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Abstract 

        Let 𝐺 be a connected graph. A set of vertices 𝑊 in 𝐺 is called an edge 

Steiner global dominating set or simply a (𝐸𝑆, 𝐺𝐷)-set if 𝑊 is both a Steiner 

set and a global dominating set of 𝐺. The minimum cardinality of a edge Steiner 

global dominating set of 𝐺 is its edge Steiner domination number and is denoted 

by 𝛾
𝑠𝑒
(𝐺). Some general properties satisfied by this concept are studied. The 

detour monophonic global domination numbers of certain standard graphs are 

determined. Connected graphs of order 𝑛 with the edge Steiner global 

domination number 2 or 𝑛 are characterized. It is shown that for every two 

integers 𝑎, 𝑏 ≥ 2 with 2 ≤ 𝑎 ≤ 𝑏, there is a connected graph 𝐺 such that 

𝑠𝑒(𝐺) = 𝑎 and 𝛾
𝑠𝑒
(𝐺) = 𝑏, where 𝑠𝑒(𝐺) is the edge Steiner number of a graph.  

Keywords: edge Steiner global domination number, edge Steiner number, 

domination number, global domination number, distance, Steiner distance.  

AMS Subject Classification: 05C69, 05C12  

 

1. Introduction  

       The undirected graph 𝐺 = (𝑉, 𝐸) discussed in this paper is simple and 

connected. The order and size are denoted by 𝑛 and 𝑚 respectively. The neighbors of 

a vertex 𝑥 are the vertices that are adjacent to 𝑥, it is denoted by 𝑁(𝑥). The degree of 

a vertex 𝑥 in a graph 𝐺 is 𝑑𝑒𝑔𝐺 (𝑥)=|𝑁(𝑥)|. The minimum and maximum degree of 

vertices in 𝐺 are denoted by 𝛿(𝐺) and Δ(𝐺) respectively. A vertex 𝑥∈𝑉 in a connected 

graph 𝐺 is said to be a universal vertex of 𝐺 if 𝑑𝑒𝑔𝐺(𝑥) =  𝑛 − 1. For any set 𝑊 of 

vertices of 𝐺, the induced subgraph 𝐺[𝑊] is the maximal subgraph of 𝐺 with vertex 

set. Thus the two vertices of 𝑊 are adjacent 𝐺[𝑊] if and only if they are adjacent in 

𝐺. A vertex 𝑥 ∈ 𝐺 is said to be extreme if the 𝐺[𝑁(𝑥)] is complete. 

        The 𝑢 − 𝑣 geodesic represents the shortest path between the vertices 𝑢 and 𝑣 in 

𝐺. The length of the shortest path between any two vertices 𝑢 and 𝑣 is the distance 

betwe- 

en the corresponding vertices and is represented as 𝑑(𝑢, 𝑣). For a nonempty set 𝑊 of 

vertices in a connected graph 𝐺, the Steiner distance 𝑑(𝑊) of 𝑊 is the minimum size 

of a connected subgraph of 𝐺 containing 𝑊. Necessarily, each such subgraph is a tree 

and is called a Steiner tree with respect to 𝑊 or a Steiner 𝑊-tree. It is to be noted that 

𝑑(𝑊)  = 𝑑(𝑢, 𝑣), when 𝑊 = {𝑢, 𝑣}. The set of all vertices of 𝐺 that lie on some 

Steiner 𝑊-tree is denoted by 𝑆(𝑊). If 𝑆(𝑊) = 𝑉, then W is called a Steiner set for 
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𝐺. A Steiner set of minimum cardinality is a minimum Steiner set or simply a 𝑠-set of 

𝐺 and this cardinality is the Steiner number 𝑠(𝐺) of 𝐺. A set 𝑊 ⊆ 𝑉(𝐺) is called an 

edge Steiner set of 𝐺 if every edge of 𝐺 is contained in a Steiner 𝑊-tree of 𝐺. The 

edge Steiner number 𝑠𝑒(𝐺) of 𝐺 is the minimum cardinality of its edge Steiner sets 

and any edge Steiner set of cardinality 𝑠𝑒(𝐺)  is a edge Steiner set of 𝐺. These 

concepts were studied in [1,2,4-14]  

           A set 𝐷 ⊆ 𝑉 of vertices in a graph 𝐺 is called a dominating set if every vertex 

 𝑣 ∈ 𝑉 is either an element of 𝐷 or is adjacent to an element of 𝐷. A subset 𝐷 ⊆ 𝑉 is 

called a global dominating set in 𝐺 if 𝐷 is a dominating set of both 𝐺 and 𝐺. The 

global domination number 𝛾 (𝐺) is the minimum cardinality of a minimal global 

dominating set in 𝐺. These concepts were studied in [3,15]. In this paper we studied 

the concept of the edge Steiner domination number of a graph. The following 

theorems are used in sequel.  

