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1 Introduction 

Considering the imprecision in decision-making, Zadeh [39] introduced the idea of fuzzy set which 

has a membership function, 𝜇 that assigns to each element of the universe of discourse, a number 

from the unit interval [0,1] to indicate the degree of belongingness to the set under consideration. 

The notion of fuzzy sets generalizes classical sets theory by allowing intermediate situations 

between the whole and nothing. In a fuzzy set, a membership function is defined to describe the 

degree of membership of an element to a class. The membership value ranges from 0 to 1, where 

0 shows that the element does not belong to a class, 1 means belongs, and other values indicate the 

degree of membership to a class. For fuzzy sets, the membership function replaced the 

characteristic function in crisp sets. The concept of fuzzy set theory seems to be inconclusive 

because of the exclusion of nonmembership function and the disregard for the possibility of 

hesitation margin. Atanassov critically studied these shortcomings and proposed a concept called 

intuitionistic fuzzy sets ( 𝐼𝐹𝑆 s) [1, 2, 4, 5]. The construct (that is, 𝐼𝐹𝑆 ss) incorporates both 

membership function, 𝜇 and nonmembership function, 𝜈 with hesitation margin, 𝜋 (that is, 

neither membership nor non-membership functions), such that 𝜇 + 𝜈 ≤ 1 and 𝜇 + 𝜈 + 𝜋 = 1. 
Atanassov [3] introduced intuitionistic fuzzy sets of second type (𝐼𝐹𝑆𝑆𝑇) with the property that 

the sum of the square of the membership and non-membership degrees is less than or equal to one. 

This concept generalizes 𝐼𝐹𝑆ss in a way. The notion of 𝐼𝐹𝑆ss provides a flexible framework to 

elaborate uncertainty and vagueness. The idea of 𝐼𝐹𝑆 seems to be resourceful in modelling many 

real-life situations like medical diagnosis [7, 8, 13, 30, 31], career determination [11], selection 

process [12], and multi-criteria decision-making [16, 17, 18], among others. 

There are situations where 𝜇 + 𝜈 ≥ 1 unlike the cases capture in 𝐼𝐹𝑆ss. This limitation in 

𝐼𝐹𝑆 naturally led to a construct, called Pythagorean fuzzy sets (𝑝𝑓𝑠ss). Pythagorean fuzzy set 

(𝑝𝑓𝑠) proposed in [36, 37, 38] is a new tool to deal with vagueness considering the membership 

grade, 𝜇 and non-membership grade, 𝜈 satisfying the conditions 𝜇 + 𝜈 ≤ 1 or 𝜇 + 𝜈 ≥ 1, and 

also, it follows that 𝜇2 + 𝜈2 + 𝜋2 = 1, where 𝜋 is the Pythagorean fuzzy set index. In fact, the 

origin of Pythagorean fuzzy sets emanated from 𝐼𝐹𝑆𝑆𝑇 earlier studied in the literature. As a 

generalized set, 𝑃𝐹𝑆 has close relationship with 𝐼𝐹𝑆. The construct of 𝑃𝐹𝑆ss can be used to 

characterize uncertain information more sufficiently and accurately than 𝐼𝐹𝑆. Garg [15] presented 

an improved score function for the ranking order of interval-valued Pythagorean fuzzy sets 

(𝐼𝑉𝑃𝐹𝑆s). Based on it, a Pythagorean fuzzy technique for order of preference by similarity to ideal 

solution (𝑇𝑂𝑃𝑆𝐼𝑆) method by taking the preferences of the experts in the form of interval-valued 

Pythagorean fuzzy decision matrices was discussed. Other explorations of the theory of 𝑃𝐹𝑆ss can 

be found in [6, 9, 14, 19, 20, 26, 27]. Saha [29] defined 𝛿-open sets in topological spaces. Vadivel 

et al. [34] introduced 𝛿-open sets in a neutrosophic topological space. The notion of M-open sets 

in topological spaces were introduced by El-Maghrabi and Al-Juhani [24] in 2011 and studied 

some of their properties. The class of sets namely, 𝑀-open sets are playing more important role in 

topological spaces, because of their applications in various fields of Mathematics and other real 

fields. Recently, Jeeva et al. [21, 22, 23] introduced neutrosophic soft 𝑀-open sets in neutrosophic 

topological spaces and developed the concepts of neutrosophic soft 𝑀 -Continuity and 𝑀 - 

Irresolute maps. 
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The concept of contra continuous function in general topology was introduced by Dontchev 

[10] in 1996. Vadivel et al. [33] introduced generalized fuzzy contra 𝑒-continuous functions in 

fuzzy topological spaces. Recently, Revathi et al. [?] developed the neutrosophic soft contra 𝑒- 

continuity and 𝑒-irresolute maps in neutrosophic soft topological spaces. 

The focus of this article is to introduce the idea of Pythagorean fuzzy contra 𝑀-open and 

Pythagorean fuzzy contra 𝑀-closed mappings in Pythagorean fuzzy topological spaces. Also the 

work is extended to Pythagorean fuzzy contra 𝑀-homeomorphism and Pythagorean fuzzy contra 

𝑀 𝐶-homeomorphism in Pythagorean fuzzy topological spaces and some of their basic properties 

are discussed. 

2 Preliminaries 

We recall some basic notions of fuzzy sets, 𝐼𝐹𝑆ss and 𝑝𝑓𝑠ss . 

 

Definition 2.1 [39] Let 𝑋 be a nonempty set. A fuzzy set 𝐴 in 𝑋 is characterized by a 

membership function 𝜇𝐴: 𝑋 → [0,1]. That is: 
1, if 𝑥 ∈ 𝑋 

𝜇𝐴(𝑥) = {0, if 𝑥 ∉ 𝑋 
(0,1) if 𝑥 ispartlyin 𝑋. 

Alternatively, a fuzzy set 𝐴 in 𝑋 is an object having the form 𝐴 = {< 𝑥, 𝜇𝐴(𝑥) > |𝑥 ∈ 𝑋} or 

𝐴 = {⟨
𝜇𝐴(𝑥)

⟩ |𝑥 ∈ 𝑋}, where the function 𝜇 
𝑥 

the element, 𝑥 ∈ 𝑋. 

(𝑥): 𝑋 → [0,1] defines the degree of membership of 

The closer the membership value 𝜇𝐴(𝑥) to 1, the more 𝑥 belongs to 𝐴, where the grades 

1 and 0 represent full membership and full nonmembership. Fuzzy set is a collection of objects 

with graded membership, that is, having degree of membership. Fuzzy set is an extension of the 

classical notion of set. In classical set theory, the membership of elements in a set is assessed in a 

binary terms according to a bivalent condition; an element either belongs or does not belong to the 

set. Classical bivalent sets are in fuzzy set theory called crisp sets. Fuzzy sets are generalized 

classical sets, since the indicator function of classical sets is special cases of the membership 

functions of fuzzy sets, if the latter only take values 0 or 1. Fuzzy sets theory permits the gradual 

assessment of the membership of element in a set; this is described with the aid of a membership 

function valued in the real unit interval [0,1]. 
Let us consider two examples: 

(i) all employees of 𝑋𝑌𝑍 who are over 1.8𝑚 in height; (ii) all employees of 𝑋𝑌𝑍 who 

are tall. The first example is a classical set with a universe (all 𝑋𝑌𝑍 employees) and a membership 

rule that divides the universe into members (those over 1.8𝑚) and nonmembers. The second 

example is a fuzzy set, because some employees are definitely in the set and some are definitely 

not in the set, but some are borderline. 

