The Edge Steiner Global Domination Number of a Graph

¹J. Suja, ²V.Sujin Flower,

Abstract

Let G be a connected graph. A set of vertices W in G is called an edge Steiner global dominating set or simply a (ES,GD)-set if W is both a Steiner set and a global dominating set of G. The minimum cardinality of a edge Steiner global dominating set of G is its edge Steiner domination number and is denoted by $\overline{\gamma}_{se}(G)$. Some general properties satisfied by this concept are studied. The detour monophonic global domination numbers of certain standard graphs are determined. Connected graphs of order n with the edge Steiner global domination number 2 or n are characterized. It is shown that for every two integers $a, b \ge 2$ with $a \le a \le b$, there is a connected graph $a \le b$ such that $a \ge a$ and $a \ge a$ where $a \ge a$ is the edge Steiner number of a graph. **Keywords:** edge Steiner global domination number, edge Steiner number, domination number, global domination number, distance, Steiner distance.

AMS Subject Classification: 05C69, 05C12

1. Introduction

The *undirected graph* G = (V, E) discussed in this paper is simple and connected. The *order* and *size* are denoted by n and m respectively. The *neighbors* of a vertex x are the vertices that are adjacent to x, it is denoted by N(x). The *degree of a vertex* x in a graph G is $deg_G(x)=|N(x)|$. The minimum and maximum degree of vertices in G are denoted by S(G) and S(G) respectively. A vertex S(G) in a connected graph S(G) is said to be a *universal vertex* of S(G) is the maximal subgraph of S(G) with vertex set. Thus the two vertices of S(G) are adjacent S(G) if and only if they are adjacent in S(G) and S(G) is said to be extreme if the S(G) is complete.

The u-v geodesic represents the shortest path between the vertices u and v in G. The length of the shortest path between any two vertices u and v is the distance betwe-

en the corresponding vertices and is represented as d(u, v). For a nonempty set W of vertices in a connected graph G, the *Steiner distance* d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a *Steiner tree with respect to W* or a *Steiner W-tree*. It is to be noted that d(W) = d(u, v), when $W = \{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V, then W is called a *Steiner set* for

G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number s(G) of G. A set $W \subseteq V(G)$ is called an edge Steiner set of G if every edge of G is contained in a Steiner W-tree of G. The edge Steiner number $s_e(G)$ of G is the minimum cardinality of its edge Steiner sets and any edge Steiner set of cardinality $s_e(G)$ is a edge Steiner set of G. These concepts were studied in [1,2,4-14]

A set $D \subseteq V$ of vertices in a graph G is called a *dominating set* if every vertex $v \in V$ is either an element of D or is adjacent to an element of D. A subset $D \subseteq V$ is called a *global dominating set* in G if D is a dominating set of both G and \overline{G} . The *global domination number* $\overline{\gamma}(G)$ is the minimum cardinality of a minimal global dominating set in G. These concepts were studied in [3,15]. In this paper we studied the concept of the edge Steiner domination number of a graph. The following theorems are used in sequel.

Theorem 1.1. [12] Each extreme vertex of a connected graph G belongs to every edge Steiner set of G.

Theorem 1.2. [12] For the complete graph $G = K_n (n \ge 2)$, $s_e(G) = n$.

Theorem 1.3. [12] For the complete bipartite graph $G = K_{r,s}$ $(2 \le r \le s)$, $s_e(G) = r$

Theorem 1.4. [3] For the cycle $G = C_n (n \ge 6)$, $\gamma(C_n) = \left[\frac{n}{3}\right]$.

2. The Edge Steiner Global Domination Number of a Graph

Definition 2.1. Let G be a connected graph. A set of vertices W in G is called an edge Steiner global dominating set or simply a <math>(ES,)- set if W is both a Steiner set and a global dominating set of G. The minimum cardinality of a edge Steiner global dominating set of G is its edge Steiner domination number and is denoted by $\overline{\gamma}_{se}(G)$. A (ES,GD) - set of size $\overline{\gamma}_{se}(G)$ is said to be a $\overline{\gamma}_{se}$ -set.

Example 2.2. For the graph G given in Figure 2.1, $W = \{v_1, v_4, v_6, v_8\}$ is a $\overline{\gamma}_{se}$ - set of G so that $\overline{\gamma}_{se}(G) = 4$.

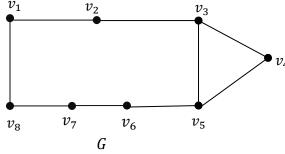


Figure 2.1

Observation 2.3.