Theorem 1.1. [12] Each extreme vertex of a connected graph 𝐺 belongs to every edge 

Steiner set of 𝐺.  
Theorem 1.2. [12] For the complete graph 𝐺 = 𝐾𝑛(𝑛 ≥ 2), 𝑠𝑒(𝐺)  = 𝑛.  
Theorem 1.3. [12] For the complete bipartite graph 𝐺 = 𝐾𝑟,𝑠  (2 ≤ 𝑟 ≤ 𝑠), 𝑠𝑒(𝐺) =
𝑟  

Theorem 1.4. [3] For the cycle 𝐺 = 𝐶𝑛(𝑛 ≥ 6), 𝛾(𝐶𝑛) = ⌈
𝑛

3
⌉.  

2. The Edge Steiner Global Domination Number of a Graph  

Definition 2.1. Let 𝐺 be a connected graph. A set of vertices 𝑊 in 𝐺 is called an edge 

Steiner global dominating set or simply a (𝐸𝑆,)- set if 𝑊 is both a Steiner set and a 

global dominating set of 𝐺. The minimum cardinality of a edge Steiner global 

dominating set of 𝐺 is its edge Steiner domination number and is denoted by 𝛾
𝑠𝑒
(𝐺) 

. A (𝐸𝑆,𝐺𝐷) - setof size 𝛾
𝑠𝑒
(𝐺)  is said to be a 𝛾

𝑠𝑒
-set. 

Example 2.2. For the graph 𝐺 given in Figure 2.1, 𝑊 = {𝑣1, 𝑣4, 𝑣6, 𝑣8} is a 𝛾
𝑠𝑒

- set 

of 𝐺 so that 𝛾
𝑠𝑒
(𝐺) = 4. 

 
Observation 2.3.  

(i) Each extreme vertex of a connected graph 𝐺 belongs to every (𝐸𝑆,)-set of 𝐺.  

(ii) Each universal vertex of a connected graph 𝐺 belongs to every (𝐸𝑆,)-set of 𝐺.  

(iii) If 𝐺 is a connected graph of order 𝑛, then 2 ≤ 𝑚𝑎𝑥{𝑠𝑒(𝐺), 𝛾(𝐺)} ≤  𝛾
𝑠𝑒
(𝐺)  ≤ 𝑛. 

(iv) For the complete graph 𝐺 = 𝐾𝑛(𝑛 ≥ 2), 𝛾
𝑠𝑒
(𝐺)  = 𝑛   

(v) For the star graph 𝐺 = 𝐾1,𝑛−1(𝑛 ≥ 3), 𝛾
𝑠𝑒
(𝐺)  = 𝑛  

Theorem 2.4. Let 𝐺 be a connected graph of order 𝑛 ≥ 2. Then 𝛾
𝑠𝑒
(𝐺) = 2 if and 

only if there exist a (𝐸𝑆, 𝐺𝐷) -set 𝑊 = {𝑢, 𝑣} of 𝐺 such that 𝑑(𝑢, 𝑣) ≤ 3.  

𝑣2 

𝑣5 𝑣8 

𝑣3 𝑣1 

𝑣4 

𝐺 

Figure 2.1 
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Proof. Suppose 𝛾
𝑠𝑒
(𝐺) = 2. Let 𝑊 = {𝑢, 𝑣} be a (𝐸𝑆,)-set of 𝐺. Suppose that 

𝑑(𝑢, 𝑣) ≥ 4. Then the diametrical path contains at least three internal vertices. 

Therefore 𝛾
𝑠𝑒
(𝐺) ≥ 3, this is a contradiction. Therefore 𝑑(𝑢, 𝑣) ≤ 3. The converse 

is clear.          ∎                                                                                                                        

Theorem 2.5. If 𝐺 is a connected graph of order 𝑛 ≥ 3 containing a vertex 𝑣 of degree 

𝑛 ≥ 1, then all the neighbors of 𝑣 belong to every edge Steiner set of 𝐺.  
Proof. Let v be a vertex of degree 𝑛 ≥ 1 and 𝑣1, 𝑣2, … , 𝑣𝑛−1 be the neighbors of 𝑣 in 

