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Abstract: 

In this paper we study the existence of positive solutions of a non linear fractional order 

delay differential equation of the form  

𝐿(𝐷)𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), 𝑦(0) = 0, 0 < 𝑡 < 1, 𝜏 > 0, 

where 𝐿(𝐷) = 𝐷𝑠𝑛 − 𝑎𝑛−1𝐷𝑠𝑛−1 − −𝑎𝑛−2𝐷𝑠𝑛−2 − ⋯ − −𝑎1𝐷𝑠1 

0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 < 1, 𝑎𝑗 > 0 forall 𝑗 = 1,2, . . 𝑛 − 1 and 𝜏 > 0 is a constant delay.  

Also, 𝐷𝑠𝑗  is the standard Riemann-Liouville fractional derivative and  

𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) is a given continuous function. In addition to this we also 

prove that, if the condition 𝑎𝑗 > 0 is relaxed then the equation we have considered has a 

unique solution which may not necessarily be positive. 

Key words: Riemann-Liouville fractional order derivatives, delay, Banach space, normal 

cone, completely continuous operator, existence of positive solution. 

1. Introduction 

Many authors [6,12&15] have investigated the existence of positive solution of ordinary 

differential equations. Recent analysis shows that in science and engineering the dynamics of many 

systems can be described more accurately by using fractional order differential equations. In 

[2,3,4,7,9,13&17] we can infer that the authors investigated the existence of positive solution of 

fractional order differential equations. But the fractional order delay differential equations 

[5,16&18] are often more effective to describe the natural phenomenon than those equations 

without delay.  

In this paper we consider the more general fractional order differential equation with constant 

delay of the form  

𝐿(𝐷)𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), 𝑦(0) = 0, 0 < 𝑡 < 1, 𝜏 > 0.    (1.1) 

Where 𝐿(𝐷) = 𝐷𝑠𝑛 − 𝑎𝑛−1𝐷𝑠𝑛−1 − −𝑎𝑛−2𝐷𝑠𝑛−2 − ⋯ − −𝑎1𝐷𝑠1 

0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 < 1, 𝑎𝑗 > 0 for all 𝑗 = 1,2, . . 𝑛 − 1 and 𝜏 > 0 is a constant delay.  

Also, 𝐷𝑠𝑗 is the standard Riemann-Liouville fractional derivative and  

𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) is a given continuous function. 

We provide the conditions for 𝑓 and 𝑎𝑗′𝑠 for which the equation (1.1) has a unique positive 

solution. In addition to this we also prove that, if the condition 𝑎𝑗 > 0 is relaxed, then the equation 

we have considered has a unique solution which may not necessarily be positive. 

2. Preliminaries 

Let B be a real Banach space with a cone K. K introduces a partial order ≤ in B as follows [10] 

𝑎 ≤ 𝑏 𝑖𝑓 𝑏 − 𝑎 ∈ 𝐾 

Definition 2.1: For 𝑎, 𝑏 ∈ B, the order interval < 𝑎, 𝑏 > is defined as [10] 
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< 𝑎, 𝑏 > = {𝑐 ∈ 𝐵: 𝑎 ≤ 𝑐 ≤ 𝑏}         (2.1) 

Definition 2.2: A cone K is called normal, if there exists a positive constant 𝛿 such that 𝑓, 𝑔 ∈ K 

and 𝜃 < 𝑓 < 𝑔 ⇒ ‖𝑓‖ ≤ 𝛿‖𝑔‖         (2.2) 

where 𝜃 denotes the zero element of K. 

Theorem 2.1: [10] Let K be a normal cone in a partially ordered Banach space B. Let F be 

increasing on the segment < 𝑥0, 𝑦0 > into itself. That is,  

𝐹𝑥0 ≥ 𝑥0 and 𝐹𝑦0 ≤ 𝑦0.          (2.3) 

Also, if we assume that F is compact and continuous, then F has atleast one fixed point  

𝑥∗ ∈< 𝑥0, 𝑦0 > . 