- (i) Each extreme vertex of a connected graph G belongs to every (ES,)-set of G.
- (ii) Each universal vertex of a connected graph G belongs to every (ES,)-set of G.
- (iii) If G is a connected graph of order n, then $2 \le \max\{s_e(G), \gamma(G)\} \le \overline{\gamma}_{s_e}(G) \le n$.
- (iv) For the complete graph $G = K_n (n \ge 2)$, $\overline{\gamma}_{se}(G) = n$
- (v) For the star graph $G = K_{1,n-1} (n \ge 3)$, $\overline{\gamma}_{se}(G) = n$

Theorem 2.4. Let G be a connected graph of order $n \ge 2$. Then $\overline{\gamma}_{se}(G) = 2$ if and only if there exist a (ES, GD) -set $W = \{u, v\}$ of G such that $d(u, v) \le 3$.

Proof. Suppose $\overline{\gamma}_{se}(G) = 2$. Let $W = \{u, v\}$ be a (ES_n) -set of G. Suppose that $d(u, v) \ge 4$. Then the diametrical path contains at least three internal vertices. Therefore $\overline{\gamma}_{se}(G) \ge 3$, this is a contradiction. Therefore $d(u, v) \le 3$. The converse is clear.

Theorem 2.5. If G is a connected graph of order $n \ge 3$ containing a vertex v of degree $n \ge 1$, then all the neighbors of v belong to every edge Steiner set of G.

Proof. Let v be a vertex of degree $n \ge 1$ and $v_1, v_2, ..., v_{n-1}$ be the neighbors of v in G. Let W be an edge Steiner set of G. Suppose $v_1 \notin W$. Then the edge vv_1 lies on a Steiner W-tree of G, say T. Since $v_1 \notin W$, v_1 is not an end-vertex of T. Let T' be a tree obtained from T by removing the vertex v_1 in T and joining all the neighbors of v_1 other than v in T to v. Then T' is a Steiner W-tree such that |V(T')| = |V(T)| - 1, which is a contradiction to T a Steiner W-tree.

Theorem 2.6. Let G be a connected graph of order $n \ge 3$. If G contains a vertex of degree n-1, then $\overline{\gamma}_{se}(G) = n$.

Proof. Let v be a vertex of degree $n \ge 1$. Then by Theorem 2.5, v is a subset of every edge Steiner global dominating set of G. Let $v_1, v_2, ..., v_{n-1}$ be the neighbors of v in G. Then by Theorem 2.5, $v_1, v_2, ..., v_{n-1}$ belong to every edge Steiner global dominating set of G. Hence it follows that V(G) is the unique edge Steiner set of G so that $\overline{\gamma}_{se}(G) = n$.

Remark 2.7. The converse of Theorem 2.6 need not be true. For the graph G given in Figure 2.2, $W = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ is an edge Steiner global dominating set of G so that $\overline{\gamma}_{se}(G) = 6 = n$ and G has no vertex of degree n-1.

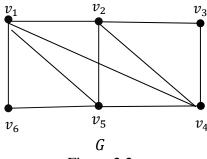


Figure 2.2

Theorem 2.8. For the path
$$G = P_n(n \ge 2), \overline{\gamma}_{se}(G) = \begin{cases} \left[\frac{n+2}{3}\right] & \text{if } n \ge 5 \\ 2 & \text{if } n = 2,3 \text{ or } 4 \end{cases}$$

Proof. Let P_n be $v_1, v_2, ..., v_n$. If n = 2, 3 or 4, then $\{v_1, v_n\}$ is a (ES, GD) - set of G so that $\overline{\gamma}_{se}(G) = 2$. Let $n \ge 5$. Let W be a $\overline{\gamma}_{se}$ - set of P_{n-4} . Then $W \cup \{v_1, v_n\}$ is a $\overline{\gamma}_{se}$ -set of G so that $\overline{\gamma}_{se}(G) = \left\lceil \frac{n-4}{3} \right\rceil + 2 = \left\lceil \frac{n+2}{3} \right\rceil$.

Theorem 2.9. For the cycle $G = C_n (n \ge 6)$, $\overline{\gamma}_{se}(C_n) = \left[\frac{n}{3}\right]$.

Proof. For the cycle C_n $(n \ge 6)$, every dominating set of G is a (ES, GD) - set of G and so $\overline{\gamma}_{se}(C_n) \le \gamma(C_n)$. Then it follows from Theorem 1.4, $\overline{\gamma}_{se}(C_n) = \gamma(C_n) = \left\lfloor \frac{n}{3} \right\rfloor$.