This distinction between the ins, the outs, and the borderline is made more exact by the 

membership function, 𝜇. If we return to our second example and let 𝐴 represent the fuzzy set of 

all tall employees and 𝑥 represent a member of the universe 𝑋 (i.e. all employees), then 𝜇𝐴(𝑥) 
would be 𝜇𝐴(𝑥) = 1 if 𝑥 is definitely tall or 𝜇𝐴(𝑥) = 0 if 𝑥 is definitely not tall or 0 < 
𝜇𝐴(𝑥) < 1 for borderline cases. 

Definition 2.2  [1, 2, 4, 5] Let a nonempty set 𝑋 be fixed. An 𝐼𝐹𝑆 𝐴 in 𝑋 is an object 

having the form: 𝐴 = {< 𝑥, 𝜇𝐴 (𝑥), 𝜈𝐴 (𝑥) > |𝑥 ∈ 𝑋} or 𝐴 = {⟨
𝜇𝐴(𝑥),𝑣𝐴(𝑥) 

𝑥 
}, where the ⟩ |𝑥 ∈ 𝑋 

𝐴 
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functions 𝜇𝐴(𝑥): 𝑋 → [0,1] and 𝜈𝐴(𝑥): 𝑋 → [0,1] define the degree of membership and the 

degree of nonmembership, respectively, of the element 𝑥 ∈ 𝑋 to 𝐴, which is a subset of 𝑋, and 

for every 𝑥 ∈ 𝑋: 0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1. For each 𝐴 in 𝑋: 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜈𝐴(𝑥) is the 

intuitionistic fuzzy set index or hesitation margin of 𝑥 in 𝑋. The hesitation margin 𝜋𝐴(𝑥) is the 

degree of nondeterminacy of 𝑥 ∈ 𝑋 to the set 𝐴 and 𝜋𝐴(𝑥) ∈ [0,1]. The hesitation margin is the 

function that expresses lack of knowledge of whether 𝑥 ∈ 𝑋 or 𝑥 ∉ 𝑋. Thus: 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) + 
𝜋𝐴(𝑥) = 1. 

 

Example  2.1 Let 𝑋 = {𝑥, 𝑦, 𝑧} be  a  fixed  universe  of  discourse  and 𝐴 = 
{⟨

0.6,0.1 0.8,0.1 0.5,0.3 
}  be the intuitionistic fuzzy set in 𝑋 . The hesitation margins of the 

⟩ , ⟨ 
𝑥 𝑦 

⟩ , ⟨ ⟩ , 
𝑧 

elements 𝑥, 𝑦, 𝑧 to 𝐴 are as follows: 𝜋𝐴(𝑥) = 0.3, 𝜋𝐴(𝑦) = 0.1 and 𝜋𝐴(𝑧) = 0.2. 

 

 

 

Definition 2.3 [36, 37, 38] Let 𝑋 be a universal set. Then, a Pythagorean fuzzy set 𝐴, 

which is a set of ordered pairs over 𝑋, is defined by the following: 𝐴 = {< 𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)|𝑥 ∈ 

𝑋} or 𝐴 = {⟨
𝜇𝐴(𝑥),𝑣𝐴(𝑥)

⟩ |𝑥 ∈ 𝑋}, where the functions 𝜇 
𝑥 

(𝑥): 𝑋 → [0,1] and 𝜈𝐴 (𝑥): 𝑋 → [0,1] 

define the degree of membership and the degree of nonmembership, respectively, of the element 

𝑥 ∈ 𝑋 to 𝐴 , which is a subset of 𝑋 , and for every 𝑥 ∈ 𝑋 , 0 ≤ (𝜇𝐴(𝑥))2 + (𝜈𝐴(𝑥))2 ≤ 1 . 

Supposing (𝜇𝐴(𝑥))2 + (𝜈𝐴(𝑥))2 ≤ 1 , then there is a degree of indeterminacy of 𝑥 ∈ 𝑋 to 𝐴 

defined by 𝜋𝐴(𝑥) = √1 − [(𝜇𝐴(𝑥))2 + (𝜈𝐴(𝑥))2] and 𝜋𝐴(𝑥) ∈ [0,1] . nn what follows, 

(𝜇𝐴(𝑥))2 + (𝜈𝐴(𝑥))2 + (𝜋𝐴(𝑥))2 = 1  .  Otherwise,   𝜋𝐴(𝑥) = 0   whenever   (𝜇𝐴(𝑥))2 + 
(𝜈𝐴(𝑥))2 = 1. We denote the set of all 𝑃𝐹𝑆’s over 𝑋 by 𝑝𝑓𝑠(𝑋). 

 

 

Definition 2.4  [38] Let 𝐴 and 𝐵 be 𝑝𝑓𝑠’s of the forms 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 
𝑋} and 𝐵 = {< 𝑎, 𝜆𝐵(𝑎), 𝜇𝐵(𝑎) > |𝑎 ∈ 𝑋}. Then [(i)] 

1. 𝐴 ⊆ 𝐵 if and only if 𝜆𝐴(𝑎) ≤ 𝜆𝐵(𝑎) and 𝜇𝐴(𝑎) ≥ 𝜇𝐵(𝑎) for all 𝑎 ∈ 𝑋. 
2. 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 
3. 𝐴  = {< 𝑎, 𝜇𝐴(𝑎), 𝜆𝐴(𝑎) > |𝑎 ∈ 𝑋}. 

4. 𝐴 ∩ 𝐵 = {< 𝑎, 𝜆𝐴(𝑎) ∧ 𝜆𝐵(𝑎), 𝜇𝐴(𝑎) ∨ 𝜇𝐵(𝑎) > |𝑎 ∈ 𝑋}. 
5. 𝐴 ∪ 𝐵 = {< 𝑎, 𝜆𝐴(𝑎) ∨ 𝜆𝐵(𝑎), 𝜇𝐴(𝑎) ∧ 𝜇𝐵(𝑎) > |𝑎 ∈ 𝑋}. 
6. 0𝑋 = {< 𝑎, 0,1 > |𝑎 ∈ 𝑋} and 1𝑋 = {< 𝑎, 1,0 > |𝑎 ∈ 𝑋}. 

7. 1  = 0 and 0  = 1. 

 

Definition 2.5 [25] An Pythagorean fuzzy topology by subsets of a non-empty set 𝑋 is a 

family 𝜏 of 𝑝𝑓𝑠’s satisfying the following axioms. [(i)] 

1. 𝜙, 𝑋 ∈ 𝜏. 
2. 𝐺1 ∩ 𝐺2 ∈ 𝜏 for every 𝐺1, 𝐺2 ∈ 𝜏 and 

3. ⋃ 𝐺𝑖 ∈ 𝜏 for any arbitrary family {𝐺𝑖|𝑖 ∈ 𝑗} ⊆ 𝜏. The pair (𝑋, 𝜏) is called an 

Pythagorean fuzzy topological space ( 𝑝𝑓𝑡𝑠 in short) and any 𝑝𝑓𝑠 𝐺 in 𝜏 is called an 

Pythagorean fuzzy open set (𝑝𝑓𝑜𝑠 in short) in 𝑋. The complement 𝐴  of an Pythagorean fuzzy 

open set 𝐴 in an 𝑝𝑓𝑡𝑠(𝑋, 𝜏) is called an Pythagorean fuzzy closed set (𝑝𝑓𝑐𝑠 in short). 

