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1 Introduction
Considering the imprecision in decision-making, Zadeh [39] introduced the idea of fuzzy set which
has a membership function, p that assigns to each element of the universe of discourse, a number
from the unit interval [0,1] to indicate the degree of belongingness to the set under consideration.
The notion of fuzzy sets generalizes classical sets theory by allowing intermediate situations
between the whole and nothing. In a fuzzy set, a membership function is defined to describe the
degree of membership of an element to a class. The membership value ranges from 0 to 1, where
0 shows that the element does not belong to a class, 1 means belongs, and other values indicate the
degree of membership to a class. For fuzzy sets, the membership function replaced the
characteristic function in crisp sets. The concept of fuzzy set theory seems to be inconclusive
because of the exclusion of nonmembership function and the disregard for the possibility of
hesitation margin. Atanassov critically studied these shortcomings and proposed a concept called
intuitionistic fuzzy sets ( IFS s) [1, 2, 4, 5]. The construct (that is, IFS ss) incorporates both
membership function, © and nonmembership function, v with hesitation margin, = (that is,
neither membership nor non-membership functions), suchthaty + v <1 anduy + v + m = 1.
Atanassov [3] introduced intuitionistic fuzzy sets of second type (IFSST) with the property that
the sum of the square of the membership and non-membership degrees is less than or equal to one.
This concept generalizes IFSss in a way. The notion of IFSss provides a flexible framework to
elaborate uncertainty and vagueness. The idea of IFS seems to be resourceful in modelling many
real-life situations like medical diagnosis [7, 8, 13, 30, 31], career determination [11], selection
process [12], and multi-criteria decision-making [16, 17, 18], among others.

There are situations where p + v > 1 unlike the cases capture in IFSss. This limitation in
IFS naturally led to a construct, called Pythagorean fuzzy sets (pfsss). Pythagorean fuzzy set
(pf's) proposed in [36, 37, 38] is a new tool to deal with vagueness considering the membership
grade, u and non-membership grade, v satisfying the conditions u + v < 1 oru + v > 1, and
also, it follows that u? + v2 + w2 = 1, where « is the Pythagorean fuzzy set index. In fact, the
origin of Pythagorean fuzzy sets emanated from IFSST earlier studied in the literature. As a
generalized set, PFS has close relationship with IFS. The construct of PFSss can be used to
characterize uncertain information more sufficiently and accurately than IFS. Garg [15] presented
an improved score function for the ranking order of interval-valued Pythagorean fuzzy sets
(IVPFSs). Based on it, a Pythagorean fuzzy technique for order of preference by similarity to ideal
solution (TOPSIS) method by taking the preferences of the experts in the form of interval-valued
Pythagorean fuzzy decision matrices was discussed. Other explorations of the theory of PFSss can
be found in [6, 9, 14, 19, 20, 26, 27]. Saha [29] defined &-open sets in topological spaces. Vadivel
et al. [34] introduced 6-open sets in a neutrosophic topological space. The notion of M-open sets
in topological spaces were introduced by El-Maghrabi and Al-Juhani [24] in 2011 and studied
some of their properties. The class of sets namely, M-open sets are playing more important role in
topological spaces, because of their applications in various fields of Mathematics and other real
fields. Recently, Jeevaet al. [21, 22, 23] introduced neutrosophic soft M-open sets in neutrosophic
topological spaces and developed the concepts of neutrosophic soft M -Continuity and M -

Irresolute maps.
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The concept of contra continuous function in general topology was introduced by Dontchev
[10] in 1996. Vadivel et al. [33] introduced generalized fuzzy contra e-continuous functions in
fuzzy topological spaces. Recently, Revathi et al. [?] developed the neutrosophic soft contra e-
continuity and e-irresolute maps in neutrosophic soft topological spaces.

The focus of this article is to introduce the idea of Pythagorean fuzzy contra M-open and
Pythagorean fuzzy contra M-closed mappings in Pythagorean fuzzy topological spaces. Also the
work is extended to Pythagorean fuzzy contra M-homeomorphism and Pythagorean fuzzy contra
M C-homeomorphism in Pythagorean fuzzy topological spaces and some of their basic properties
are discussed.

2 Preliminaries
We recall some basic notions of fuzzy sets, IFSssand pfsss.

Definition 2.1 [39] Let X be a nonempty set. A fuzzy set A in X is characterized by a
membership function pa: X — [0,1]. That is:
1, if x €X
ua(x) ={0, if xeg&X
(0,1) ifxispartlyin X.
Alternatively, a fuzzy set A in X is an object having the form A = {< x, ua(x) > |x € X} or

A = (") |x € X}, where the function 1,(x):X - [0,1] defines the degree of membership of

X
the element, x € X.

The closer the membership value pa(x) to 1, the more x belongsto A, where the grades
1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of objects
with graded membership, that is, having degree of membership. Fuzzy set is an extension of the
classical notion of set. In classical set theory, the membership of elements in a set is assessed in a
binary terms according to a bivalent condition; an element either belongs or does not belong to the
set. Classical bivalent sets are in fuzzy set theory called crisp sets. Fuzzy sets are generalized
classical sets, since the indicator function of classical sets is special cases of the membership
functions of fuzzy sets, if the latter only take values 0 or 1. Fuzzy sets theory permits the gradual
assessment of the membership of element in a set; this is described with the aid of a membership
function valued in the real unit interval [0,1].

