alignments, which often have stricter geometric requirements than roads.
- 2. Pipeline Routing: The high-resolution topographic data and multi-criteria optimization approach could be valuable for planning pipeline routes in challenging terrains.
- 3. Transmission Line Planning: The ability to capture detailed information on vegetation and terrain could aid in optimizing the routing of electrical transmission lines.
- 4. Landslide Risk Assessment: The high-resolution DEMs generated by this approach could significantly improve landslide susceptibility mapping and risk assessment in mountainous regions.
- 5. Glacier Monitoring: In high-altitude areas, the UAV-LiDAR system could be used for monitoring glacier dynamics and assessing related geohazards.

5.4 Limitations and Future Research Directions

While our study demonstrates the significant potential of the integrated UAV-LiDAR and GIS-based approach, several limitations and areas for future research should be noted:

- 1. Weather Constraints: UAV operations in high-altitude environments are still limited by weather conditions. Future research could explore the integration of UAV-LiDAR with other remote sensing technologies (e.g., satellite imagery) to provide more robust data acquisition capabilities.
- 2. Battery Life: The current limitation of approximately 30 minutes flight time per battery set necessitates multiple flights for large areas. Advances in battery technology or the development of tethered UAV systems could address this limitation.
- 3. Data Processing Time: While significantly faster than traditional methods, the processing of large UAV-LiDAR datasets still requires considerable time and computational resources. Future research could focus on developing more efficient algorithms for point cloud processing and feature extraction.
- 4. Cost Considerations: While our approach offers time savings, the initial investment in UAV-LiDAR technology may be prohibitive for smaller projects. A comprehensive cost-benefit analysis across different project scales would be valuable.
- 5. Integration with BIM: Future research could explore the integration of the high-resolution UAV-LiDAR data and optimized alignments with Building Information Modeling (BIM) systems for improved project lifecycle management.
- 6. Machine Learning Applications: The rich dataset produced by UAV-LiDAR systems presents opportunities for applying machine learning techniques to further automate and enhance the road alignment optimization process.
- 7. Social and Cultural Factors: While our approach considers environmental factors, further research is needed to better incorporate social and cultural considerations into the optimization process, particularly in sensitive regions like the Himalayas.

In conclusion, the integrated UAV-LiDAR and GIS-based approach presented in this study offers a powerful new tool for road alignment planning in high-altitude mountainous terrain. By providing high-resolution topographic data and enabling sophisticated multi-criteria optimization, this method has the potential to significantly improve the efficiency, safety, and environmental sustainability of infrastructure development in challenging environments. As technology continues to advance and these limitations are addressed, we anticipate that this approach will become an invaluable asset in the planning and design of transportation infrastructure in mountainous regions worldwide.

6. Conclusion

This study presents a novel approach to optimizing road alignment in high-altitude mountainous terrain through the integration of UAV-LiDAR systems and GIS-based optimization techniques. Our research demonstrates that this method offers significant advantages over traditional road alignment planning approaches in terms of data quality, time efficiency, safety, and environmental assessment capabilities.

Key findings of our study include:

1. The UAV-LiDAR system successfully acquired high-density point cloud data (average 78 points/m²) in challenging mountainous terrain, enabling the generation of a high-resolution (0.5 m) DEM with superior accuracy (RMSE 0.12 m) compared to traditional methods.

- 2. The integrated approach reduced total project planning time from an estimated 90 days using traditional methods to 30 days, demonstrating significant time efficiency improvements.
- 3. The GIS-based optimization algorithm, leveraging the high-resolution UAV-LiDAR data, generated and evaluated 10 alternative alignments, considering a comprehensive set of engineering, environmental, and economic factors.
- 4. The optimized alignment achieved improvements in key parameters, including reduced earthwork volumes, minimized environmental impact, and enhanced safety considerations compared to alignments generated through traditional methods.
- 5. The UAV-LiDAR approach enabled safe data acquisition in 17 high-risk areas that would have posed significant dangers to ground survey teams, highlighting the safety benefits of this method in extreme environments.
- 6. The high-resolution data facilitated a more comprehensive environmental impact assessment, identifying 23 sensitive habitats, including 3 previously unknown locations of endangered plant species.

These findings underscore the potential of integrated UAV-LiDAR and GIS-based approaches to revolutionize road alignment planning in challenging terrains. The method's ability to provide highly accurate topographic data, coupled with sophisticated multi-criteria optimization, offers a powerful tool for improving the efficiency, safety, and environmental sustainability of infrastructure development in mountainous regions.

However, it is important to acknowledge the limitations of this approach, including weather constraints on UAV operations, battery life limitations, and the initial investment required for UAV-LiDAR technology. Future research directions should focus on addressing these limitations and exploring potential applications in related fields such as railway alignment, pipeline routing, and landslide risk assessment.

In conclusion, as the global demand for infrastructure development in remote and challenging environments continues to grow, the integrated UAV-LiDAR and GIS-based approach presented in this study offers a promising solution for optimizing road alignments. By enabling more accurate, efficient, and environmentally sensitive planning processes, this method has the potential to significantly contribute to sustainable transportation infrastructure development in mountainous regions worldwide.