𝐴 
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Definition 2.6  [25] Let (𝑋, 𝜏) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋} be 

an 𝑝𝑓𝑠 in 𝑋. Then the interior and the closure of 𝐴 are denoted by 𝑝𝑓𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝑐𝑙(𝐴) and 

are  defined  as  follows:  𝑝𝑓𝑐𝑙(𝐴) =∩ {𝐾|𝐾 𝑖𝑠𝑎𝑛 𝑝𝑓𝑐𝑠 𝑎𝑛𝑑 𝐴 ⊆ 𝐾}  and  𝑝𝑓𝑖𝑛𝑡(𝐴) =∪ 
{𝐺|𝐺 𝑖𝑠𝑎𝑛 𝑝𝑓𝑜𝑠 𝑎𝑛𝑑 𝐺 ⊆ 𝐴}. Also, it can be established that 𝑝𝑓𝑐𝑙(𝐴) is an 𝑝𝑓𝑐𝑠 and 𝑝𝑓𝑖𝑛𝑡(𝐴) 
is an 𝑝𝑓𝑜𝑠 , 𝐴 is an 𝑝𝑓𝑐𝑠 if and only if 𝑝𝑓𝑐𝑙(𝐴) = 𝐴 and 𝐴 is an 𝑝𝑓𝑜𝑠 if and only if 

𝑝𝑓𝑖𝑛𝑡(𝐴) = 𝐴. We say that 𝐴 is 𝑝𝑓-dense if 𝑝𝑓𝑐𝑙(𝐴) = 𝑋. 

 
Lemma 2.1  [32]  For any Pythagorean fuzzy set 𝐴 in (𝑋, 𝜏), we have 𝑋 − 𝑝𝑓𝑖𝑛𝑡(𝐴) = 

𝑝𝑓𝑐𝑙(𝑋 − 𝐴) and 𝑋 − 𝑝𝑓𝑐𝑙(𝐴) = 𝑝𝑓𝑖𝑛𝑡(𝑋 − 𝐴). 

 
Definition 2.7 [32] Let (𝑋, 𝜏) be an 𝑝𝑓𝑡𝑠 and 𝐴 be an 𝑝𝑓𝑠. Then 𝐴 is said to be an 

Pythagorean fuzzy (i) regular open set (𝑝𝑓𝑟𝑜𝑠 in short) if 𝐴 = 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝑐𝑙(𝐴)). (ii) regular 

closed set (𝑝𝑓𝑟𝑐𝑠 in short) if 𝐴 = 𝑝𝑓𝑐𝑙(𝑝𝑓𝑖𝑛𝑡(𝐴)). By Lemma 2.1, it follows that 𝐴 is an 𝑝𝑓𝑟𝑜𝑠 
iff 𝐴  is an 𝑝𝑓𝑟𝑐𝑠. 

 

Definition 2.8  [35] Let (𝑋1, 𝛤𝑃) (or 𝑋1 ) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > 
|𝑎 ∈ 𝑋1} be an 𝑝𝑓𝑠 in 𝑋1. Then the (i) 𝑝𝑓𝛿-interior of 𝐴 are denoted by 𝑝𝑓𝛿𝑖𝑛𝑡(𝐴) and are 

defined as follows. 𝑝𝑓𝛿𝑖𝑛𝑡(𝐴) =∪ {𝐺|𝐺 is an 𝑝𝑓𝑟𝑜𝑠 and 𝐺 ⊆ 𝐴}. (ii) 𝑝𝑓𝛿 -closure of 𝐴 are 

denoted by 𝑝𝑓𝛿𝑐𝑙(𝐴) and are defined as follows. 𝑝𝑓𝛿𝑐𝑙(𝐴) =∩ {𝐾|𝐾 is an 𝑝𝑓𝑟𝑐𝑠 and 𝐴 ⊆ 𝐾}. 

 

 

Definition 2.9 [35]  Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} 
be an 𝑝𝑓𝑠 in 𝑋1. A set 𝐴 is said to be 𝑝𝑓 [(i)] 

1. 𝛿-open set (briefly, 𝑝𝑓𝛿𝑜𝑠) if 𝐴 = 𝑝𝑓𝛿𝑖𝑛𝑡(𝐴), 

2. 𝛿-pre open set (briefly, 𝑝𝑓𝛿𝒫𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)), 

3. 𝛿-semi open set (briefly, 𝑝𝑓𝛿𝒮𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝛿𝑖𝑛𝑡(𝐴)), 

4. 𝑒 open set (briefly, 𝑝𝑓𝑒𝑜𝑠 ) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝛿𝑖𝑛𝑡(𝐴)) ∪ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)), 

5. 𝛿 (resp. 𝛿-pre, 𝛿-semi and 𝑒) dense if 𝑝𝑓𝛿𝑐𝑙(𝐴) (resp. 𝑝𝑓𝛿𝒫𝑐𝑙(𝐴), 𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) 
and 𝑝𝑓𝑒𝑐𝑙(𝐴)) = 𝑋1. 

 

The complement of an 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠 and 𝑝𝑓𝑒𝑜𝑠) is called an 𝑝𝑓𝛿 
(resp. 𝑝𝑓𝛿𝒫, 𝑝𝑓𝛿𝒮 and 𝑝𝑓𝑒) closed set (briefly, 𝑝𝑓𝛿𝑐𝑠 (resp. 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠 and 𝑝𝑓𝑒𝑐𝑠)) in 

𝑋1. 

The family of all 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝑐𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠, 𝑝𝑓𝑒𝑜𝑠 and 

𝑝𝑓𝑒𝑐𝑠) of 𝑋1 is denoted by 𝑝𝑓𝛿𝑂𝑆(𝑋1), (resp. 

𝑝𝑓𝛿𝐶𝑆(𝑋1), 𝑝𝑓𝛿𝒫𝑂𝑆(𝑋1), 𝑝𝑓𝛿𝒫𝐶𝑆(𝑋1), 𝑝𝑓𝛿𝒮𝑂𝑆(𝑋1), 𝑝𝑓𝛿𝒮𝐶𝑆(𝑋1), 𝑝𝑓𝑒𝑂𝑆(𝑋1) and 

𝑝𝑓𝑒𝐶𝑆(𝑋1)). 

Definition 2.10 [35] Let (𝑋, 𝜏) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} be 

an 𝑝𝑓𝑠 in 𝑋1. Then the (i) 𝑝𝑓𝛿 -pre (resp. 𝑝𝑓𝛿 -semi and 𝑝𝑓𝑒)-interior of 𝐴 are denoted by 

𝑝𝑓𝛿𝒫𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝑒𝑖𝑛𝑡(𝐴)) and are defined as follows: 𝑝𝑓𝛿𝒫𝑖𝑛𝑡(𝐴) 
(resp. 𝑝𝑓𝛿𝒮𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝑒𝑖𝑛𝑡(𝐴) =∪ {𝐺|𝐺 in a 𝑝𝑓𝛿𝒫𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠 and 𝑝𝑓𝑒𝑜𝑠 ) and 
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𝐺 ⊆ 𝐴}, (ii) 𝑝𝑓𝛿-pre (resp. 𝑝𝑓𝛿-semi and 𝑝𝑓𝑒)-closure of 𝐴 are denoted by 𝑝𝑓𝛿𝒫𝑐𝑙(𝐴) (resp. 

𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) and 𝑝𝑓𝑒𝑐𝑙(𝐴)) and are defined as follows: 𝑝𝑓𝛿𝒫𝑐𝑙(𝐴) (resp. 𝑝𝑓𝛿𝒮𝑐𝑙(𝐴) and 

𝑝𝑓𝑒𝑐𝑙(𝐴)) =∩ {𝐾|𝐾 is an 𝑝𝑓𝛿𝒫𝑐𝑠 (resp. 𝑝𝑓𝛿𝒮𝑐𝑠, 𝑝𝑓𝑒𝑐𝑠) and 𝐴 ⊆ 𝐾}. 

 

 

Definition 2.11 [35] Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 
𝑋1} be an 𝑝𝑓𝑠 in 𝑋1. A set 𝐴 is said to be 𝑝𝑓 [(i)] 

1. 𝜃 -interior of 𝐴 (briefly, 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)) is defined by 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴) =∪ 
{𝑝𝑓𝑖𝑛𝑡(𝐵): 𝐵 ⊆ 𝐴 & 𝐵 isa 𝑝𝑓𝑐𝑠 in 𝑋1}. 

2. 𝜃-open set (briefly, 𝑝𝑓𝜃𝑜𝑠) if 𝐴 = 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴). 

3. 𝜃 -semi open set (briefly, 𝑝𝑓𝜃𝒮𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)). 

4. 𝑀-open set (briefly, 𝑝𝑓𝑀𝑜𝑠) if 𝐴 ⊆ 𝑝𝑓𝑐𝑙(𝑝𝑓𝜃𝑖𝑛𝑡(𝐴)) ∪ 𝑝𝑓𝑖𝑛𝑡(𝑝𝑓𝛿𝑐𝑙(𝐴)). 

 

The complement of a 𝑝𝑓𝑀𝑜𝑠 (resp. 𝑝𝑓𝜃𝑜𝑠 & 𝑝𝑓𝜃𝒮𝑜𝑠 ) is called an 𝑝𝑓𝑀 (resp. 

𝑝𝑓𝜃 & 𝑝𝑓𝜃𝒮) closed set (briefly, 𝑝𝑓𝑀𝑐𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠 & 𝑝𝑓𝜃𝒮𝑐𝑠)) in 𝑋1. 

The family of all 𝑝𝑓𝜃𝑜𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠, 𝑝𝑓𝜃𝒮𝑐𝑠, 𝑝𝑓𝑀𝑜𝑠 and 𝑝𝑓𝑀𝑐𝑠) of 𝑋1 is 

denoted  by 𝑝𝑓𝜃𝑂𝑆(𝑋1) ,  (resp. 𝑝𝑓𝜃𝐶𝑆(𝑋1), 𝑝𝑓𝜃𝒮𝑂𝑆(𝑋1), 𝑝𝑓𝜃𝒮𝐶𝑆(𝑋1), 𝑝𝑓𝑀𝑂𝑆(𝑋1) and 

𝑝𝑓𝑀𝐶𝑆(𝑋1)). 

Definition 2.12 [35] Let (𝑋1, 𝛤𝑃) be an 𝑝𝑓𝑡𝑠 and 𝐴 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋1} 
be an 𝑝𝑓𝑠 in 𝑋1. Then the 𝑝𝑓 [(i)] 

1. 𝑀 (resp. 𝑝𝑓𝜃-semi )-interior of 𝐴 (briefly, 𝑝𝑓𝑀𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝜃𝒮𝑖𝑛𝑡(𝐴)) is 

defined by 𝑝𝑓𝑀𝑖𝑛𝑡(𝐴) (resp. 𝑝𝑓𝜃𝑖𝑛𝑡(𝐴) and 𝑝𝑓𝜃𝒮𝑖𝑛𝑡(𝐴)) =∪ {𝐵: 𝐵 ⊆ 𝐴 and 𝐵 is a 𝑝𝑓𝑀𝑜𝑠 
(resp. 𝑝𝑓𝜃𝒮𝑜𝑠) in 𝑋1}. 

2. 𝑀 (resp. 𝜃 -semi )-closure of 𝐴 (briefly, 𝑝𝑓𝑀𝑐𝑙(𝐴) (resp. 𝑝𝑓𝜃𝒮𝑐𝑙(𝐴)) is 

defined by 𝑝𝑓𝑀𝑐𝑙(𝐴) (resp. 𝑝𝑓𝜃𝒮𝑐𝑙(𝐴)) =∩ {𝐵: 𝐴 ⊆ 𝐵 and 𝐴 is a 𝑝𝑓𝑀𝑐𝑠 (resp. 𝑝𝑓𝜃𝒮𝑐𝑠) in 

𝑋1}. 

 
3 Pythagorean fuzzy contra 𝑴-open mappings 

 

 

Definition 3.1 Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy (resp. 𝛿 , 𝛿𝒫 , 𝛿𝒮 , 𝑒, 𝜃 , 𝜃𝒮 and 𝑀 )-continuous 

(briefly, 𝑝𝑓𝐶𝑡𝑠  (resp. 𝑝𝑓𝛿𝐶𝑡𝑠 , 𝑝𝑓𝛿𝒫𝐶𝑡𝑠 , 𝑝𝑓𝛿𝒮𝐶𝑡𝑠 , 𝑝𝑓𝑒𝐶𝑡𝑠 , 𝑝𝑓𝜃𝐶𝑡𝑠 , 𝑝𝑓𝜃𝒮𝐶𝑡𝑠  and 

𝑝𝑓𝑀𝐶𝑡𝑠)) if the inverse image of every 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃) is a 𝑝𝑓𝑜𝑠 (resp. 𝑝𝑓𝛿𝑜𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 
𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝑒𝑜𝑠, 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠 and 𝑝𝑓𝑀𝑜𝑠) in (𝑋1, 𝛤𝑃). 

 

 

Definition 3.2 Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy (resp. 𝜃, 𝜃𝒮, 𝛿, 𝛿𝒫, 𝛿𝒮, 𝑀 and 𝑒 )-open (briefly, 

𝑝𝑓𝑂 (resp. 𝑝𝑓𝜃𝑂, 𝑝𝑓𝜃𝒮𝑂, 𝑝𝑓𝛿𝑂, 𝑝𝑓𝛿𝒫𝑂, 𝑝𝑓𝛿𝒮𝑂, 𝑝𝑓𝑀𝑂 and 𝑝𝑓𝑒𝑂)) mapping if the image 

of every 𝑝𝑓𝑜𝑠 in (𝑋1, 𝛤𝑃) is a 𝑝𝑓𝑜𝑠 (resp. 𝑝𝑓𝜃𝑜𝑠 , 𝑝𝑓𝜃𝒮𝑜𝑠 , 𝑝𝑓𝛿𝑜𝑠 , 𝑝𝑓𝛿𝒫𝑜𝑠 , 𝑝𝑓𝛿𝒮𝑜𝑠 , 
𝑝𝑓𝑀𝑜𝑠 and 𝑝𝑓𝑒𝑜𝑠) in (𝑋2, 𝛹𝑃). 