𝐺. Let 𝑊 be an edge Steiner set of 𝐺. Suppose 𝑣1 ∉  𝑊. Then the edge 𝑣𝑣1 lies on a 

Steiner 𝑊-tree of 𝐺, say 𝑇. Since 𝑣1 ∉ 𝑊, 𝑣1 is not an end-vertex of 𝑇. Let 𝑇′ be a 

tree obtained from 𝑇 by removing the vertex 𝑣1 in 𝑇 and joining all the neighbors of 

𝑣1 other than 𝑣 in 𝑇 to 𝑣. Then 𝑇′ is a Steiner 𝑊-tree such that | 𝑉(𝑇′)| = |𝑉(𝑇)| − 1, 

which is a contradiction to 𝑇 a Steiner 𝑊-tree.                 ∎ 
 

Theorem 2.6. Let G be a connected graph of order 𝑛 ≥  3. If G contains a vertex of     

  degree 𝑛 − 1, then 𝛾
𝑠𝑒
(𝐺) = 𝑛.  

Proof. Let 𝑣 be a vertex of degree 𝑛 ≥ 1. Then by Theorem 2.5, 𝑣 is a subset of every 

edge Steiner global dominating set of 𝐺. Let 𝑣1, 𝑣2, … , 𝑣𝑛−1 be the neighbors of 𝑣 in 

𝐺. Then by Theorem 2.5, 𝑣1, 𝑣2, … , 𝑣𝑛−1 belong to every edge Steiner global 

dominating set of 𝐺. Hence it follows that 𝑉(𝐺) is the unique edge Steiner set of 𝐺 so 

that 𝛾
𝑠𝑒
(𝐺) = 𝑛.          

            ∎  

Remark 2.7. The converse of Theorem 2.6 need not be true. For the graph 𝐺 given 

in Figure 2.2, 𝑊 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} is an edge Steiner global dominating set of 

𝐺 so that 𝛾
𝑠𝑒
(𝐺) = 6 = 𝑛 and 𝐺 has no vertex of degree 𝑛 – 1. 

 

Theorem 2.8. For the path 𝐺 = 𝑃𝑛(𝑛 ≥ 2),𝛾
𝑠𝑒
(𝐺) = {

⌈
𝑛+2

3
⌉   𝑖𝑓 𝑛 ≥ 5

2 𝑖𝑓 𝑛 = 2,3 𝑜𝑟 4
   

Proof. Let 𝑃𝑛 be  𝑣1, 𝑣2, … , 𝑣𝑛. If 𝑛 = 2 ,3 or 4, then {𝑣1, 𝑣𝑛} is a (𝐸𝑆, 𝐺𝐷) - set of 𝐺 

so that 𝛾
𝑠𝑒
(𝐺) = 2. Let 𝑛 ≥ 5. Let 𝑊 be a 𝛾

𝑠𝑒
- set of 𝑃𝑛−4. Then 𝑊 ∪ {𝑣1, 𝑣𝑛} is a 

𝛾
𝑠𝑒

 -set of 𝐺 so that 𝛾
𝑠𝑒
(𝐺) = ⌈

𝑛−4

3
⌉ + 2 = ⌈

𝑛+2

3
⌉.                                                        

∎                                    

Theorem 2.9. For the cycle 𝐺 = 𝐶𝑛(𝑛 ≥ 6), 𝛾
𝑠𝑒
(𝐶𝑛) = ⌈

𝑛

3
⌉.  

Proof. For the cycle 𝐶𝑛 (𝑛 ≥ 6), every dominating set of 𝐺 is a (𝐸𝑆, 𝐺𝐷) - set of 𝐺 

and so 𝛾
𝑠𝑒
(𝐶𝑛) ≤ 𝛾(𝐶𝑛). Then it follows from Theorem 1.4, 𝛾

𝑠𝑒
(𝐶𝑛) = 𝛾(𝐶𝑛) =

⌈
𝑛

3
⌉ .     ∎      

𝑣2 
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𝑣4 
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Theorem 2.10. For the fan graph 𝐺 = 𝑊𝑛 = 𝐾1 + 𝑃𝑛−1, (𝑛 ≥ 5),  𝛾
𝑠𝑒
(𝐺) = 𝑛.  

Proof: This follows from Theorem 2.6.                                                                        ∎ 
Theorem 2.11. For the wheel 𝐺 = 𝑊𝑛 = 𝐾1 + 𝐶𝑛−1 (𝑛 ≥ 4),  𝛾

𝑠𝑒
(𝐺) = 𝑛.  