Theorem 2.2: (Banach fixed point theorem) [10]. Let K be a closed subspace of a Banach space 

B. Let F be a contraction mapping with Lipschitz constant 𝑘(< 1) from K to K itself. Then F has 

a unique fixed point 𝑥∗ ∈ 𝐾. 
Moreover, if 𝑥0 is an arbitrary point in K and {𝑥𝑛} is defined by 𝑥𝑛+1 = 𝐹𝑥𝑛 where 𝑛 = 0,1,2, … 

then lim
𝑛→∞

𝑥𝑛 = 𝑥∗ ∈ 𝐾 and 𝑑(𝑥𝑛, 𝑥∗) ≤
𝑘𝑛

1−𝑘
𝑑(𝑥1, 𝑥0). 

Definition 2.3: The left sided Riemann-Liouville fractional integral [11,13&14] of a function 𝑓 of 

order 𝛼 is defined as 

𝐼𝑎+
𝛼 𝑓(𝑥) =

1

𝛤(𝛼)
∫

𝑓(𝑡)𝑑𝑡

(𝑥−𝑡)1−𝛼

𝑥

𝑎
 , 𝛼 > 0, 𝑥 > 𝑎.         (2.4) 

Definition 2.4: The left sided Riemann-Liouville fractional derivative [11,13&14] of a function 𝑓 

of order 𝛼 is defined as 

𝐷𝑎+
𝛼 𝑓(𝑥) =

𝑑𝑛

𝑑𝑥𝑛
[𝐼𝑎+

𝑛−𝛼𝑓(𝑥)], 𝑛 − 1 ≤ 𝛼 < 𝑛, 𝑛 ∈ 𝑁      (2.5) 

Here, we denote 𝐼0+
𝛼 𝑓(𝑥)  and 𝐷0+

𝛼 𝑓(𝑥) as 𝐼𝛼𝑓(𝑥) and 𝐷𝛼𝑓(𝑥).  Also, 𝐼𝑎+
𝛼 𝑓(𝑥)  and 𝐷𝑎+

𝛼 𝑓(𝑥) refer 

to 𝐼𝑎
𝛼𝑓(𝑥)  and 𝐷𝑎

𝛼𝑓(𝑥). 
If the fractional order derivative 𝐷𝑎

𝛼𝑓(𝑥) is integrable, then [13]  

𝐼𝑎
𝛼 (𝐷𝑎

𝛽
𝑓(𝑥)) =  𝐼𝑎

𝛼−𝛽
𝑓(𝑥) − [𝐼𝑎

1−𝛽
𝑓(𝑥)]

𝑥=𝑎

(𝑥−𝑎)1−𝛼

𝛤(𝛼)
  , 0 ≤ 𝛽 ≤ 𝛼 < 1                      (2.6) 

If 𝑓 is continuous on [𝑎, 𝑏] then [𝐼𝑎
1−𝛽

𝑓(𝑥)]
𝑥=𝑎

= 0 and equation (2.6) refers to 

𝐼𝑎
𝛼 (𝐷𝑎

𝛽
𝑓(𝑥)) =  𝐼𝑎

𝛼−𝛽
𝑓(𝑥)  , 0 ≤ 𝛽 ≤ 𝛼 < 1                          (2.7) 

3. Existence of Positive solution 

Here we discuss the conditions under which the fractional order delay differential equation 

mentioned below has a positive solution. 

𝐿(𝐷)𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), 𝑦(0) = 0, 0 < 𝑡 < 1, 𝜏 > 0,    (3.1) 

where 𝐿(𝐷) = 𝐷𝑠𝑛 − 𝑎𝑛−1𝐷𝑠𝑛−1 − −𝑎𝑛−2𝐷𝑠𝑛−2 − ⋯ − −𝑎1𝐷𝑠1 

0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 < 1, 𝑎𝑗 > 0 forall 𝑗 = 1,2, . . 𝑛 − 1 𝑎𝑛𝑑 𝜏 > 0 is a constant delay.  