 

 

Definition 3.3  Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
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(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy contra (resp. 𝛿 , 𝛿𝒫 , 𝛿𝒮 , 𝑒 , 𝜃 , 𝜃𝒮 and 𝑀 )- 

continuous (briefly, 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶𝑡𝑠 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶𝑡𝑠 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶𝑡𝑠 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶𝑡𝑠 , 
𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶𝑡𝑠, 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶𝑡𝑠, 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶𝑡𝑠 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶𝑡𝑠)) if the inverse image of 

every 𝑝𝑓𝑜𝑠 in (𝑋2, 𝛹𝑃) is a 𝑝𝑓𝑐𝑠 (resp. 𝑝𝑓𝛿𝑐𝑠 , 𝑝𝑓𝛿𝒫𝑐𝑠 , 𝑝𝑓𝛿𝒮𝑐𝑠 , 𝑝𝑓𝑒𝑐𝑠 , 𝑝𝑓𝜃𝑐𝑠 , 𝑝𝑓𝜃𝒮𝑐𝑠 
and 𝑝𝑓𝑀𝑐𝑠) in (𝑋1, 𝛤𝑃). 

 

 

Definition 3.4 Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy contra (resp. 𝜃, 𝜃𝒮 , 𝛿, 𝛿𝒫, 𝛿𝒮, 𝑀 and 𝑒 )-open 

(briefly, 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂  (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂 , 
𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂 )) mapping if the image of every 𝑝𝑓𝑜𝑠 in 

(𝑋1, 𝛤𝑃) is a 𝑝𝑓𝑐𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠 , 𝑝𝑓𝜃𝒮𝑐𝑠 , 𝑝𝑓𝛿𝑐𝑠 , 𝑝𝑓𝛿𝒫𝑐𝑠, 𝑝𝑓𝛿𝒮𝑐𝑠 , 𝑝𝑓𝑀𝑐𝑠 and 𝑝𝑓𝑒𝑐𝑠 ) in 

(𝑋2, 𝛹𝑃). 

 

 

Proposition 3.1 Let (𝑋1, 𝛤𝑃) & (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑡𝑠’s. Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 

mapping. Then the following statements are hold for 𝑝𝑓𝑡𝑠, but not conversely. 

1. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂. 

2. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂. 

3. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

4. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂. 

5. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂. 

6. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂. 

7. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

8. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂. 

9. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂. 

 

 

Proof. 

 

1. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝑐𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝜃𝑐𝑠 is a 𝑝𝑓𝑐𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑐𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂. 

2. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝑐𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝜃𝑐𝑠 is a 𝑝𝑓𝜃𝒮𝑐𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑐𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂. 

 

3. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂, ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝒮𝑐𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝜃𝒮𝑐𝑠 is a 𝑝𝑓𝑀𝑐𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

4. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑐𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝑐𝑠 is a 𝑝𝑓𝛿𝒮𝑐𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝛿𝒮𝑐𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂. 

5. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑐𝑠 in 
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(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝑐𝑠 is a 𝑝𝑓𝛿𝒫𝑐𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝛿𝒫𝑐𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂. 

 

6. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂, ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝒮𝑐𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝛿𝒮𝑐𝑠 is a 𝑝𝑓𝑒𝑐𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑒𝑐𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂. 

 

7. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂, ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝒫𝑐𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝒫𝑐𝑠 is a 𝑝𝑓𝑀𝑐𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

8. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝑀𝑐𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝑀𝑐𝑠 is a 𝑝𝑓𝑒𝑐𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑒𝑐𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂. 

9. Let 𝐵 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑐𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝛿𝑐𝑠 is a 𝑝𝑓𝑐𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑐𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂. 

Remark 3.1  We obtain the following diagram from the results are discussed above. 
 

 

 

Note: 𝐴 → 𝐵 denotes 𝐴 implies 𝐵, but not conversely. 

Example 3.1 Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3 & 𝐴4 in 𝑋1 , 
𝐵1, 𝐵2, 𝐵3  & 𝐵4 in 𝑋2 are defined as, 

 

𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 
𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
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𝐵2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐵3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐵4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 

Now,  we  have  Γ𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}  and  𝚿𝑃 = {0𝑋, 1𝑋, 𝐵1, 𝐵2, 𝐵3, 𝐵4} .  Let 

ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂, 

because the set 𝐴1 is 𝑝𝑓𝑜𝑠 in 𝑋1 but ℎ𝑃(𝐴1) = 𝐴1 is not 𝑝𝑓𝜃𝑐𝑠 in 𝑋2. 

 

 

Example 3.2 Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 

𝑋1 are defined as, 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂) but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝑂 
(resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂), because the set 𝐵1 is 𝑝𝑓𝑜𝑠 in 𝑋1 but ℎ𝑃(𝐵1) = 𝐵1 is not 𝑝𝑓𝜃𝑐𝑠 (resp. 

𝑝𝑓𝛿𝑐𝑠) in 𝑋2. 

 

Example 3.3 Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 

𝑋1 are defined as, 

 

𝐵1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 
𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝑂, because the set 𝐵1 is 

𝑝𝑓𝑜𝑠 in 𝑋1 but ℎ𝑃(𝐵1) = 𝐵1 is not 𝑝𝑓𝜃𝒮𝑐𝑠 in 𝑋2. 

 

Example 3.4 Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 

𝑋1 are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.40,0.20 >, < 𝑥2, 0.40,0.40 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂, because the set 𝐵1 is 

𝑝𝑓𝑜𝑠 in 𝑋1 but ℎ𝑃(𝐵1) = 𝐵1 is not 𝑝𝑓𝑀𝑐𝑠 in 𝑋2. 
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Example 3.5  Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2  & 𝐵1 in 

𝑋1 are defined as, 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑂 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝑂 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂 ) but 

not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝑂 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝑂 ), because the set 𝐵1 is 𝑝𝑓𝑜𝑠 in 𝑋1 
but ℎ𝑃(𝐵1) = 𝐵1 is not 𝑝𝑓𝛿𝑐𝑠 (resp. 𝑝𝑓𝛿𝒮𝑐𝑠 and 𝑝𝑓𝛿𝑐𝑠) in 𝑋2. 

 

 

Example 3.6  Let 𝑋1 = 𝑋2 = 𝑋 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2  & 𝐵1 in 

𝑋1 are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.30 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝑂, because the set 𝐵1 is 

𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐵1) = 𝐵1 is not 𝑝𝑓𝛿𝒫𝑐𝑠 in 𝑋2. 

 

Theorem 3.1  A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 iff for every 𝑝𝑓𝑠 𝐾 
of (𝑋1, 𝛤𝑃), ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) ⊇ 𝑝𝑓𝑀𝑐𝑙(ℎ𝑃(𝐾)). 

Proof. Necessity: Let ℎ𝑃 be a 𝑝𝑓𝑀𝑂 mapping and 𝐾 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Now, 

𝑝𝑓𝑖𝑛𝑡𝐾 ⊆ 𝐾 implies ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) ⊆ ℎ𝑃(𝐾) . Since ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping, 

ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) is 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃) such that ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) ⊇ ℎ𝑃(𝐾) . Therefore 

ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) ⊇ 𝑝𝑓𝑀𝑐𝑙ℎ𝑃(𝐾). 

Sufficiency:  Assume  𝐾  is  a  𝑝𝑓𝑜𝑠  of  (𝑋1, Γ𝑃).  Then  ℎ𝑃(𝐾) = ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)) ⊇ 
𝑝𝑓𝑀𝑐𝑙ℎ𝑃(𝐾). But 𝑝𝑓𝑀𝑐𝑙(ℎ𝑃(𝐾)) ⊇ ℎ𝑃(𝐾). So ℎ𝑃(𝐾) = 𝑝𝑓𝑀𝑐𝑙(𝐾) which implies ℎ𝑃(𝐾) is 

a 𝑝𝑓𝑀𝑐𝑠 of (𝑋2, 𝚿𝑃) and hence ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

 

Theorem  3.2   nf  ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃)  is  a  𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂  mapping,  then 
𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐾)) ⊆ ℎ−1(𝑝𝑓𝑀𝑐𝑙(𝐾)) for every 𝑝𝑓𝑠 𝐾 of (𝑋2, 𝛹𝑃). 