Let us consider two examples:

(i) all employees of XYZ who are over 1.8m in height; (ii) all employees of XYZ who
are tall. The first example is a classical set with a universe (all XYZ employees) and a membership
rule that divides the universe into members (those over 1.8m) and nonmembers. The second
example is a fuzzy set, because some employees are definitely in the set and some are definitely
not in the set, but some are borderline.

This distinction between the ins, the outs, and the borderline is made more exact by the
membership function, u. If we return to our second example and let A represent the fuzzy set of
all tall employees and x represent a member of the universe X (i.e. all employees), then pa(x)
would be pa(x) =1 if x is definitely tall or pa(x) =0 if x is definitely not tall or 0 <
ua(x) < 1 for borderline cases.

Definition 2.2 [1, 2, 4, 5] Let a nonempty set X be fixed. An IFS A in X is an object
having the form: A = {< x, u (x),va(®¥) > |x € X} or A= {2y 11 € x}, where the

X
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functions pa(x): X — [0,1] and va(x): X — [0,1] define the degree of membership and the
degree of nonmembership, respectively, of the element x € X to A, which is a subset of X, and
foreveryx € X: 0 < pa(x) + va(x) < 1.Foreach A in X: ma(x) = 1 — pa(x) — va(x) isthe
intuitionistic fuzzy set index or hesitation margin of x in X. The hesitation margin ma(x) is the
degree of nondeterminacy of x € X totheset A and ma(x) € [0,1]. The hesitation margin is the
function that expresses lack of knowledge of whether x € X or x & X. Thus: ua(x) + va(x) +
ma(x) = 1.

E le Let f be a fixed unlverse of discourse and A =
{(0'6‘0'1 xaganle eshs } be the mi t}|]0 ?stlc fuzzy set in X. The hesitation margins of the

) ——) ¢ :
y z

elements x,y,z to A are as follows: ma(x) = 0.3, ma(y) = 0.1 and ma(z) = 0.2.

Definition 2.3 [36, 37, 38] Let X be a universal set. Then, a Pythagorean fuzzy set A,
which is a set of ordered pairs over X, is defined by the following: A = {< x, ua(x), va(x)|x €

X} or A= {(M@:Aﬁ) |x € X}, where the functions i, (x): x - [0,1] and va(x):X - [0,1]

define the degree of membership and the degree of nonmembership, respectively, of the element
x € X to A, which is a subset of X , and for every x € X , 0 < (ua(x))? + (va(x))2 < 1.
Supposing (ua(x))? + (va(x))? < 1 , then there is a degree of indeterminacy of x € X to A
defined by ma(x) = V1 — [(ua(x))? + (va(x))?] and ma(x) € [0,1] . nn what follows,
(ma(x))? + (va(x))?2 + (ma(x))2 =1 . Otherwise, ma(x) =0 whenever (ua(x))2+
(va(x))? = 1. We denote the set of all PFS’s over X by pfs(X).

Definition 2.4 [38] Let A and B be pfs’s of the forms A = {< a, 2a(a), ua(a) > |a €
X} and B = {< a,A8(a), us(a) > |a € X}. Then [(i)]
A c B ifand only if da(a) < As(a) and pa(a) = ps(a) forall a € X.
A=B ifandonlyif AC B and B C A.
A ={< a,pa(a),Aa(a) > |a € X}.
ANB = {< a, A(a) A As(a), ua(a) vV us(a) > |a € X}.
AUB = {< a,A(a) V As(a), pa(a) A us(a) > |a € X}.
0x={<a01>|aeX}and 1x ={<q,1,0 > |a € X}.
IT=0and 0=1.

Noook~wbhE

Definition 2.5 [25] An Pythagorean fuzzy topology by subsets of a non-empty set X isa

family © of pfs’s satisfying the following axioms. [(i)]

1. ¢,X€er

2. G1NG2 €t forevery Gi,G2 € T and

3. U Gi € 7 for any arbitrary family {G:|i € j} S 7. The pair (X, t) is called an
Pythagorean fuzzy topological space ( pfts in short) and any pfs G in T is called an
Pythagorean fuzzy open set (pfos in short) in X. The complement A of an Pythagorean fuzzy
openset A inan pfts(X,t) is called an Pythagorean fuzzy closed set (pfcs in short).
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Definition 2.6 [25] Let (X, 7) be an pfts and A = {< a, A4(a), ua(a) > |a € X} be
an pfs in X. Thenthe interior and the closure of A are denoted by pfint(4) and pfcl(A) and
are defined as follows: pfcl(A) =n{K|K isanpfcsand A< K} and pfint(4) =U
{G|G isan pfos and G < A}. Also, it can be established that pfcl(A) isan pfcs and pfint(A)
iIs an pfos, A is an pfcs if and only if pfcl(A) =A and A is an pfos if and only if
pfint(A) = A. We say that A is pf-dense if pfcl(A) = X.

Lemma?2.1l [32] ForanyPythagorean fuzzyset A in (X,7),wehave X — pfint(A) =
pfcl(X —A) and X — pfcl(A) = pfint(X — A).

Definition 2.7 [32] Let (X, ) be an pfts and A be an pfs. Then A is said to be an
Pythagorean fuzzy (i) regular open set (pfros in short) if A = pfint(pfcl(A4)). (ii) regular
closed set (pfrcs inshort) if A = pfcl(pfint(A)). By Lemma 2.1, itfollowsthat A isan pfros
iff Aisan pfrcs.