Also, 𝐷𝑠𝑗 is the standard Riemann-Liouville fractional derivative and  

𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) is a given continuous function. 

Let us denote 𝑌 = 𝐶[0,1]  the Banach space of all continuous functions on [0,1] endowed with the 

super norm. That is 
‖𝑦‖𝐶 = ‖𝑦0‖ + ‖𝑦‖ = ‖𝑦‖ = sup{|𝑦(𝑡)|: 0 ≤ 𝑡 ≤ 1} , 𝑦 ∈ 𝑌     (3.2) 

Let 𝐾 be the cone 𝐾 = {𝑦 ∈ 𝑌: 𝑦(𝑡) ≥ 0, 0 ≤ 𝑡 ≤ 1}      (3.3) 

By (2.6) and (2.7), equation (3.1) is equivalent to the integral equation 

𝑦(𝑡) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏))𝑛−1
𝑗=1       (3.4) 

Lemma 3.1: The operator 𝐹: 𝐾 → 𝐾 defined as 

𝐹(𝑦(𝑡)) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏))𝑛−1
𝑗=1      (3.5) 
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is continuous and completely continuous. 

Proof: It is trivial that in view of continuity of 𝑓, the operator 𝐹: 𝐾 → 𝐾 is continuous. 

Lemma 3.2: Let 𝐺 𝐾 be bounded. That is there exists a positive constant 𝑙 such that 
‖𝑦‖ ≤ 𝑙, for all 𝑦 ∈ 𝐺          (3.6) 

then 𝐹(𝐺)̅̅ ̅̅ ̅̅ ̅ is compact. i.e., 𝐹 maps bounded sets into equicontinuous sets of 𝐾. 

Proof:  

Let 𝐿 = max {1 + 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)): 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑦 ≤ 𝑙}    (3.7) 

For 𝑦 ∈ 𝐺 we have by (3.5) 

|𝐹(𝑦(𝑡))| ≤ ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗|𝑦(𝑡)| + 𝐼𝑠𝑛𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏))

𝑛−1

𝑗=1

 

≤ ∑
𝑙𝑎𝑗𝑡

𝑠𝑛−𝑠𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
+

1

𝛤(𝑠𝑛)
∫ (𝑡 − 𝑠)𝑠𝑛−1𝑡

0
𝑛−1
𝑗=1 𝑓(𝑠, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠    

≤ ∑ [
𝑙𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗 + 1)
+

𝐿

𝛤(𝑠𝑛 + 1)
]

𝑛−1

𝑗=1

𝑡𝑠𝑛−𝑠𝑛−1  

Hence, ‖𝐹(𝑦(𝑡))‖ ≤ ∑ [
𝑙𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
+

𝐿

𝛤(𝑠𝑛+1)
]𝑛−1

𝑗=1       (3.8) 

And so, 𝐹(𝐺) is bounded.  

Now, we show that 𝐹(𝐺) is equicontinuous as follows. 

Let 𝑦 ∈ 𝐺, 0 ≤ 𝑡1 ≤ 𝑡2 ≤ 1. 

Consider, 

|𝐹(𝑦(𝑡1)) − 𝐹(𝑦(𝑡2))| = |∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗|𝑦(𝑡1)| + 𝐼𝑠𝑛𝑓(𝑡1, 𝑦(𝑡1), 𝑦(𝑡1 − 𝜏))𝑛−1
𝑗=1 −

∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗|𝑦(𝑡2)| + 𝐼𝑠𝑛𝑓(𝑡2, 𝑦(𝑡2), 𝑦(𝑡2 − 𝜏))𝑛−1
𝑗=1 |  