𝑃 𝑃 

Proof. Let 𝐾 be a 𝑝𝑓𝑠 of (𝑋2, 𝚿𝑃). Then 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐾)) is a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Since 

ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂  , ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐾))) is 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃) and hence 
ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐾))) ⊆ 𝑝𝑓𝑀𝑐𝑙(ℎ𝑃(ℎ−1(𝐾))) ⊆ 𝑝𝑓𝑀𝑐𝑙(𝐾) . Thus 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐾)) ⊆ 

𝑃 𝑃 𝑃 

ℎ−1(𝑝𝑓𝑀𝑐𝑙(𝐾)). 
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𝑃 

𝑃 

𝑃 

𝑃 

𝑃 

𝑃 

Theorem 3.3 A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 iff for each 𝑝𝑓𝑠 𝐺 
of (𝑋2, 𝛹𝑃) and for each 𝑝𝑓𝑜𝑠 𝐾 of (𝑋1, 𝛤𝑃) containing ℎ−1(𝐺) , there is a 𝑝𝑓𝑀𝑜𝑠 𝐻 of 

(𝑋2, 𝛹𝑃) such that 𝐺 ⊆ 𝐻 and ℎ−1(𝐻) ⊆ 𝐾. 

Proof. Necessity: Assume ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. Let 𝐺 be the 𝑝𝑓𝑐𝑠 of 

(𝑋2, 𝚿𝑃) and 𝐾 is a 𝑝𝑓𝑜𝑠 of (𝑋1, Γ𝑃) such that ℎ−1(𝐺) ⊆ 𝐾. Then 𝐻 = (ℎ𝑃(𝐾𝑐))𝑐 is 𝑝𝑓𝑀𝑜𝑠 
of (𝑋2, 𝚿𝑃) such that ℎ−1(𝐻) ⊆ 𝐾. 

Sufficiency: Assume 𝐾 is a 𝑝𝑓𝑜𝑠 of (𝑋1, Γ𝑃). Then ℎ−1((ℎ𝑃(𝐾))𝑐) ⊆ 𝐾𝑐 and 𝐾𝑐 is 

𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). By hypothesis, there is a 𝑝𝑓𝑀𝑜𝑠 𝐻 of (𝑋2, 𝚿𝑃) such that (ℎ𝑃(𝐾))𝑐 ⊆ 𝐻 and 
ℎ−1(𝐻) ⊆ 𝐾𝑐. Therefore 𝐾 ⊆ (ℎ−1(𝐻))𝑐 . Hence 𝐻𝑐 ⊆ ℎ𝑃(𝐾) ⊆ ℎ𝑃((ℎ−1(𝐻))𝑐) ⊆ 𝐻𝑐 which 
𝑃 𝑃 𝑃 

implies ℎ𝑃(𝐾) = 𝐻𝑐. Since 𝐻𝑐 is 𝑝𝑓𝑀𝑐𝑠 of (𝑋2, 𝚿𝑃), ℎ𝑃(𝐾) is 𝑝𝑓𝑀𝑐 in (𝑋2, 𝚿𝑃) and thus 

ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. 

Theorem 3.4 A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 iff 
ℎ−1(𝑝𝑓𝑀𝑐𝑙(𝐺)) ⊇ 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐺)) for every 𝑝𝑓𝑠 𝐺 of (𝑋2, 𝛹𝑃). 
𝑃 𝑃 

Proof. Necessity: Assume ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. For any 𝑝𝑓𝑠 𝐺 of (𝑋2, 𝚿𝑃), 
ℎ−1(𝐺) ⊆ 𝑝𝑓𝑐𝑙(ℎ−1(𝐺)). Therefore by Theorem 3.3, there exists a 𝑝𝑓𝑀𝑜𝑠 𝐾 in (𝑋2, 𝚿𝑃) such 
𝑃 𝑃 

that  𝐺 ⊇ 𝐾  and  ℎ−1(𝐾) ⊇ 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐺)).  Therefore  we  obtain  that  ℎ−1(𝑝𝑓𝑀𝑐𝑙(𝐺)) ⊇ 
𝑃 𝑃 𝑃 

ℎ−1(𝐾) ⊇ 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐺)). 
𝑃 𝑃 

Sufficiency: Assume 𝐺 is a 𝑝𝑓𝑠 of (𝑋2, 𝚿𝑃) and 𝐾 is a 𝑝𝑓𝑐𝑠 of (𝑋1, Γ𝑃) containing 
ℎ−1(𝐺). Put 𝐻 = 𝑝𝑓𝑐𝑙(𝐺), then 𝐺 ⊆ 𝐻 and 𝐻 is 𝑝𝑓𝑀𝑐𝑠 and ℎ−1(𝐻) ⊊ 𝑝𝑓𝑖𝑛𝑡(ℎ−1(𝐺)) ⊆ 𝐾. 
𝑃 

Then by Theorem 3.3, ℎ𝑃 is 𝑝𝑓𝑀𝑂 mapping. 
𝑃 𝑃 

Theorem 3.5 nf ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃)  and 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃)  be two 𝑝𝑓 
mappings and 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋3, 𝛷𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 . nf 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃) is 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐼𝑟𝑟, then ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑀𝑂 mapping. 
Proof. Let 𝐾 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Then (𝑔𝑃 ∘ ℎ𝑃)(𝐾) is 𝑝𝑓𝑀𝑐𝑠 of (𝑋3, Φ𝑃) 

because 𝑔𝑝 ∘ ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. Since 𝑔𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐼𝑟𝑟 and (𝑔𝑃 ∘ ℎ𝑃)(𝐾) is 

𝑝𝑓𝑀𝑐𝑠 of (𝑋3, Φ𝑃), 𝑔−1((𝑔𝑃 ∘ ℎ𝑃)(𝐾)) = ℎ𝑃(𝐾) is 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence ℎ𝑃 is 𝑝𝑓𝑀𝑂 
mapping. 

 

Theorem 3.6   nf  ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃)  is  𝑝𝑓𝑂  and  𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃)  is 
𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mappings, then 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋3, 𝛷𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂. 

Proof. Let 𝐾 be a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). Then ℎ𝑃(𝐾) is a 𝑝𝑓𝑜𝑠 of (𝑋2, 𝚿𝑃) because ℎ𝑃 
is a 𝑝𝑓𝑂 mapping. Since 𝑔𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 , 𝑔𝑃(ℎ𝑃(𝐾)) = (𝑔𝑃 ∘ ℎ𝑃)(𝐾) is a 𝑝𝑓𝑀𝑐𝑠 of 

(𝑋3, Φ𝑃). Hence 𝑔𝑃 ∘ ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. 