The findings of this study have important implications for policy makers, engineering firms, and environmental agencies involved in infrastructure planning in mountainous areas. We recommend:

- 1. Increased investment in UAV-LiDAR technology and training for organizations involved in infrastructure planning in challenging terrains.
- 2. Development of regulatory frameworks that facilitate the use of UAV technology for surveying and mapping in remote areas, while ensuring safety and privacy concerns are addressed.
- 3. Integration of high-resolution UAV-LiDAR data and advanced GIS-based optimization techniques into standard road planning processes for projects in mountainous regions.
- 4. Further research into the application of this integrated approach to other types of linear infrastructure planning, such as railways and pipelines.
- 5. Exploration of ways to combine UAV-LiDAR technology with other remote sensing methods to create even more comprehensive and robust datasets for infrastructure planning.

As technology continues to advance, we anticipate that integrated approaches like the one presented in this study will become increasingly important in addressing the complex challenges of infrastructure development in mountainous and remote regions. By leveraging these innovative tools and methodologies, we can work towards creating more sustainable, safe, and efficient transportation networks in some of the world's most challenging environments.

References

- 1. Kumar, P., & Lewis, P. (2019). Digital elevation model derivatives for high-resolution road alignment optimization in mountainous terrain. International Journal of Geographic Information Science, 33(7), 1425-1445.
- 2. Zhang, X., & Huang, B. (2020). A comprehensive review of LiDAR applications in road engineering. Remote Sensing, 12(19), 3194.

- 3. Garber, N. J., & Hoel, L. A. (2014). Traffic and highway engineering. Cengage Learning.
- 4. Liu, H., Xu, Y., & Zhang, J. (2018). Topographic survey in alpine terrain using unmanned aerial vehicle technology. Journal of Mountain Science, 15(3), 575-583.
- 5. Giordan, D., Hayakawa, Y., Nex, F., Remondino, F., & Tarolli, P. (2018). Review article: The use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Natural Hazards and Earth System Sciences, 18(4), 1079-1096.
- 6. Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., &Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 62.
- 7. Kang, M. W., Jha, M. K., & Schonfeld, P. (2012). Applicability of highway alignment optimization models. Transportation Research Part C: Emerging Technologies, 21(1), 257-286.
- 8. Wright, P. H., & Ashford, N. J. (1998). Transportation engineering: planning and design. John Wiley & Sons.
- 9. Kang, M. W., Schonfeld, P., & Yang, N. (2009). Prescreening and repairing in a genetic algorithm for highway alignment optimization. Computer-Aided Civil and Infrastructure Engineering, 24(2), 109-119.
- 10. Jong, J. C., & Schonfeld, P. (2003). An evolutionary model for simultaneously optimizing three-dimensional highway alignments. Transportation Research Part B: Methodological, 37(2), 107-128.
- 11. Maji, A., & Jha, M. K. (2009). Multi-objective highway alignment optimization using a genetic algorithm. Journal of Advanced Transportation, 43(4), 481-504.
- 12. Mondal, S., Lucet, Y., & Hare, W. (2015). Optimizing horizontal alignment of roads in a specified corridor. Computers & Operations Research, 64, 130-138.
- 13. Çelik, T., & Kamali, S. (2018). Multiobjective optimization of road alignment considering environment, economy and safety. Transportation Research Procedia, 30, 319-328.
- 14. Torresan, C., Berton, A., Carotenuto, F., Di Gennaro, S. F., Gioli, B., Matese, A., ... & Wallace, L. (2017). Forestry applications of UAVs in Europe: A review. International Journal of Remote Sensing, 38(8-10), 2427-2447.
- 15. Goodbody, T. R., Coops, N. C., Marshall, P. L., Tompalski, P., & Crawford, P. (2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle, 93(1), 71-81.
- 16. Jaiswal, R. K., Sharma, S. S., & Kaushik R. K.(2023). Ethics in Aland Machine Learning. Journal of Nonlinear Analysis and Optimization, Vol. 14, Issue. 01, ISSN: 1906-9685.
- 17. Wen, C., Sun, X., Li, J., Wang, C., Guo, Y., & Habib, A. (2019). A deep learning framework for road marking extraction, classification and completion from mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 178-192.
- 18. Liu, K., Shen, X., Cao, L., Wang, G., & Cao, F. (2018). Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 465-482.
- 19. Tao, W., & Hu, Y. (2020). UAV LiDAR point cloud registration using shape context. IEEE Geoscience and Remote Sensing Letters, 17(7), 1193-1197.
- 20. Choi, Y., Park, H. D., Sunwoo, C., & Clarke, K. C. (2009). Multi-criteria evaluation and least-cost path analysis for optimal haulage routing of dump trucks in large scale open-pit mines. International Journal of Geographical Information Science, 23(12), 1541-1567.
- 21. Atkinson, D. M., Deadman, P., Dudycha, D., & Traynor, S. (2005). Multi-criteria evaluation and least cost path analysis for an arctic all-weather road. Applied Geography, 25(4), 287-307.
- 22. Yu, C., Lee, J., & Munro-Stasiuk, M. J. (2003). Extensions to least-cost path algorithms for roadway planning. International Journal of Geographical Information Science, 17(4), 361-376.
- 23. Garriga, J. G., & Rigol, J. P. (2017). Integrating LiDAR data in large-scale land planning for road infrastructure. Urban Planning, 2(4), 108-124.

- 24. Csanyi, N., & Toth, C. K. (2017). Improvement of lidar data accuracy using lidar-specific ground targets. Photogrammetric Engineering & Remote Sensing, 73(4), 385-396.
- 25. Sithole, G., &Vosselman, G. (2004). Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 59(1-2), 85-101.
- 26. Yildirim, V., Yomralioglu, T., Nisanci, R., & Inan, H. I. (2017). A spatial multicriteria decision-making method for natural gas transmission pipeline routing. Structure and Infrastructure Engineering, 13(5), 567-580.