≤ ∑
𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗)
|∫ (𝑡1 − 𝑠)𝑠𝑛−𝑠𝑗−1𝑦((𝑠)𝑑𝑠 − ∫ (𝑡2 − 𝑠)𝑠𝑛−𝑠𝑗−1𝑦((𝑠)𝑑𝑠

𝑡2

0

𝑡1

0

|

𝑛−1

𝑗=1

+ |
1

𝛤(𝑠𝑛)
∫ (𝑡1 − 𝑠)𝑠𝑛−1𝑓(𝑠, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠

𝑡1

0

−
1

𝛤(𝑠𝑛)
∫ (𝑡2 − 𝑠)𝑠𝑛−1𝑓(𝑠, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠

𝑡2

0

| 

≤ ∑
𝑙𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗)
{∫ [(𝑡1 − 𝑠)𝑠𝑛−𝑠𝑗−1 − (𝑡2 − 𝑠)𝑠𝑛−𝑠𝑗−1]𝑑𝑠 + ∫ (𝑡2 − 𝑠)𝑠𝑛−𝑠𝑗−1𝑑𝑠

𝑡2

𝑡1

𝑡1

0

}

𝑛−1

𝑗=1

+
1

𝛤(𝑠𝑛)
{∫ [(𝑡1 − 𝑠)𝑠𝑛−1 − (𝑡2 − 𝑠)𝑠𝑛−1]𝑓(𝑠, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠

𝑡1

0

+ ∫ (𝑡2 − 𝑠)𝑠𝑛−1𝑓(𝑠, 𝑦(𝑠), 𝑦(𝑠 − 𝜏))𝑑𝑠
𝑡2

𝑡1

} 

≤ ∑
𝑙𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗)
{∫ [(𝑡1 − 𝑠)𝑠𝑛−𝑠𝑗−1 − (𝑡2 − 𝑠)𝑠𝑛−𝑠𝑗−1]𝑑𝑠 + ∫ (𝑡2 − 𝑠)𝑠𝑛−𝑠𝑗−1𝑑𝑠

𝑡2

𝑡1

𝑡1

0

}

𝑛−1

𝑗=1

+
𝐿

𝛤(𝑠𝑛)
{∫ [(𝑡1 − 𝑠)𝑠𝑛−1 − (𝑡2 − 𝑠)𝑠𝑛−1]𝑑𝑠

𝑡1

0

+ ∫ (𝑡2 − 𝑠)𝑠𝑛−1𝑑𝑠
𝑡2

𝑡1

} 

Integrating we get 
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≤ 2𝑙 ∑
𝑎𝑗(𝑡2 − 𝑡1)𝑠𝑛−𝑠𝑗

𝛤(𝑠𝑛 − 𝑠𝑗 + 1)
+

𝑛−1

𝑗=1

2𝐿(𝑡2 − 𝑡1)𝑠𝑛

𝛤(𝑠𝑛)
 

≤ 𝜌𝑠𝑛−𝑠𝑛−1 [2𝑙 ∑
𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗 + 1)
+

𝑛−1

𝑗=1

2𝐿

𝛤(𝑠𝑛)
] 

< 𝜖 

where 𝜌 = [𝜖(2𝑙 ∑
𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
+𝑛−1

𝑗=1
2𝐿

𝛤(𝑠𝑛)
)−1]

1

𝑠𝑛−𝑠𝑛−1
 

Hence 𝐹(𝐺) is equicontinuous. So, Arzela-Ascoli’s theorem implies that 𝐹(𝐺)̅̅ ̅̅ ̅̅ ̅ is compact. 

Theorem 3.1: Let 𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) be continuous and  

𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) increasing for each 0 ≤ 𝑡 ≤ 1. Let there exists 0,0satisfying 

𝐿(𝐷)0 ≤ 𝑓(𝑡, 0(𝑡),0(𝑡 − 𝜏))        (3.9) 

𝐿(𝐷)0 ≥ 𝑓(𝑡,0(𝑡),0(𝑡 − 𝜏))        (3.10) 

Then (3.1) has a positive solution. 