Proof: This follows from Theorem 2.6.                                                                           ∎ 

Theorem 2.12. For the complete bipartite graph 𝐺 = 𝐾𝑟,𝑠(𝐺)(1 ≤ 𝑟 ≤ 𝑠),  𝛾
𝑠𝑒
(𝐺) =

 𝑟 + 𝑠  
Proof.  

Case(i). Let 𝑟 = 𝑠 = 1. Then 𝐺 =  𝐾2. By Observation 2.4 (iv),  𝛾
𝑠𝑒
(𝐺)=2.  

Case(ii). Let 𝑟 =  1, 𝑠 ≥  2. Then 𝐺 =  𝐾1,s . By Observation 2.4 (v),  𝛾
𝑠
(𝐺) =  𝑟 +

1.  
So let 2 ≤ 𝑟 ≤ 𝑠. Let 𝑋= {𝑥1, 𝑥2, … , 𝑥𝑟} and 𝑌 =  {𝑦1, 𝑦2, … , 𝑦𝑠}  
be the two bipartite set of 𝐺. Then 𝑋, 𝑌 and 𝑉(𝐺) are the only three edge Steiner 

dominating sets of 𝐺. Let 𝑊 be a  𝛾
𝑠𝑒
(𝐺)- set of 𝐺. If 𝑊 = 𝑋, then 𝑦𝑗 (1 ≤ 𝑗 ≤ 𝑠) is 

not dominated by any elements of 𝑊 in 𝐺. If 𝑊 = 𝑌, then 𝑥𝑖 (1≤𝑖≤𝑟) is not dominated 

by any elements of 𝑊 in 𝐺. Therefore 𝑊 is not a (𝐸𝑆,𝐷) set of 𝐺. Hence it follow that 

𝑊=(𝐺) is the unique  𝛾
𝑠𝑒
(𝐺)- set of 𝐺 so that  𝛾

𝑠𝑒
(𝐺)= 𝑟+𝑠. ∎ 

Theorem 2.13. If 𝐺 is a connected graph with 𝛥(𝐺) ≤ 𝑛 − 2 such that it has a 

minimum cut-set of 𝐺 consisting of i independent vertices, then  𝛾
𝑠𝑒
(𝐺) ≤  𝑝 − 𝑖.  

Proof. Since 𝛥(𝐺) ≤ 𝑛 − 2, 𝐺 is non complete and 𝐺 has no universal vertices. 

Therefore 1 ≤ 𝑘(𝐺) ≤ 𝑛 − 2. Let 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑖} be a minimum cut set of 𝐺. Let 

𝐺1, 𝐺2, … , 𝐺𝑟(𝑟 ≥ 2) be the components of 𝐺 − 𝑈 and let 𝑊 = 𝑉(𝐺) − 𝑈. Then 

every vertex 𝑢𝑠(1 ≤ 𝑠 ≤ 𝑖) is adjacent to at least one vertex of 𝐺𝑗 for every 𝑗(1 ≤

𝑗 ≤ 𝑟). Therefore 𝑊 is a dominating set of 𝐺. Since 𝐺 has no universal vertices, 𝑊 is 

a dominating set of 𝐺. Hence 𝑊 is a global dominating set of 𝐺. We prove that 𝑊 is 

an edge Steiner set of 𝐺. Let 𝑢𝑣 be any edge of 𝐺. If 𝑢𝑣 lies on one of the 𝐺𝑡 for any 

(1 ≤  𝑡 ≤  𝑟), say 𝑢𝑣 belongs to 𝐺1. Let 𝑇1 be a spanning tree in 𝐺1 that contains 𝑢𝑣. 

Now, let 𝑇𝑗   (2 ≤  𝑗 ≤ 𝑟) be a spanning tree in 𝐺𝑗  (2 ≤  𝑗 ≤  𝑟). Let 𝑇 be the tree 

obtained from 𝑇1, 𝑇2, 𝑇3, . . . , 𝑇𝑟 by joining the edges 𝑢𝑗𝑣1, 𝑢𝑗𝑣2, 𝑢𝑗𝑣3, . . . , 𝑢𝑗𝑣𝑟 , for 

some 𝑣𝑘  ∈ 𝑉(𝐺𝑘) (1 ≤  𝑘 ≤  𝑟) and any 𝑢𝑗  belonging to 𝑈. Then clearly 𝑇 is a 

Steiner 𝑊-tree of 𝐺 containing the edge 𝑢𝑣. If 𝑢𝑣 is an edge that joins a vertex of 𝑈 

to a vertex of 𝐺𝑗  (1 ≤  𝑗 ≤  𝑟) for convenience, let us assume that 𝑢𝑣 = 𝑢𝑗𝑣1, where 