Definition 2.8 [35] Let (X1,I'r) (or X1) be an pfts and A = {< a, Aa(a), ua(a) >
la € X1} be an pfs in X1. Then the (i) pfé-interior of A are denoted by pféint(A) and are
defined as follows. pféint(4) =U {G|G isan pfros and G < A}. (ii) pfé -closure of A are
denoted by pfdcl(A) and are defined as follows. pfédcl(A) =N {K|K isan pfrcs and A € K}.

Definition 29 [35] Let (X1,I'r) be an pfts and A = {< a,1a(a), ua(a) > |a € X1}

bean pfs in X1. Aset A issaidtobe pf [(i)]

1. &-open set (briefly, pféos) if A = pfdint(A),

2. &-pre open set (briefly, pfdPos) if A < pfint(pfdécl(A)),

3. &-semi open set (briefly, pféSos) if A € pfcl(pfdint(A)),

4. e open set (briefly, pfeos )if A € pfcl(pfdint(A)) U pfint(pfdcl(A)),

5. & (resp. &-pre, 6-semi and e) dense if pfdcl(A) (resp. pfoPcl(A), pfdScl(A)
and pfecl(4)) = Xi.

The complement of an pféos (resp. pfdPos,pfdSos and pfeos) is called an pfd
(resp. pfoP,pf6S and pfe) closed set (briefly, pfdcs (resp. pféPcs,pfdScs and pfecs))in
X1.

The family of all pféos (resp. pfdcs,pfdPos,pfdPcs,pfdSos,pfdScs,pfeos and

pfecs) of X1 IS denoted by pf60S(X1), (resp.
pfoCS(X1), pfSPOS(X1), pfOPCS(X1), pf6SOS(X1), pfdSCS(X1), pfe0S(X1) and
pfeCS(X1)).

Definition 2.10 [35] Let (X, t) bean pfts and A = {< a, Aa(a), ua(a) > |a € X1} be
an pfs in X1. Then the (i) pfé-pre (resp. pf&-semi and pfe)-interior of A are denoted by
pfoPint(A) (resp. pféSint(A) and pfeint(A)) and are defined as follows: pfdPint(A)
(resp. pféSint(A) and pfeint(A) =U{G|G in a pféPos (resp. pfdSos and pfeos) and
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G < A}, (ii) pfé-pre (resp. pfé-semi and pfe)-closure of A are denoted by pféPcl(A) (resp.
pféScl(A) and pfecl(A)) and are defined as follows: pféPcl(A) (resp. pfdScl(A) and
pfecl(A)) =n{K|K isan pféPcs (resp. pféScs,pfecs) and A € K}.

Definition 2.11 [35] Let (X1,I'r) be an pfts and A = {< a,Aa(a),usa(a) > |a €
X1} bean pfs in X1. Aset A issaidto be pf [(1)]
1. 0 -interior of A (briefly, pf@int(A)) is defined by pf6Oint(4) =U
{pfint(B):B € A & Bisa pfcsin X1}.
2. 0-open set (briefly, pfOos) if A = pfOint(A).
3. 8 -semi open set (briefly, pf8Sos) if A S pfcl(pfOint(A)).
4. M-open set (briefly, pfMos) if A C pfcl(pfOint(A)) U pfint(pfécl(A)).

The complement of a pfMos (resp. pfOos & pfOSos) is called an pfM (resp.
pfo & pfos) closed set (briefly, pfMcs (resp. pfOcs & pf6Scs)) in X1.

The family of all pf6@os (resp. pfOcs,pfOSos,pfOScs,pfMos and pfMcs) of X1 is
denoted by pf00S(X1) , (resp. pfOCS(X1),pfOSO0S(X1),pfOSCS(X1),pfMOS(X1) and
pfMCS(X1)).

Definition 2.12 [35] Let (X1,I'p) be an pfts and A = {< a, Aa(a), ua(a) > |a € X1}
be an pfs in X1. Thenthe pf [(i)]

1. M (resp. pf6-semi )-interior of A (briefly, pfMint(A) (resp. pf6Sint(A)) is
defined by pfMint(A) (resp. pfOint(A) and pfoSint(A)) =U {B: B € A and B isapfMos
(resp. pf@Sos) in X1}.

2. M (resp. 8 -semi )-closure of A (briefly, pfMcl(A) (resp. pfOScl(A)) is
defined by pfMcl(A) (resp. pfOScl(A)) =Nn{B:A < B and A is a pfMcs (resp. pf6Scs) in
X1}

3 Pythagorean fuzzy contra M-open mappings

Definition 3.1 Let (X1, I'r) and (X2, ¥p) beanytwo pfts’s. Amapping he: (X1, I'r) —
(X2, Wp) issaid to be a Pythagorean fuzzy (resp. § , 0P , 8S , e, 6 , 65 and M )-continuous
(briefly, pfCts (resp. pfé6Cts, pféPCts, pfdSCts, pfeCts, pfOCts, pfOSCts and
pfMCts)) if the inverse image of every pfos in (X2, ¥p) is a pfos (resp. pféos, pfdPos,
pféSos, pfeos, pfOos, pfOSos and pfMos) in (X1, p).