Proof: 

To prove this we need to consider the fixed point of the operator 𝐹. By Lemma 3.1 the operator 

𝐹: 𝐾 → 𝐾 is completely continuous. Let 𝑦1, 𝑦2 ∈ 𝐾, and 𝑦1 ≤ 𝑦2. As 𝐹 is non-decreasing, we have 

𝐹(𝑦1(𝑡)) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦1(𝑡) + 𝐼𝑠𝑛𝑓(𝑡, 𝑦1(𝑡), 𝑦1(𝑡 − 𝜏)) ≤ 𝐹(𝑦2(𝑡)) 𝑛−1
𝑗=1       (3.11) 

which implies 𝐹 is an increasing operator. 

Also, by our assumption 𝐹0 ≥ 0 and 𝐹0 ≤ 0       (3.12) 

Hence by lemma 3.1 and lemma 3.2, 𝐹: (0,0) → (0,0) is completely continuous and a 

compact operator. Also, we have K is a normal cone and 𝐹 is compact and continuous. Therefore, 

by theorem 2.1, 𝐹 has a fixed point 𝑦∗ ∈ (0,0) which is the required positive solution of (3.1). 

Theorem 3.2: Let 𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) be continuous and  

𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) increasing for each 0 ≤ 𝑡 ≤ 1. If  

0 < lim
𝑦→+∞

𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) < +∞, for each 0 ≤ 𝑡 ≤ 1        (3.13) 

Then equation (3.1) has a positive solution. 

Proof: 

Assume that, there exist non-negative constants 𝐴, 𝐵 such that  

𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) ≤ 𝐴 for all 0 ≤ 𝑡 ≤ 1, 𝑦 ≥ 𝐵.          (3.14) 

Let 𝐶 = 𝑚𝑎𝑥{𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)): 0 ≤ 𝑡 ≤ 1 and 0 ≤ 𝑦 ≤ 𝐵}        (3.15) 

Then we have 𝑓 ≤ 𝐴 + 𝐶 forall 𝑦 ≥ 0             (3.16) 

Consider the equation 

𝐿(𝐷)(𝑡) = 𝐴 + 𝐶,(0) = 0, 0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 < 1, 0 ≤ 𝑡 ≤ 1           (3.17) 

where 𝐿(𝐷) = 𝐷𝑠𝑛 − 𝑎𝑛−1𝐷𝑠𝑛−1— 𝑎𝑛−2𝐷𝑠𝑛−2 − ⋯ − −𝑎1𝐷𝑠1 and  
 𝑎𝑗 > 0 forall 𝑗 = 1,2, . . 𝑛 − 1. Using (2.6) and (2.7) the solution of equation (3.17) is equivalent 

to the solution of the following integral equation 

(𝑡) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗(𝑡) + 𝐼𝑠𝑛(𝐴 + 𝐶)𝑛−1
𝑗=1         (3.18) 

But (𝑡) ≥ ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗(𝑡) + 𝐼𝑠𝑛𝑓(𝑡,𝑛−1
𝑗=1 (𝑡),(𝑡 − 𝜏)) = 𝐹((𝑡))     (3.19) 

Now, for (𝑡) ≡ 0, 𝐹((𝑡)) = 𝐼𝑠𝑛𝑓(𝑡,(𝑡),(𝑡 − 𝜏)) ≥ (𝑡)     (3.20) 

Hence by theorem 3.1, equation (3.1) has a positive solution.  