 

4 Pythagorean fuzzy contra 𝑴-closed mapping 

 

 

Definition 4.1 Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy (resp. 𝜃, 𝜃𝒮, 𝛿, 𝛿𝒫, 𝛿𝒮, 𝑀 and 𝑒 )-closed (briefly, 

𝑝𝑓𝐶 (resp. 𝑝𝑓𝜃𝐶, 𝑝𝑓𝜃𝒮𝐶, 𝑝𝑓𝛿𝐶, 𝑝𝑓𝛿𝒫𝐶, 𝑝𝑓𝛿𝒮𝐶, 𝑝𝑓𝑀𝐶 and 𝑝𝑓𝑒𝐶)) mapping if the image of 

every 𝑝𝑓𝑐𝑠 in (𝑋1, 𝛤𝑃) is a 𝑝𝑓𝑐𝑠 (resp. 𝑝𝑓𝜃𝑐𝑠 , 𝑝𝑓𝜃𝒮𝑐𝑠 , 𝑝𝑓𝛿𝑐𝑠 , 𝑝𝑓𝛿𝒫𝑐𝑠 , 𝑝𝑓𝛿𝒮𝑐𝑠 , 𝑝𝑓𝑀𝑐𝑠 
and 𝑝𝑓𝑒𝑐𝑠) in (𝑋2, 𝛹𝑃). 
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Definition 4.2 Let (𝑋1, 𝛤𝑃) and (𝑋2, 𝛹𝑃) be any two 𝑝𝑓𝑡𝑠’s. A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → 
(𝑋2, 𝛹𝑃) is said to be a Pythagorean fuzzy contra (resp. 𝜃, 𝜃𝒮, 𝛿, 𝛿𝒫, 𝛿𝒮, 𝑀 and 𝑒 )-closed 

(briefly, 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶  (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶 , 
𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶 , 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶 )) mapping if the image of every 𝑝𝑓𝑐𝑠 in 

(𝑋1, 𝛤𝑃) is a 𝑝𝑓𝑜𝑠 (resp. 𝑝𝑓𝜃𝑜𝑠, 𝑝𝑓𝜃𝒮𝑜𝑠, 𝑝𝑓𝛿𝑜𝑠, 𝑝𝑓𝛿𝒫𝑜𝑠, 𝑝𝑓𝛿𝒮𝑜𝑠, 𝑝𝑓𝑀𝑜𝑠 and 𝑝𝑓𝑒𝑜𝑠) in 

(𝑋2, 𝛹𝑃). 

 

 

Proposition 4.1 Let (𝑋1, 𝛤𝑃) & (𝑋2, 𝛹𝑃) be a 𝑝𝑓𝑡𝑠’s. Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a 

mapping. Then the following statements are hold for 𝑝𝑓𝑡𝑠, but not conversely. 

1. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶. 

2. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶. 

3. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. 

4. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶. 

5. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶. 

6. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶. 

7. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. 

8. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶. 

9. Every 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶. 

 

 

Proof. 

1. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝑜𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶. 

2. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝑜𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝜃𝑜𝑠 is a 𝑝𝑓𝜃𝒮𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶. 

3. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶, ℎ𝑃(𝐵) is 𝑝𝑓𝜃𝒮𝑜𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝜃𝒮𝑜𝑠 is a 𝑝𝑓𝑀𝑜𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. 

 

4. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝛿𝒮𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝛿𝒮𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶. 

 

5. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝛿𝒫𝑜𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝛿𝒫𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶. 

6. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶, ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝒮𝑜𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝛿𝒮𝑜𝑠 is a 𝑝𝑓𝑒𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑒𝑜𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶. 
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7. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶, ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝒫𝑜𝑠 in 

(𝑋2, 𝚿𝑃). Since every 𝑝𝑓𝛿𝒫𝑜𝑠 is a 𝑝𝑓𝑀𝑜𝑠, ℎ𝑃(𝐵) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. 

 

8. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝑀𝑜𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝑀𝑜𝑠 is a 𝑝𝑓𝑒𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑒𝑜𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶. 

9. Let 𝐵 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Since ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 , ℎ𝑃(𝐵) is 𝑝𝑓𝛿𝑜𝑠 in 

(𝑋2, 𝚿𝑃) . Since every 𝑝𝑓𝛿𝑜𝑠 is a 𝑝𝑓𝑜𝑠 , ℎ𝑃(𝐵) is a 𝑝𝑓𝑜𝑠 in (𝑋2, 𝚿𝑃) . Hence, ℎ𝑃 is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶. 

 

 

Remark 4.1  We obtain the following diagram from the results are discussed above. 
 

 

 

Note: 𝐴 → 𝐵 denotes 𝐴 implies 𝐵, but not conversely. 

Example 4.1 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3 & 𝐴4 in 𝑋1 , 𝐵1, 𝐵2, 𝐵3 
& 𝐵4 in 𝑋2 are defined as, 

 

𝐴1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 
𝐴2 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴3 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴4 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐵2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐵3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐵4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}, 𝚿𝑃 = {0𝑋, 1𝑋, 𝐵1, 𝐵2, 𝐵3, 𝐵4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → 
(𝑋2, 𝚿𝑃) be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶, because the set 
𝐴𝑐 is 𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐴𝑐) = 𝐴𝑐 is not 𝑝𝑓𝜃𝑜𝑠 in 𝑋2. 

1 1 1 
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Example 4.2 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 𝑋1 

are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶) but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝐶 
(resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶), because the set 𝐵𝑐 is 𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐵𝑐) = 𝐵𝑐 is not 𝑝𝑓𝜃𝑜𝑠 (resp. 1 1 1 

𝑝𝑓𝛿𝑜𝑠) in 𝑋2. 

 

Example 4.3 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 𝑋1 
are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.40,0.60 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝜃𝒮𝐶, because the set 𝐵𝑐 is 
𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐵𝑐) = 𝐵𝑐 is not 𝑝𝑓𝜃𝒮𝑜𝑠 in 𝑋2. 

1 1 

 
Example 4.4 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 𝑋1 

are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.40,0.20 >, < 𝑥2, 0.40,0.40 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶, because the set 𝐵𝑐 is 
𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐵𝑐) = 𝐵𝑐 is not 𝑝𝑓𝑀𝑜𝑠 in 𝑋2. 

1 1 

 
Example 4.5 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 𝑋1 

are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
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𝑃 

𝑃 

𝑃 

𝑃 

𝑃 

𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.20,0.80 >, < 𝑥2, 0.30,0.70 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐶 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑒𝐶 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶 ) but 

not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 (resp. 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒮𝐶 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝐶 ), because the set 𝐵𝑐 is 𝑝𝑓𝑐𝑠 in 𝑋1 
but ℎ𝑃(𝐵𝑐) = 𝐵𝑐 is not 𝑝𝑓𝛿𝑜𝑠 (resp. 𝑝𝑓𝛿𝒮𝑜𝑠 and 𝑝𝑓𝛿𝑜𝑠) in 𝑋2. 

1 1 

 
Example 4.6 Let 𝑋1 = 𝑋2 = {𝑥1, 𝑥2} and 𝑝𝑓𝑠 ’s 𝐴1, 𝐴2, 𝐴3, 𝐴4 in 𝑋2 & 𝐵1 in 𝑋1 

are defined as, 

 

𝐴1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.40 >} 
𝐴2 = {< 𝑥1, 0.90,0.10 >, < 𝑥2, 0.70,0.30 >} 
𝐴3 = {< 𝑥1, 0.10,0.90 >, < 𝑥2, 0.30,0.70 >} 
𝐴4 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.70,0.30 >} 
𝐵1 = {< 𝑥1, 0.80,0.20 >, < 𝑥2, 0.60,0.30 >} 

Now, we have Γ𝑃 = {0𝑋, 1𝑋, 𝐵1} and 𝚿𝑃 = {0𝑋, 1𝑋, 𝐴1, 𝐴2, 𝐴3, 𝐴4}. Let ℎ𝑃: (𝑋1, Γ𝑃) → (𝑋2, 𝚿𝑃) 
be an identity mapping. Then, ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 but not 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝛿𝒫𝐶, because the set 𝐵𝑐 is 
𝑝𝑓𝑐𝑠 in 𝑋1 but ℎ𝑃(𝐵𝑐) = 𝐵𝑐 is not 𝑝𝑓𝛿𝒫𝑜𝑠 in 𝑋2. 