Definition 3.2 Let (X1,I'r) and (X2, Wr) be anytwo pfts’s. Amapping hr: (X1,I'r) —
(X2,¥p) is said to be a Pythagorean fuzzy (resp. 6, 88, 6, 6P, 6S, M and e )-open (briefly,
pfO (resp. pfoO, pfOSO, pfd0, pféPO, pfdSO, pfMO and pfe0)) mapping if the image
of every pfos in (X1,Ip) is a pfos (resp. pf@os, pfOSos, pfdos, pféPos, pféSos,
pfMos and pfeos) in (X2, ¥p).

Definition 3.3 Let (X1,I'p) and (X2, ¥p) be anytwo pfts’s. Amapping hpr: (X1,I'r) —
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(X2, Wp) is said to be a Pythagorean fuzzy contra (resp. § , 6P ,6S , e, 0,605 and M )-
continuous (briefly, pfcontraCts (resp. pfcontraéCts, pfcontradPCts, pfcontradSCts,
pfcontraeCts, pfcontrafCts, pfcontradSCts and pfcontraMCts)) if the inverse image of
everypfos in (X2, ¥p) is a pfcs (resp. pfdcs , pféPcs , pféScs , pfecs , pfbcs , pfOScs
and pfMcs) in (X1, I'p).

Definition 3.4 Let (X1, I') and (X2, ¥p) beanytwo pfts’s. Amapping hr: (X1, ') —
(X2, Wp) is said to be a Pythagorean fuzzy contra (resp. 6, S , &, 6P, 6§, M and e )-open
(briefly, pfcontraO (resp. pfcontraf0 , pfcontradS0O , pfcontradO , pfcontradPO ,
pfcontradS0O , pfcontraMO and pfcontraeO )) mapping if the image of every pfos in
(X1, T'p) isa pfcs (resp. pflcs , pfOScs , pfécs , pféPcs, pféScs , pfMcs and pfecs ) in
(X2,¥p).

Proposition 3.1 Let (X1, I'r) & (X2, Wp) beapfts’s. Let hp: (X1, I'P) = (X2, ¥p) bea
mapping. Then the following statements are hold for pfts, but not conversely.
Every pfcontraf0 isa pfcontraO.

Every pfcontra60 isa pfcontra6So.
Every pfcontra6so isa pfcontraMO.
Every pfcontradO isa pfcontradSo.
Every pfcontrasO isa pfcontradPo.
Every pfcontradso isa pfcontraeO.
Every pfcontradPO isa pfcontraMo.
Every pfcontraMO isa pfcontraeO.
Every pfcontradO isa pfcontraO.

CoNoOR~wWNE

Proof.

1. Let B be a pfos in (X1,I'p). Since hp is pfcontraf0O, her(B) is pffcs in
(X2,Wp). Since every pffcs is a pfcs, he(B) is a pfcs in (X2, Wp). Hence, hpr is a
pfcontraO.

2. Let B be a pfos in (X1,T'p). Since hp is pfcontraf0, hpr(B) is pfOcs in
(X2, ¥r). Since every pffcs is a pf6Scs, he(B) is a pfcs in (X2, %Wr). Hence, hp is a
pfcontrafSo.

3. Let B be a pfos in (X1,Tp). Since hp is pfcontra8S0, hr(B) is pf6Scs in
(X2, Wp). Since every pf6Scs is a pfMcs, he(B) is a pfMcs in (X2, %Wr). Hence, hp is a
pfcontraMo.

4. Let B be a pfos in (X1,Tp). Since hp is pfcontrad0O, he(B) is pfécs in
(X2, Wp). Since every pfdcs is a pféScs, he(B) is a pfdScs in (X2, Wp). Hence, hp is a
pfcontradSo.

5. Let B be a pfos in (X1,I'p). Since hp is pfcontradO, he(B) is pfdcs In
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(X2, Wp). Since every pfdcs is a pféPcs, he(B) is a pféPcs in (X2, ¥r). Hence, hpr is a
pfcontradPO.

6. Let B be a pfos in (X1,Tp). Since hp is pfcontradS0O, hr(B) is pfdScs in
(X2,Wp). Since every pféScs is a pfecs, he(B) is a pfecs in (X2, Wp). Hence, hp is a
pfcontraeO.

7. Let B be a pfos in (X1,Tp). Since hp is pfcontradPO, hr(B) is pféPcs in
(X2, Wp). Since every pféPcs is a pfMcs, he(B) is a pfMcs in (X2, Wr). Hence, hp is a
pfcontraMo.

8. Let B be a pfos in (X1,Tp). Since hp is pfcontraMO, hpr(B) is pfMcs in
(X2,Wp). Since every pfMcs is a pfecs, he(B) is a pfecs in (X2, Wp). Hence, hp is a
pfcontraeO.

9. Let B be a pfos in (X1,Tp). Since hp is pfcontrad0, he(B) is pfécs in
(X2,®p). Since every pfdcs is a pfcs, he(B) is a pfcs in (X2, Wp). Hence, hr is a
pfcontraO.

Remark 3.1 We obtain the following diagram from the results are discussed above.

pfeontraf() = pfeontraQ

4

1:]’(1:;.1/‘1:118() _,w(c'.;uhmifl

»

,n,‘mu.‘m,».l’u

L] / A

»
‘]a].ll:i.'fl't.'.'ll() ,-:,f-.mfuu\'b'()

. »

pfeontrac ()

Note: A — B denotes A implies B, but not conversely.

