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We examine a semi-Markov process that simulates the upkeep and repair of a 

steady-state repairable system. Both the operating and repair times have general 

distributions and are independent random variables. Both internal and external 

factors may contribute to failures. While some malfunctions can be fixed, others 

cannot. Our approach takes into account that the system is not as good as new 

after a repairable breakdown. When a system fails and cannot be fixed, a new 

one is installed. We assume a Poisson process governs the occurrence of 

external breakdowns. Additionally, there is a maximum of N repairs, and 

regardless of the type of failure, a new system is installed in its place. They 

follow partial product processes since multiplicative rates impact operational 

and repair timeframes. The stationary distribution is computed for this system. 

Keywords: Markov process, semi-Markov process, geometric process, partial 

product process, reliability 

 

 

1. Introduction 

We examine a single unit repairable system that has sporadic failures that may or may not be 

repairable. The operational and repair timeframes are thought to be random variables with 

broad distributions. The systems can then be represented as continuous-time Markov chains 

under specific exponential-time assumptions. When operational and maintenance time 

probability distributions follow general distributions, this is no longer the case. The system 

can then be modelled using a semi-Markov process.  
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The literature on models for repairable systems that take into consideration the impact of 

several repairs on reliability is then briefly reviewed. Ravichandran [1] examined a class of 

simple models of redundant repairable systems in which a semi-Markov process was caused 

by stochastic behaviour. The author provided a number of simple instances. Lam [2] 

determined the Markov system failure rate and applied it to systems that could be repaired. 

Neuts et al. [3] regarded as a repairable system that had a policy of repair N (the system is 

replaced at the first failure after N repairs), phase-type dispersed operating and repair 

timeframes, and various failure types. In the present paper, the availability of a repairable 

system and the frequency of faults are examined using a semi-Markov model under the 

conditions given in Reference [3]. This paper extends the study of previous authors in 

several ways: (a) because the operating and repair times follow broad distributions, take into 

consideration a more general model; (b) this general system is vulnerable to both internal 

and external malfunctions; (c) since geometric processes dictate subsequent operational and 

repair durations, the model can take into account both dependability growth and decline; (d) 

for the semi-Markov stochastic process, the availability and failure rate are explicitly 

computed and (e) every discovered formula is computationally implemented and applied to a 

numerical example. 

 

The definition of semi-Markov process (SMP) can be seen in Cinlar [4]. A SMP is a 

stochastic process [𝑍(𝑡), 𝑡 ≥ 0] assuming values on a finite set 𝑆 can be interpreted in the 

following way: in times 𝑡𝑛, transitions occur, the successive occupied states 𝑋𝑛 induce a 

discrete Markov chain on S; and the stay in any state of S is a random variable depending on 

the current state as well as the state to be visited. 

 

Let {𝑋𝑛, 𝑛 = 1,2, . . } be a sequence of non-negative independent random variables and let 

𝐺(𝑥) be the distribution function of X1. Then –  is called a partial product process, if the 

distribution function of  𝑋𝑖+1 is 𝐺(𝛽𝑘𝑥) (𝑘 = 1,2, … )  where βk > 0 are constants and 𝛽𝑘 =
𝛽0𝛽1𝛽2…𝛽𝑘−1. 
 

We examine a system with a generic distribution that runs for arbitrary periods of time. The 

system is subjected to external failures which occur according to a Poisson process of rate 

𝜆1, and can be repairable and non-repairable. The necessary repair time has a general 

distribution if it is repairable. Additionally, internal problems are possible and cannot be 

fixed. 

There are two options in the model. First, the system is not as good as new after repairs, and 

a parameter that gauges the system's deterioration is used to discount the upcoming operating 

periods. Repair times lengthen as a result of this degradation. This circumstance is described 

by a geometric process whose parameter can be higher or less than one. The geometric 

process is stochastically decreasing if the parameter is larger than one. Conversely, the 

geometric process is increasing stochastically if the parameter is less than one. At the next 

failure, a new copy takes its place if the system survives long enough to perform N repairs. 

When a system fails and cannot be fixed, a new one is installed right away. 

 

The paper is organized as follows. In Section 2 the semi-Markov model is built and the main 

functions associated with the process are calculated. The stationary distribution of the semi-
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Markov process is determined in Section 3.  

 

2. THE MODEL 

We examine a system that is prone to both internal and external failures. At first, the system 

is brand-new and functional. The state of the system is up when it is operating and down 

when it is being repaired. Both the repair and operation times are arbitrary. 

 

2.1. ASSUMPTIONS OF THE MODEL 

Regarding the replacement policy and the operating and repair times, we assume the 

following. 