𝑣1 ∈ 𝑉(𝐺1). Let 𝑇𝑗  (1 ≤  𝑗 ≤  𝑟) be a spanning tree in 𝐺𝑗(1 ≤  𝑗 ≤  𝑟). Let 𝑇′ be 

the tree obtained from 𝑇1, 𝑇2, 𝑇3, . . . , 𝑇𝑟 , the edge 𝑢𝑗𝑣1, by joining the edges 

𝑢𝑗𝑣2, 𝑢𝑗𝑣3, . . . , 𝑢𝑗𝑣𝑟, for some 𝑣𝑘 ∈ 𝑉(𝐺𝑘)(2 ≤  𝑘 ≤  𝑟). Then clearly 𝑇′ is a Steiner 

𝑊-tree of 𝐺 containing the edge 𝑢𝑗𝑣1. Thus 𝑊 is an edge Steiner set of 𝐺. Therefore 

𝑊 is an edge Steiner global dominating set of 𝐺 and so  𝛾
𝑠𝑒
(𝐺) ≤  |𝑉(𝐺) − 𝑈 | =

 𝑝 −  𝑖.                                                          ∎  

Theorem 2.14. Let 𝐺 be a connected graph of order 𝑛 ≥ 2. If every vertex of 𝐺 is 

either an extreme vertex or a universal vertex, then  𝛾
𝑠𝑒
(𝐺) = 𝑛.  

Proof. The result follows from Observation 2.3 (i) and (ii).                                        ∎  

Remark 2.15. The converse of Theorem 2.14 need be true. For the complete bipartite 

graph 𝐺 = 𝐾𝑟,𝑠, (2 ≤ 𝑟 ≤ 𝑠),  𝛾
𝑠𝑒
(𝐺) =  𝑟 + 𝑠 = 𝑛. But there is no vertex 𝑣 such that 

𝑣 is either an extreme vertex or a universal vertex of 𝐺.  

Open Problem 2.16. Characterize connected graphs of order 𝑛 ≥ 2 with edge Steiner 

global domination number 𝑛. 

Theorem 2.17. There is no connected graph of order 𝑛 ≥ 4 with  𝛾
𝑠𝑒
(𝐺) = 𝑛 − 1.  



The Edge Steiner Global Domination J. Suja 3875 
 

Nanotechnology Perceptions 20 No.6 (2024) 3908-3913                                             
 

Proof. Suppose that there exists a connected graph of order 𝑛 ≥ 4 with  𝛾
𝑠𝑒
(𝐺) =

𝑛 − 1. Let 𝑊 = 𝑉(𝐺) − {𝑣} be a  𝛾
𝑠𝑒

- set of 𝐺. Then 𝐺[𝑊] is connected. Then any 

Steiner 𝑊- tree contains elements of 𝑊 only. Let 𝑣𝑥 ∈ 𝐸(𝐺). Then the edge 𝑣𝑥 does 

not lie in any Steiner 𝑊- tree of 𝐺. Which is a contradiction to 𝑊 a  𝛾
𝑠𝑒

- set of 𝐺. 

Therefore there is no connected graph of order 𝑛 ≥ 4 with  𝛾
𝑠𝑒
(𝐺) = 𝑛 − 1..                                       

∎  

Theorem 2.18. For every pair 𝑎, 𝑏 of integers with 2 ≤ 𝑎 ≤ 𝑏, there exists a 

connected graph 𝐺 such that 𝑠𝑒(𝐺) = 𝑎 and  𝛾
𝑠𝑒
(𝐺) = 𝑏.  

Proof. For 𝑎 = 𝑏, let 𝐺 = 𝐾𝑎. Then by Theorem 1.2 and Observation 2.3 (iv), 

𝑠𝑒(𝐺) =  𝛾
𝑠𝑒
(𝐺) = 𝑎. So, let 2 ≤ 𝑎 < 𝑏. Let 𝐺 = 𝐾𝑎,𝑏−𝑎 (2 ≤ 𝑎 < 𝑏). Then by 

Theorem 1.3, 𝑠𝑒(𝐺) = 𝑎 and by Theorem 2.12,  𝛾
𝑠𝑒
= 𝑎 + 𝑏 − 𝑎 = 𝑏.                                             

∎ 

3. Conclusion  

In this paper, we defined the edge Steiner global domination number of a graph and 

studied some of its general properties. We will extend this concept to minimal and 

forcing concepts in graphs. 
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