Theorem 2.10. For the fan graph $G = W_n = K_1 + P_{n-1}$, $(n \ge 5)$, $\overline{\gamma}_{se}(G) = n$.

Proof: This follows from Theorem 2.6.

Theorem 2.11. For the wheel $G = W_n = K_1 + C_{n-1}$ $(n \ge 4)$, $\overline{\gamma}_{s_{\mathcal{C}}}(G) = n$.

Proof: This follows from Theorem 2.6.

Theorem 2.12. For the complete bipartite graph $G = K_{r,s}(G) (1 \le r \le s)$, $\overline{\gamma}_{se}(G) = r + s$

Proof.

Case(i). Let r = s = 1. Then $G = K_2$. By Observation 2.4 (iv), $\overline{\gamma}_{se}(G) = 2$.

Case(ii). Let r=1, $s\geq 2$. Then $G=K_{1,s}$. By Observation 2.4 (v), $\overline{\gamma}_s(G)=r+1$.

So let $2 \le r \le s$. Let $X = \{x_1, x_2, ..., x_r\}$ and $Y = \{y_1, y_2, ..., y_s\}$

be the two bipartite set of G. Then X,Y and V(G) are the only three edge Steiner dominating sets of G. Let W be a $\overline{\gamma}_{se}(G)$ - set of G. If W=X, then y_j $(1 \le j \le s)$ is not dominated by any elements of W in G. If W=Y, then xi $(1 \le i \le r)$ is not dominated by any elements of W in G. Therefore W is not a (ES,D) set of G. Hence it follow that W=(G) is the unique $\overline{\gamma}_{se}(G)$ - set of G so that $\overline{\gamma}_{se}(G)=r+s$.

Theorem 2.13. If G is a connected graph with $\Delta(G) \le n-2$ such that it has a minimum cut-set of G consisting of i independent vertices, then $\overline{\gamma}_{se}(G) \le p-i$.

Proof. Since $\Delta(G) \leq n-2$, G is non complete and G has no universal vertices. Therefore $1 \le k(G) \le n - 2$. Let $U = \{u_1, u_2, ..., u_i\}$ be a minimum cut set of G. Let $G_1, G_2, ..., G_r (r \ge 2)$ be the components of G - U and let W = V(G) - U. Then every vertex $u_s(1 \le s \le i)$ is adjacent to at least one vertex of G_i for every $j(1 \le s \le i)$ $i \le r$). Therefore W is a dominating set of G. Since G has no universal vertices, W is a dominating set of \overline{G} . Hence W is a global dominating set of G. We prove that W is an edge Steiner set of G. Let uv be any edge of G. If uv lies on one of the G_t for any $(1 \le t \le r)$, say uv belongs to G_1 . Let T_1 be a spanning tree in G_1 that contains uv. Now, let T_i $(2 \le j \le r)$ be a spanning tree in G_i $(2 \le j \le r)$. Let T be the tree obtained from $T_1, T_2, T_3, \dots, T_r$ by joining the edges $u_i v_1, u_i v_2, u_i v_3, \dots, u_i v_r$, for some $v_k \in V(G_k)$ $(1 \le k \le r)$ and any u_i belonging to U. Then clearly T is a Steiner W-tree of G containing the edge uv. If uv is an edge that joins a vertex of U to a vertex of G_j (1 $\leq j \leq r$) for convenience, let us assume that $uv = u_i v_1$, where $v_1 \in V(G_1)$. Let T_i $(1 \le j \le r)$ be a spanning tree in G_i $(1 \le j \le r)$. Let T' be the tree obtained from $T_1, T_2, T_3, \dots, T_r$, the edge $u_i v_1$, by joining the edges $u_i v_2, u_i v_3, \dots, u_i v_r$, for some $v_k \in V(G_k)(2 \le k \le r)$. Then clearly T' is a Steiner W-tree of G containing the edge $u_i v_1$. Thus W is an edge Steiner set of G. Therefore W is an edge Steiner global dominating set of G and so $\overline{\gamma}_{s_P}(G) \leq |V(G) - U| =$ p-i.

Theorem 2.14. Let G be a connected graph of order $n \ge 2$. If every vertex of G is either an extreme vertex or a universal vertex, then $\overline{\gamma}_{s_{\rho}}(G) = n$.

Proof. The result follows from Observation 2.3 (i) and (ii).