Theorem 3.3: The following fraction order differential equation has a non-negative solution. 
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𝐿(𝐷)𝑦(𝑡) = 𝑔𝑦(𝑡) + 𝑐, 𝑦(0) = 0, 0 ≤ 𝑡 ≤ 1 and 𝑔, 𝑐 ≥ 0.    (3.21) 

where 𝐿(𝐷) = 𝐷𝑠𝑛 − 𝑎𝑛−1𝐷𝑠𝑛−1 − −𝑎𝑛−2𝐷𝑠𝑛−2 − ⋯ − −𝑎1𝐷𝑠1 

0 < 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑛 < 1, 𝑎𝑗 > 0 𝑓𝑜𝑟𝑎𝑙𝑙 𝑗 = 1,2, . . 𝑛 − 1 𝑎𝑛𝑑 𝐷𝑠𝑗  is the standard Riemann-

Liouville fractional derivative and 

Proof: Equation (3.21) is equivalent to the integral equation 

𝑦(𝑡) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛(𝑔𝑦(𝑡) + 𝑐)𝑛−1
𝑗=1        (3.22) 

Let 𝑇: 𝐾 → 𝐾 be defined as 

𝑇(𝑦(𝑡)) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛(𝑔𝑦(𝑡) + 𝑐)𝑛−1
𝑗=1                  (3.23) 

Therefore by lemma 3.1, T is completely continuous. 

Consider the case 𝑐 > 0. Let 

𝐵𝑅 =  {𝑦(𝑡) ∈ 𝐶[0, 𝛿], 𝑦(𝑡) ≥ 0: ‖𝑦 −
𝑐𝑡𝑠𝑛

𝛤(𝑠𝑛+1)
‖ ≤ 𝐵}              (3.24) 

be a convex bounded and closed subset of the Banach space 𝐶[0, 𝛿], where 

𝛿 < 𝑚𝑖𝑛𝑖 [(
𝐵𝛤(𝑠𝑛+1)

2𝐸𝑐
)

1

𝛤(𝑠𝑛−𝑠𝑛−1)
, (

1

2𝐸
)

1

𝛤(𝑠𝑛−𝑠𝑛−1)
]      (3.25) 

Where 𝐸 = ∑
𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
+𝑛−1

𝑗=1
𝑔

𝛤(𝑠𝑛+1)
      (3.26) 

Now, for all 𝑦 ∈ 𝐵𝑅, we have 

|𝑇(𝑦(𝑡)) −
𝑐𝑡𝑠𝑛

𝛤(𝑠𝑛 + 1)
| ≤ ‖𝑦‖ [∑

𝑎𝑗

𝛤(𝑠𝑛 − 𝑠𝑗 + 1)
𝑡𝑠𝑛−𝑠𝑗 +

𝑛−1

𝑗=1

𝑔

𝛤(𝑠𝑛 + 1)
𝑡𝑠𝑛] 

≤ 𝑡𝑠𝑛−𝑠𝑗𝐸𝑡𝑠𝑛−𝑠𝑗−1 

Since ‖𝑦‖ ≤
𝑐𝑡𝑠𝑛

𝛤(𝑠𝑛+1)
+ 𝐵 ≤

𝑐𝛿𝑠𝑛

𝛤(𝑠𝑛+1)
+ 𝐵 ≤

𝑐

𝛤(𝑠𝑛+1)
+ 𝐵 

We get  

|𝑇(𝑦(𝑡)) −
𝑐𝑡𝑠𝑛

𝛤(𝑠𝑛+1)
| ≤ 𝐸 (

𝑐

𝛤(𝑠𝑛+1)
+ 𝐵) 𝛿𝑠𝑛−𝑠𝑛−1 ≤

1

2
𝐵 +

1

2
𝐵 = 𝐵.    (3.27) 

So, we have 𝑇(𝐵𝑅) 𝐵𝑅. Similar to the proof of Lemma 3.2, it can be seen that 𝑇(𝐵𝑅) is 

equicontinuous. Let {𝑦𝑛} be a bounded sequence in 𝐵𝑅. Then, {𝑇(𝑦𝑛) } 𝑇(𝐵𝑅).  Hence, {𝑇(𝑦𝑛) } 
is equicontinuous. Since 𝑦𝑛 ∈ 𝐶[𝑎, 𝑏], Arzela-Ascoli thorem [1,8&10] implies that {𝑇(𝑦𝑛) } has a 

convergent subsequence. Therefore, 𝑇:  𝐵𝑅 →  𝐵𝑅 is compact. Hence by Schauder fixed point 

theorem [10] it has a fixed point, which is the required non-negative solution of (3.21). 