Example 3.1 Let X1 =X2=X={x1,x2} and pfs’s A1, A2, A3 & As in X1,
B1,B2,B3 & Ba in X2 are defined as,

A1 = {< x1,0.20,0.80 >, < x2,0.40,0.60 >}
Az = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
As = {< x1,0.20,0.80 >, < x2,0.30,0.70 >}
Bi = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
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Bz = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}

B3 = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}

B4 = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
Now, we have Tp = {0x, 1x, A1, A2, A3, As} and Wp = {Ox, 1x, B1, B2, B3, Ba} . Let
hp: (X1, Tp) = (X2, Wp) be an identity mapping. Then, hp is pfcontraO but not pfcontra60,
because the set A1 is pfos in X1 but hp(A1) = A1 isnot pfOcs in Xoz.

Example 3.2 Let X1 = X2 =X = {x1,x2} and pfs’s A1, A2 A3, A4 in X2 & B1in
X1 are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}

Now, we have T'r = {0Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, A4}. Let hp: (X1, Tp) = (X2, Pp)
be an identity mapping. Then, hp is pfcontra8S0 (resp. pfcontradsO0) but not pfcontra60
(resp. pfcontrad0), because the set B1 is pfos in X1 but hp(B1) = B1 is not pffcs (resp.
pfécs) in Xa.

Example 3.3 Let X1 = X2 = X = {x1,x2} and pfs’s A1, A2 A3, A+ in X2 & B1in
X1 are defined as,

B1 = {< x1,0.20,0.80 >, < x2,0.40,0.60 >}
A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
Now, we have T'r = {0Ox, 1x, B1} and Wpr = {Ox, 1x, A1, A2, A3, As}. Let hp: (X1,TpP) = (X2, Pr)
be an identity mapping. Then, hp is pfcontraMO but not pfcontra6S0, because the set B1 is
pfos in X1 but hp(B1) = B1 isnot pfOScs in Xe.

Example 3.4 Let X1 = X2 =X = {x1,x2} and pfs’s A1, A2 A3, A4 in X2 & B1in
X1 are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
As = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
Bi1 = {< x1,0.40,0.20 >, < x2,0.40,0.40 >}
Now, we have T'p = {0Ox, 1x, B1} and Wpr = {Ox, 1x, A1, Az, A3, As}. Let hp: (X1,TpP) = (X2, Pp)
be an identity mapping. Then, hp is pfcontraeO but not pfcontraMO, because the set B1 is
pfos in X1 but hp(B1) = B1 isnot pfMcs in Xa.
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Example 3.5 Let X1 = X2 =X = {x1,x2} and pfs’s A1, A2 A3, A+ in X2 & B1 in
X1 are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.20,0.80 >, < x2,0.30,0.70 >}

Now, we have T'r = {0Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, A4}. Let hp: (X1, Tp) = (X2, Wp)
be an identity mapping. Then, hr is pfcontraO (resp. pfcontraeO and pfcontradPO ) but
not pfcontrad0 (resp. pfcontradsSO and pfcontradO ), because the set B1 is pfos in X1
but hp(B1) = B1 isnot pfécs (resp. pfdScs and pfécs) in Xa.

Example 3.6 Let X1 = X2 =X = {x1,x2} and pfs’s A1, A2 A3, A4 in X2 & B1 in
X1 are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3 = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.80,0.20 >, < x2,0.60,0.30 >}
Now, we have T'r = {Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, Aa}. Let hp: (X1,Tr) = (X2, Pp)
be an identity mapping. Then, hp is pfcontraMO but not pfcontradP0, because the set B1 is
pfcs in X1 but hp(B1) = B1 isnot pféPcs in Xa.

Theorem 3.1 A mapping hpe: (X1,I'r) = (X2,¥Pr) is pfcontraMO iff for every pfs K
of (X1,I'p), he(pfint(K)) 2 pfMcl(hr(K)).

Proof. Necessity: Let hr be a pfMO mapping and K be a pfos in (X1,Tp). Now,
pfintK < K implies her(pfint(K)) S he(K) . Since hp is a pfcontraMO mapping,
he(pfint(K)) is pfMcs in (X2, Wp) such that he(pfint(K)) =2 he(K) . Therefore
hr(pfint(K)) 2 pfMclhr(K).

Sufficiency: Assume K is a pfos of (X1,Tr). Then hp(K) = hr(pfint(K)) 2
pfMclhp(K). But pfMcl(he(K)) 2 hpr(K). So hr(K) = pfMcl(K) which implies hr(K) is
a pfMcs of (X2, Wp) and hence hp isa pfcontraMO.

X2, traMO th
pFint(IC0) & 3o Mot (k5 Tor ey’ §15 bt G,/ coneratto mapping. - hen

Proof Let K bea pfs of (X2, Wp). Then pfint(hs1(K)) isa pfos in (X1,Tp). Since

o i BLSCRSSS Ll UER TS D pradlaeP T R 5 ime U 55 E
5 (pfMel(K)).
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Theorem 3.3 A mapping hpr: (X1,I'p) = (X2,¥Wp) is pfcontraMO iff for each pfs G
of (X2,¥p) and for each pfos K of (X1,I'r) containing hs1(G), there is a pfMos H of
(X2,%p) suchthat G € H and hzl(H) € K.