Remark 2.15. The converse of Theorem 2.14 need be true. For the complete bipartite graph $G = K_{r,s}$, $(2 \le r \le s)$, $\overline{\gamma}_{se}(G) = r + s = n$. But there is no vertex v such that v is either an extreme vertex or a universal vertex of G.

Open Problem 2.16. Characterize connected graphs of order $n \ge 2$ with edge Steiner global domination number n.

Theorem 2.17. There is no connected graph of order $n \ge 4$ with $\overline{\gamma}_{se}(G) = n - 1$.

Proof. Suppose that there exists a connected graph of order $n \ge 4$ with $\overline{\gamma}_{se}(G) = n-1$. Let $W = V(G) - \{v\}$ be a $\overline{\gamma}_{se}$ - set of G. Then G[W] is connected. Then any Steiner W- tree contains elements of W only. Let $vx \in E(G)$. Then the edge vx does not lie in any Steiner W- tree of G. Which is a contradiction to W a $\overline{\gamma}_{se}$ - set of G. Therefore there is no connected graph of order $n \ge 4$ with $\overline{\gamma}_{se}(G) = n-1$.

Theorem 2.18. For every pair a, b of integers with $2 \le a \le b$, there exists a connected graph G such that $s_e(G) = a$ and $\overline{\gamma}_{se}(G) = b$.

Proof. For a=b, let $G=K_a$. Then by Theorem 1.2 and Observation 2.3 (iv), $s_e(G)=\overline{\gamma}_{se}(G)=a$. So, let $2\leq a < b$. Let $G=K_{a,b-a}$ $(2\leq a < b)$. Then by Theorem 1.3, $s_e(G)=a$ and by Theorem 2.12, $\overline{\gamma}_{se}=a+b-a=b$.

3. Conclusion

In this paper, we defined the edge Steiner global domination number of a graph and studied some of its general properties. We will extend this concept to minimal and forcing concepts in graphs.

References

- [1] F. Buckley and F. Harary, Distance in Graphs, *Addition-Wesley, Redwood City, CA*, 1990.
- [2] Bijo S. Anand, Manoj Changat, Iztok Peterin and Prasanth G. NarasimhaShenoi, Some Steiner concepts on lexicographic products of graphs, *Discrete Mathematics, Algorithms and Applications*, 06 (04), (2014) 1450060.
- [3] Y. Caro and R. Yuster, Dominating a family of graphs with small connected graphs, *Combin.Probab.Comput.*9(2000), 309-313.
- [4] G. Chartrand, Oellermann, Ortred, Tian Song, Song Ling, Zou and Hung Kin, Steiner distance in graphs, *Caspopis pro pestovani Mathematiky*, 114, (1989) 399-410.
- [5] G. Chartrand and P. Zhang, The Steiner number of a graph, *Discrete Mathematics* 242, (2002,) 41 54.
- [6] J. John and M. S. Malchijah Raj, The upper restrained Steiner number of a graph, *Discrete Mathematics Algorithms and Applications*, 12 (1),(2020) 2050004.
- [7] J. John, G. Edwin and P. Arul Paul Sudhahar, The Steiner domination number of
 - graph, *International Journal of Mathematics and Computer Applications*, Vol.3, 3 (2013), 37-42.
- [8] M. S. Malchijah Raj and J. John, The restrained edge Steiner number of a graph, *Journal of Applied Science and Computations*, 6(2), (2019), 1 8.
- [9] M. S. Malchijah Raj and J. John, The forcing restrained Steiner number of a graph,
 Technology International Journal of Engineering and Advanced, 8, (2019), 1799

1803.

- [10] M. Perumalsamy, P. Arul Paul Sudhahar, J. John and R.Vasanthi, Edge fixed Steiner number of a graph, *International Journal of Mathematical Analysis*, 11, (2017), 771 785.
- [11] M. Perumalsamy, P. Arul Paul Sudhahar, R. Vasanthi and J. John, The forcing edge fixed Steiner number of a graph, *Journal of Statistics and Management Systems*, 22, (2019), 1 10.

- [12] A. P. Santhakumaran and J. John, Edge Steiner Number of a Graph, *Journal of Discrete Mathematical Sciences and Cryptography*, 10 (3),(2007), 415-432.
- [13] A. P. Santhakumaran and J. John, The Upper Steiner Number of a Graph, *Graph Theory Notes (of New York LIX*, 2010), 9 14.
- [14] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, *Discussiones Mathematicae Graph Theory*, 31, (2011), 171 181.
- [15] D. Stalin and J. John, Edge Geodetic Dominations in Graphs, *International Journal of Pure and Applied Mathematics*, 116(22),(2017), 31-40.