As above we can prove the result for the case 𝑐 = 0.  
Using theorem 3.1 and theorem 3.3 it is easy to prove the following existence theorem. 

Theorem 3.4: Let 𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) be continuous and 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 −

𝜏)) increasing for each 0 ≤ 𝑡 ≤ 1. If  

0 ≤ lim
𝑦→∞

max
0≤𝑡≤1 

𝑓(𝑡,𝑦(𝑡),𝑦(𝑡−𝜏))

𝑦(𝑡)
< +∞            (3.28) 

Then equation (3.1) has a positive solution. 

Examples: 

1. For 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) = 𝑡 𝑎𝑟𝑐𝑡𝑎𝑛(𝑡 − 𝜏) exists a positive solution since it satisfies the 

condition required in theorem 3.2. 

2. For 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) = 𝑡 𝐼𝑛(1 + 𝑡 − 𝜏) exists a positive solution since it satisfies the 

condition required in theorem 3.4. 

4. Existence of unique solution 
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Here we give conditions for 𝑓 𝑎𝑛𝑑 𝑎𝑗′𝑠, which provides the unique positive solution to equation 

(3.1) 

Theorem 4.1: Let 𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) be continuous and Lipschitz with respect to the 

second variable with Lipschitz constant 𝐿. Let 𝑎𝑗′𝑠 satisfy the following conditions: 

(i) 𝑎𝑗 > 0 forall 𝑗 = 1,2, . . 𝑛 − 1 

(ii) 0 <
𝐿

𝛤(𝑠𝑛+1)
+ ∑

𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
< 1𝑛−1

𝑗=1  

Then equation (3.1) has a unique positive solution. 

Proof: As per the previous section equation (3.1) is equivalent to equation (3.4). For 𝑢, 𝑣 ∈ 𝐾, we 

have  

|𝐹(𝑢(𝑡)) − 𝐹(𝑣(𝑡))| ≤ ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗|𝑢(𝑡) − 𝑣(𝑡)| + 𝐿𝐼𝑠𝑛|𝑢(𝑡) − 𝑣(𝑡)|𝑛−1
𝑗=1   

≤ ‖𝑢 − 𝑣‖ {∑
𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
𝑡𝑠𝑛−𝑠𝑗 +𝑛−1

𝑗=1
𝐿

𝛤(𝑠𝑛+1)
𝑡𝑠𝑛}, where 𝐹 is given in (3.5). Hence  

‖𝐹𝑢 − 𝐹𝑣‖ ≤ [∑
𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
+𝑛−1

𝑗=1
𝐿

𝛤(𝑠𝑛+1)
] ‖𝑢 − 𝑣‖.          (4.1) 

By theorem 2.2, 𝐹 has a unique fixed point in 𝐾, which is the unique positive solution of the 

equation (3.1) 

In the next theorem we exclude the condition that 𝑎𝑗 > 0 fora ll 𝑗 = 1,2, . . 𝑛 − 1 and 

study the equation (3.1). Using Banach fixed point theorem for 𝐹: 𝐶[0,1] → 𝐶[0,1], we can exhibit 

the following result. 

Theorem 4.2: Let 𝑓: [0,1] ⨯ [0, +∞) → [0, +∞) be continuous and Lipschitz with respect to the 

second variable with Lipschitz constant 𝐿. Let 𝑎𝑗′𝑠 satisfy the following condition: 

0 <
𝐿

𝛤(𝑠𝑛+1)
+ ∑

𝑎𝑗

𝛤(𝑠𝑛−𝑠𝑗+1)
< 1𝑛−1

𝑗=1   

Then equation (3.1) has a unique solution which may not be necessarily positive. 