Proof. Necessity: Assume hp iS a pfcontraMO mapping. Let G be the pfcs of
(X2,®p) and K is a pfos of (X1,T'p) such that hs1(G) € K. Then H = (hp(K°))¢ is pfMos
of (X2, Wp) such that hp1(H) € K.

Sufficiency: Assume K is a pfos of (X1, Fp) Then B=1((hr(K))) € K¢ and K¢ is

in (X ,F By hypothesis, there isa pfMos , P such that K))¢ € H and
ﬁfcs é o her¥f0¥g K _( 1(H))e pl—]|rence He C ;lP% )P hp (h I )Sg) EHC which
|mpI|es hr(K) = He. Since He¢ |s pfMcs of (X2, Wp), he(K) is pfMc in (X2, Wp) and thus
hp is pfcontraMO mapping.
heo rem_ X1,Tp) X, ¥ IS traMO iff
h- 1(prcl( )) it (h 1(6)) ARGy B G 8 5 P pfeontra
ecessit Assume isa traMO mapping. Far any , ¥
h- 1(6) C pf ( P( )) Therefore Py Theglzenqré 7éathere e>Pg g pro |n (Xz, lSp)2 such
that ¢ 2 K and h 1(K) Dpfmt(h 1(G)). Therefore we obtain that h Y(pfMcl(G)) 2
h 1(K) 2 pfint(h; 16)).

Suff icienc Assume G is a of (X2,Wp) and K |s a s of a|n|n
h- 1(6) ut H —ypfcl(G) then G Cp[; and( “s ;}%Mcs and P(f G p )1 ) € Kg

Then by Theorem 3.3, hp is pfMO mapping.

P

Theorem 35 nf hp:(X1,I'P) » (X2,¥p) and gr: (X2, ¥p) = (X3,®r) be two pf
mappings and gp o hp: (X1,I'p) = (X3,®p) is pfcontraMO . nf gp: (X2, ¥p) = (X3,®p) is
pfcontraMIrr,then hp: (X1, 'p) = (X2, ¥p) IS pfMO mapping.

Proof. Let K be a pfos in (X1,[pr). Then (gr o hr)(K) is pfMcs of (X3, ®p)
because gp o hr is pfcontraMO mapping. Since gp is pfcontraMIrr and (gr o hr)(K) is
pfMcs of (X3, ®pr), grl((gr o hr)(K)) = he(K) is pfMos in (X2, Wp). Hence hp is pfMO
mapping.

Theorem 3.6 nf hp:(X1,I'P) = (X2,¥p) IS pfO and gr: (X2, ¥r) — (X3,Pp) IS
pfcontraMO mappings, then gp o hp: (X1,I'P) = (X3, ®p) is pfcontraMo.

Proof. Let K be a pfos in (X1, T'r). Then he(K) is a pfos of (X2, Wp) because hp
is a pfO mapping. Since gr is pfcontraMO , gr(hr(K)) = (gr o hr)(K) is a pfMcs of
(X3, ®p). Hence gp o hp is pfcontraMO mapping.

4 Pythagorean fuzzy contra M-closed mapping

Definition 4.1 Let (X1, I'r) and (X2, Wp) be any two pfts’s. Amapping hp: (X1, I'P) —
(X2,¥p) is said to be a Pythagorean fuzzy (resp. 6, 6S, 8, P, 6S, M and e )-closed (briefly,
pfC (resp. pfoC, pfOSC, pféC, pfoPC, pfSSC, pfMC and pfeC)) mapping if the image of
everypfcs in (X1, I'p) is a pfcs (resp. pfbcs , pf6Scs , pfdcs , pfdPcs , pféScs , pfMcs
and pfecs) in (X2, ¥Yp).
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Definition 4.2 Let (X1, I'r) and (X2, ¥p) be anytwo pfts’s. Amapping he: (X1, I'P) —
(X2, Wp) is said to be a Pythagorean fuzzy contra (resp. 9, 88, 6, 6P, 6§, M and e )-closed
(briefly, pfcontraC (resp. pfcontradC , pfcontradSC , pfcontradC , pfcontradPC ,
pfcontradSC , pfcontraMC and pfcontraeC )) mapping if the image of every pfcs in
(X1, I'p) is a pfos (resp. pfBos, pfOSos, pfdos, pféPos, pfdSos, pfMos and pfeos) in
(X2,¥p).

Proposition 4.1 Let (X1, I'r) & (X2, Wp) beapfts’s. Let he: (X1, I'P) = (X2, ¥p) bea
mapping. Then the following statements are hold for pfts, but not conversely.
1. Every pfcontra8C isa pfcontraC.
Every pfcontra6C isa pfcontradsc.
Every pfcontra6SC isa pfcontraMcC.
Every pfcontradC isa pfcontradScC.
Every pfcontradC isa pfcontradPcC.
Every pfcontradscC isa pfcontraeC.
Every pfcontradPC isa pfcontraMC.
Every pfcontraMC is a pfcontraeC.
Every pfcontradC isa pfcontraC.

CoNoOR~WD

Proof.

1. Let B be a pfcs in (X1,Tp). Since he is pfcontradC, her(B) is pffos in
(X2, ®p). Since every pfbos is a pfos, he(B) is a pfos in (X2, ¥r). Hence, hpr is a
pfcontraC.