1 1 

 
Theorem 4.1  A mapping ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 iff for each 𝑝𝑓𝑠 𝐺 

of (𝑋2, 𝛹𝑃) and for each 𝑝𝑓𝑜𝑠 𝐾 of (𝑋1, 𝛤𝑃) containing ℎ−1(𝐺) , there is a 𝑝𝑓𝑀𝑐𝑠 𝐿 of 

(𝑋2, 𝛹𝑃) such that 𝐺 ⊆ 𝐿 and ℎ−1(𝐿) ⊆ 𝐾. 

Proof. Necessity: Assume ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. Let 𝐺 be the 𝑝𝑓𝑜𝑠 of 
(𝑋2, 𝚿𝑃) and 𝐾 is a 𝑝𝑓𝑐𝑠 of (𝑋1, Γ𝑃) such that ℎ−1(𝐺) ⊆ 𝐾. Then 𝐿 = 1𝑌 − ℎ−1(𝐾𝑐) is 

𝑃 𝑃 

𝑝𝑓𝑀𝑐𝑠 of (𝑋2, 𝚿𝑃) such that ℎ−1(𝐿) ⊆ 𝐾. 

Sufficiency: Assume 𝐾 is a 𝑝𝑓𝑐𝑠 of (𝑋1, Γ𝑃). Then (ℎ𝑃(𝐾))𝑐 is a 𝑝𝑓𝑠 of (𝑋2, 𝚿𝑃) and 

𝐾𝑐 is 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃) such that ℎ−1((ℎ𝑃(𝐾))𝑐) ⊆ 𝐾𝑐. By hypothesis, there is a 𝑝𝑓𝑀𝑐𝑠 𝐿 of 
(𝑋2, 𝚿𝑃) such that (ℎ𝑃(𝐾))𝑐 ⊆ 𝐿 and ℎ−1(𝐿) ⊆ 𝐾𝑐. Therefore 𝐾 ⊆ (ℎ−1(𝐿))𝑐. Hence 𝐿𝑐 ⊆ 

𝑃 𝑃 

ℎ𝑃(𝐾) ⊆ ℎ𝑃((ℎ−1(𝐿))𝑐) ⊆ 𝐿𝑐 which implies ℎ𝑃(𝐾) = 𝐿𝑐. Since 𝐿𝑐 is 𝑝𝑓𝑀𝑜𝑠 of (𝑋2, 𝚿𝑃) , 
ℎ𝑃(𝐾) is 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃) and thus ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. 

 

Theorem 4.2 nf  ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃)  is  𝑝𝑓𝐶  and  𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃)  is 
𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. Then 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋3, 𝛷𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶. 

Proof. Let 𝐾 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Then ℎ𝑃(𝐾) is 𝑝𝑓𝑐𝑠 of (𝑋2, 𝚿𝑃) because ℎ𝑃 is 
𝑝𝑓𝐶  mapping.  Now  (𝑔𝑃 ∘ ℎ𝑃)(𝐾) = 𝑔𝑃(ℎ𝑃(𝐾))  is  𝑝𝑓𝑀𝑜𝑠  in  (𝑋3, Φ𝑃)  because  𝑔𝑃  is 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. Thus 𝑔𝑃 ∘ ℎ𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. 

 

Theorem 4.3 nf ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 map, then 

𝑝𝑓𝑀𝑖𝑛𝑡(ℎ𝑃(𝐾)) ⊇ ℎ𝑃(𝑝𝑓𝑖𝑛𝑡(𝐾)). 
Proof. Obvious. 

 

Theorem 4.4 Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) and 𝑔𝑃: (𝑋2, 𝛹𝑃) → (𝑋3, 𝛷𝑃) are 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶  mappings. nf every 𝑝𝑓𝑀𝑜𝑠  of (𝑋2, 𝛹𝑃) is 𝑝𝑓𝑜𝑠 , then 𝑔𝑃 ∘ ℎ𝑃: (𝑋1, 𝛤𝑃) → 
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(𝑋3, 𝛷𝑃) is 𝑝𝑓𝑀𝐶. 

Proof. Let 𝐾 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Then ℎ𝑃(𝐾) is 𝑝𝑓𝑀𝑜𝑠 of (𝑋2, 𝚿𝑃) because ℎ𝑃 
is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. By hypothesis, ℎ𝑃(𝐾) is 𝑝𝑓𝑜𝑠 of (𝑋2, 𝚿𝑃). Now 𝑔𝑃(ℎ𝑃(𝐾)) = 
(𝑔𝑃 ∘ ℎ𝑃)(𝐾) is 𝑝𝑓𝑀𝑐𝑠 in (𝑋3, Φ𝑃) because 𝑔𝑃 is 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. Thus 𝑔𝑃 ∘ ℎ𝑃 is 

𝑝𝑓𝑀𝐶 mapping. 

 

Theorem 4.5 Let ℎ𝑃: (𝑋1, 𝛤𝑃) → (𝑋2, 𝛹𝑃) be a bijective mapping. Then the following 

statements are equivalent: [(i)] 

1. ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. 

2. ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. 

3. ℎ−1 is 𝑝𝑓𝑀𝐶𝑡𝑠 mapping. 

 

Proof. (i) ⇒ (ii): Let us assume that ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. By definition, 𝐾 
is a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃), then ℎ𝑃(𝐾) is a 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃). Here, 𝐾 is 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃). Then 

1𝑋 − 𝐾 is a 𝑝𝑓𝑜𝑠 in (𝑋1, Γ𝑃). By assumption, ℎ𝑃(1𝑋 − 𝐾) is a 𝑝𝑓𝑀𝑐𝑠 in (𝑋2, 𝚿𝑃). Hence, 

1𝑌 − ℎ𝑃(1𝑋 − 𝐾) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃). Therefore, ℎ𝑃 is a 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mapping. 

(ii) ⇒ (iii): Let 𝐾 be a 𝑝𝑓𝑐𝑠 in (𝑋1, Γ𝑃) By (ii), ℎ𝑃(𝐾) is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃) . 

Hence, ℎ𝑃(𝐾) = (ℎ−1)−1(𝐾). So ℎ−1 is a 𝑝𝑓𝑀𝑜𝑠 in (𝑋2, 𝚿𝑃). Hence, ℎ−1 is 𝑝𝑓𝑀𝐶𝑡𝑠. 𝑃 𝑃 𝑃 

(iii)  ⇒  (i): Let  𝐾  be a  𝑝𝑓𝑜𝑠  in  (𝑋1, Γ𝑃) . By (iii),  (ℎ−1)−1(𝐾) = ℎ𝑃(𝐾)  is a 

𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 mapping. 

 

5 Conclusion 

In this paper, the concepts of 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝑂 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶 mappings in 𝑝𝑓𝑡𝑠 were 

discussed. Furthermore, the work was extended to include 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝐻𝑜𝑚 and 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐻𝑜𝑚. 

In addition, the study demonstrated 𝑝𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑀𝐶𝐻𝑜𝑚 and derived some of its related 

characteristics. In future, this work can be used in some mathematical applications. 
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