Proof: By using equations (2.6) and (2.7), equation (3.1) is equivalent to the integral equation 

𝑦(𝑡) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏))𝑛−1
𝑗=1   

We define the operator  𝐹: 𝐶[0,1] → 𝐶[0,1] as follows 

𝐹(𝑦(𝑡)) = ∑ 𝑎𝑗𝐼𝑠𝑛−𝑠𝑗𝑦(𝑡) + 𝐼𝑠𝑛𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)).𝑛−1
𝑗=1   

For 𝑢, 𝑣 ∈ 𝐶[0,1], 

‖𝐹𝑢 − 𝐹𝑣‖ ≤ [∑
|𝑎𝑗|

𝛤(𝑠𝑛−𝑠𝑗+1)
+𝑛−1

𝑗=1
𝐿

𝛤(𝑠𝑛+1)
] ‖𝑢 − 𝑣‖ . 

Hence by theorem 2.2, 𝐹 will have the unique fixed point in 𝐶[0,1], which is the unique solution 

of equation (3.1) but which may not necessarily be a positive value. 

Example 4.1: 

Consider the equation 

(𝐷
1

2 − 𝑎𝐷
1

3) 𝑦 = 𝐿𝑦(𝑡 − 1) + 𝑒𝑡, 𝑦(0) = 0, 0 < 𝑡 < 1.        (4.2) 

Case 1: For 0 ≤ 𝑎 ≤
1

5
, 0 < 𝐿 ≤

2

5
  the equation (4.2) satisfies the conditions required in theorem 

4.1. The corresponding iterated sequence is given by 

𝑦1 = 𝐼1/2𝑒𝑡 

𝑦2 = 𝑎𝐼
1

6𝑦1(𝑡) + 𝐿𝐼
1

2𝑦1(𝑡 − 1) + 𝑦1(𝑡)  

𝑦3 = 𝑎𝐼
1

6𝑦2(𝑡) + 𝐿𝐼
1

2𝑦2(𝑡 − 1) + 𝑦1(𝑡)  

In general, 
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𝑦𝑛+1 = 𝑦2 = 𝑎𝐼
1

6𝑦𝑛(𝑡) + 𝐿𝐼
1

2𝑦𝑛(𝑡 − 1) + 𝑦1(𝑡) ,  𝑛 = 1,2,3, …  

where 𝐼𝛼𝑦1 = 𝑡𝛼+
1

2𝐸
1,𝛼+

3

2

 , 𝛼 > 0, 𝑦(𝑡) = lim
𝑛→∞

𝑦𝑛(𝑡) is the unique non-negative solution. 

Case 2:  For −
1

5
≤ 𝑎 ≤

1

5
, 0 < 𝐿 ≤

2

5
  the equation (4.2) satisfies the conditions required in theorem 

4.2. The corresponding iterated sequence is given by 

𝑦1 = 𝐼1/2𝑒𝑡 

𝑦2 = 𝑎𝐼
1

6𝑦1(𝑡) + 𝐿𝐼
1

2𝑦1(𝑡 − 1) + 𝑦1(𝑡)  

𝑦3 = 𝑎𝐼
1

6𝑦2(𝑡) + 𝐿𝐼
1

2𝑦2(𝑡 − 1) + 𝑦1(𝑡)  

In general, 

𝑦𝑛+1 = 𝑦2 = 𝑎𝐼
1

6𝑦𝑛(𝑡) + 𝐿𝐼
1

2𝑦𝑛(𝑡 − 1) + 𝑦1(𝑡) ,  𝑛 = 1,2,3, …  

where 𝐼𝛼𝑦1 = 𝑡𝛼+
1

2𝐸
1,𝛼+

3

2

 , 𝛼 > 0, 𝑦(𝑡) = lim
𝑛→∞

𝑦𝑛(𝑡) is the unique solution which may not be 

positive. 
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