2. Let B be a pfcs in (X1,Tp). Since hp is pfcontradC, hr(B) is pffos in
(X2,®p). Since every pffos is a pf6Sos, he(B) is a pfos in (X2, Wp). Hence, hp is a
pfcontrafScC.

3. Let B be a pfcs in (X1,Tp). Since hp is pfcontra8SC, hr(B) is pf6Sos in
(X2,W¥p). Since every pf6Sos is a pfMos, hp(B) is a pfMos in (X2, Wp). Hence, hp is a
pfcontraMC.

4. Let B be a pfcs in (X1,Tp). Since hp is pfcontradC, he(B) is pféos In
(X2, Wp). Since every pfdos is a pfdSos, hr(B) is a pféSos in (X2, Wp). Hence, hp is a
pfcontradScC.

5. Let B be a pfcs in (X1,Tp). Since hp is pfcontradC, he(B) is pféos Iin
(X2, ¥p). Since every pféos is a pfdPos, he(B) is a pféPos in (X2, Pr). Hence, hp is a
pfcontradPcC.

6. Let B be a pfcs in (X1,Tp). Since he is pfcontradSC, hr(B) is pfdSos in

(X2,Wp). Since every pfdSos is a pfeos, he(B) iIs a pfeos in (X2, Wr). Hence, hr is a
pfcontraeC.
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7. Let B be a pfcs in (X1,Tp). Since he is pfcontradPC, hr(B) is pféPos in
(X2,¥p). Since every pfdPos is a pfMos, hr(B) is a pfMos in (X2, Wpr). Hence, hp is a
pfcontraMC.

8. Let B be a pfcs in (X1,Tp). Since hp is pfcontraMC, hr(B) is pfMos in
(X2,®p). Since every pfMos is a pfeos, hp(B) is a pfeos in (X2, Wpr). Hence, hp is a
pfcontraeC.

9. Let B be a pfcs in (X1,Tp). Since hp is pfcontradC, hr(B) is pféos in
(X2,%®p). Since every pféos is a pfos, he(B) is a pfos in (X2, Wpr). Hence, hp is a
pfcontraC.

Remark 4.1 We obtain the following diagram from the results are discussed above.

,uv.‘- onfrafl' -

-  pfeontrac’

A ]

p,"/'ui.-fquS(' pfeontrasC

»

pfeomtrad PC

A

»
pfeontraMC pfoomtradSC

- »

pfeontraeC’

Note: A — B denotes A implies B, but not conversely.

Example 41 Let X1 = X2 = {x1,x2} and pfs’s A1,A2, A3 & A4 in X1, B1,B2, B3
& B4 in X2 are defined as,

A1 = {< x1,0.20,0.80 >, < x2,0.40,0.60 >}
Az = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
As = {< x1,0.20,0.80 >, < x2,0.30,0.70 >}
Bi = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
B2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
B3 = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
Ba = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
Now, we have T'r = {0x, 1x, A1, A2, A3, A4}, Wp = {0x, 1x, B1, B2, B3, B4}. Let hp: (X1,Tp) —

X2, Wp) be an identity mapping. Then, hp is contraC but not pfcontra@C, because the set
02|s 1193) fcs in X1 buty Blp) 9 AC IS no‘f)pfgf pf
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Example 4.2 Let X1 = X2 = {x1,x2} and pfs’s A1, Az A3 A+ in X2 & B1in X1
are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}

Now, we have T'r = {0Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, A4}. Let hp: (X1, Tp) = (X2, Wp)
be an identity mapping. Then, hpr is pfcontra8SC (resp. pfcontradSC) but not pfcontradC
(resp. pfcontradC), because the set Bf is pfcs in X1 but hp(Bf) = BS is not pf6fos (resp.
pféos)in Xa.

Example 4.3 Let X1 = X2 = {x1,x2} and pfs’s A1, A2 A3 A+ in X2 & B1in X1
are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
A4 = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.20,0.80 >, < x2,0.40,0.60 >}
Now, we have T'p = {Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, As}. Let hp: (X1,TpP) = (X2, Pp)

be an Ldentlt ma ing. Then, hp is contraMC but not pfcontrafSC, because the set B¢ is
pfcs in X %p Bgf) = BC is not %];‘9505 pf i

Example 44  Let X1 = X2 = {x1,x2} and pfs’s A1, A2 A3, A+ in X2 & Biin X1
are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
As = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.40,0.20 >, < x2,0.40,0.40 >}
Now, we have T'p = {0Ox, 1x, B1} and Wpr = {Ox, 1x, A1, A2, A3, As}. Let hp: (X1,TpP) = (X2, Pr)

be an jdentit ing. Then, .hp is pfcontraeC but not pfcontraMC, because the set B¢ is
pfcs In X1 f%pp g) BC lsﬁot ;%’ Mos In Xo. pf i

Example 45 Let X1 = X2 = {x1,x2} and pfs’s A1, A2 A3, A4 in X2 & B1in X1
are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
Az = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
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As = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}

A4 = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}

B1 = {< x1,0.20,0.80 >, < x2,0.30,0.70 >}
Now, we have T'r = {0x, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, A4}. Let hp: (X1, Tp) = (X2, Wp)
be an identity mapping. Then, hpr is pfcontraC (resp. pfcontraeC and pfcontradPC ) but

BOt gf (ngltﬁagg FGSJ)[ ] f%coosntrgs%scz; faggogfacnogztraoéosg because the set B is pfcs in X1

Example 4.6 Let X1 = X2 = {x1,x2} and pfs’s A1, Az A3 A+ in X2 & B1in X1
are defined as,

A1 = {< x1,0.80,0.20 >, < x2,0.60,0.40 >}
A2 = {< x1,0.90,0.10 >, < x2,0.70,0.30 >}
A3z = {< x1,0.10,0.90 >, < x2,0.30,0.70 >}
A4 = {< x1,0.80,0.20 >, < x2,0.70,0.30 >}
B1 = {< x1,0.80,0.20 >, < x2,0.60,0.30 >}
Now, we have T'p = {Ox, 1x, B1} and Wp = {0x, 1x, A1, A2, A3, As}. Let hp: (X1,TpP) = (X2, Pp)

be an identity mapping. Then, hp is t C_but not tradPC, because the set Bj is
pfcs in X1 ot %Q(BQ) = BC i not %}}ngglorsal\/l e pfcontra

Theorem 4.1 A mapping hp: (X1,'r) = (X2, ¥p) is pfcontraMC iff for each pfs G
of (X2,¥p) and for each pfos K of (Xi,I'r) containing hs1(G), there is a pfMcs L of
(X2,¥p) suchthat G € L and hpl(L) € K.

Proof. Necessity; Assume hp is a traMC mapping. Let G t
(X2,¥pr) and K Ffs a ;;/fcs o¥ (Xl,lap) such ftcr?a?% ml(G) _I?P -H'] =1y — —P[ “3
pfMcs of (X2, Wp) such that hz1(L) € K.

Sufficiency' Assume K isa pfcs of (X1,T'p). Then (hr(K))c isa pfs of (X2, Wp) and

Kc h that hr(K))°) € K¢. hypoth th Mcs L of
(Xz,lﬁl’p{ suc p%“((j)c CaLfPan&( ( p) )C Ke. T%gre oeg I?'SE er(ELI)S)Cal encces LCO;

hr(K) € hp((h,;l(L))C) C Lc which |mpI|es hp(K) = Lec. Since Le is pros of (X2, ¥pr),
he(K) is pfMos in (X2, Wp) and thus hp is pfcontraMC mapping.

Theorem 4.2 nf hp:(X1,I'P) = (X2,¥p) is pfC and gr: (X2, ¥r) — (X3, Ppr)
pfcontraMC. Then gp o hp: (X1,I'P) = (X3, ®p) is pfcontraMC.
Proof. Let K be a pfcs in (X1,Tp). Then hp(K) is pfcs of (X,, Wp) because hp is
pfC mapping. Now (gp o hr)(K) = gr(he(K)) Is pfMos in (X3, ®p) because gp is
pfcontraMC mapping. Thus gp o hp is pfcontraMC mapping.

Theorem 4.3 nf  he: (X1,I'p) > (X2,¥p) is pfcontraMC map, then

pfMint(hr(K)) 2 he(pfint(K)).
Proof. Obvious.

Theorem 4.4 Let hp:(X1,IP) » (X2,¥p) and gr: (X2, ¥Wp) - (X3, ®p) are
pfcontraMC mappings. nf every pfMos of (X2, ¥Wp) is pfos, then gpo hp:(X1,IpP) =
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(X3, ®p) is pfMC.

Proof. Let K be a pfcs in (X1, Tp). Then he(K) is pfMos of (X2, Wp) because hp
IS pfcontraMC mapping. By hypothesis, hr(K) is pfos of (X2, ¥r). Now gr(he(K)) =
(gp o hr)(K) is pfMcs in (X3, ®p) because gr is pfcontraMC mapping. Thus gp o hp is
pfMC mapping.

Theorem 4.5 Let hp: (X1, I'P) = (X2, Wp) be a bijective mapping. Then the following
statements are equivalent: [(i)]
1. hp isa pfcontraMO mapping.
2. hp isa pfcontraMC mapping.
3. hpl is pfMCts mapping.

Proof. (i) = (ii): Let us assume that hp is a pfcontraMO mapping. By definition, K
isa pfos in (X1, I'p), then hp(K) isa pfMcs in (X2, Wp). Here, K is pfcs in (X1, T'p). Then
1x — K is a pfos in (X1, I'r). By assumption, hr(1x — K) is a pfMcs in (X2, ¥r). Hence,
1y — hr(1x — K) isa pfMos in (X2, Wp). Therefore, hr isa pfcontraMC mapping.

(if) = (iii): Let K be a pfcs in (X1, I'p) By (ii), he(K) is a pfMos in (X2, Wp) .
Hence, hr(K) = (hp!)~1(K).So h7} isa pfMos in (X2, Wr). Hence, h3! is pfMCts.

(iii) = (i): Let K be a pfos in (X1,Tp). By (iii), (B)"1(K)=her(K) is a
pfcontraMO mapping.

5 Conclusion
In this paper, the concepts of pfcontraMO and pfcontraMC mappings in pfts were
discussed. Furthermore, the work was extended to include pfcontraHom and pfcontraMHom.
In addition, the study demonstrated pfcontraMCHom and derived some of its related
characteristics. In future, this work can be used in some mathematical applications.
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