Assumption 1. External failures occur according to a Poisson process of rate 𝜆: Bernoulli 

trials determine whether these failures are repairable (with probability p) or non-repairable 

(with probability 𝑞 = 1 − 𝑝). Ageing can potentially cause the system to malfunction. This 

failure is always irreparable. 

Assumption 2. Repairable failures are attended to by a repairman. The system resumes 

functionality after repair, albeit an operational aspect affects the operating hours. A repair 

factor also affects subsequent repairs. When a system fails and cannot be fixed, a new one 

must be installed. We make the assumption that every failure happens on its own. 

Assumption 3. Let 𝑈𝑛 be the lifetime of the system after its (𝑛 − 1)st repair. If 𝐹(. ) is the 

distribution function of the lifetime of a new item, the probability distribution, 𝐹𝑛(. ) of 𝑈𝑛 is 

given by 

𝐹𝑛(𝑥) = 𝐹(𝛽0
2𝑛−1𝑥),   𝛽0 > 0, 𝑥 > 0             … (1) 

We assume that 𝐹(. )  has a finite non-null mean. Its density is denoted by 

𝑓(. ); and it is bounded. 

Assumption 4. Let 𝐷𝑛 be the repair time of the system after its 𝑛th failure. If 𝐺(. ) is the 

distribution function of the repair time for the first time, the probability distribution of 𝐷𝑛 is 

given by 

𝐷𝑛(𝑥) = 𝐺(𝛼0
2𝑛−1𝑥),   𝛼0 > 0, 𝑥 > 0  … (2) 

We assume that 𝐺(. ) has a finite non-null mean. 

Assumption 5. Sequences {𝑈𝑛, 𝑛 ≥ 1} and {𝐷𝑛, 𝑛 ≥ 1} g are independent. 

Assumption 6. The item is replaced with a new, identical one after the next failure if it has 

already undergone repairs. A new system replaces the old one instantly. The item is replaced 

with a new, identical one after the next failure if it has already undergone repairs. A new 

system replaces the old one instantly. 

 

The operational time when the system is new, 𝑈1; has the distribution function 

𝐹(𝑥) = 𝐹1(𝑥); and the first repair time, 𝐷1; has the distribution function 𝐺(𝑥) = 𝐺1(𝑥): 
The repair model that we consider includes different repair policies, depending on the factors 

𝛽0, 𝛼0. The ideal repair occurs when 𝛽0 = 1; 𝛼0 = 1 (the system is as good as new after 

repair), the successive operational and repair times form renewal processes. The imperfect 

repair occurs when 𝛽0 > 1; 𝛼0 ≤ 1 (the next operational time decreases and prolong the 

next non-ideal repair time before the system is replaced). It is of interest to say that the 

reliability growth (𝛽0 < 1) can be studied under the model. Other policies also can be 

included in this model depending on the factor values without additional calculations. 
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2.2. SEMI-MARKOV KERNEL 

First, we specify the states of the system. Let {𝑍(𝑡), 𝑡 ≥ 0} be the stochastic process with 

right continuous sample functions which represents the state of the system at time 𝑡; state 

space is denoted by 𝑆 = {0,1,2, . . . , 𝑁}. At time 0 the system just enters to state 0. The 

system follows a particular semi-Markov model in which the holding times in states do not 

depend on the next transition; that is, the staying time in states depends only on the current 

state and not on the state to be visited. 

 

Let 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ , be the transition epochs and the 𝜏𝑛 = 𝑡𝑛+1 − 𝑡𝑛, 𝑛 ≥ 0; the 

sojourn times in the successive states. The state entered into at time 𝑡𝑛 is denoted by 𝑋𝑛 =
𝑍(𝑡𝑛); so {𝑋𝑛, 𝑛 ≥ 0} is the embedded Markov chain of the SMP. 

The semi-Markov kernel, 𝑄(𝑥) = (𝑄𝑖𝑗(𝑥)), is defined for 𝑖, 𝑗 = 0,1, . . . , 𝑁, 𝑥 ≥ 0, by 

𝑄𝑖𝑗(𝑥) = 𝑃{𝑋𝑛+1 = 𝑗, 𝜏𝑛 ≤ 𝑖| 𝑋𝑛 = 𝑖} = 𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖} 𝑃{ 𝜏𝑛 ≤ 𝑥|𝑋𝑛 = 𝑖} … (3) 

 

As 𝑄𝑖𝑗(𝑥) does not depend on 𝑛, the transition probabilities are time-homogeneous. Next, 

we explicitly calculate the entries of the kernel 𝑄(𝑥). If the system is in state 𝑖, 𝑖 =
0,1, . . . , 𝑁 − 1; a transition to state 0 occurs if a non-repairable failure happens, while a 

repairable failure results in a transition to state 𝑖 + 1: 

The expression 𝑄𝑖0(𝑥) = 𝑃{𝑋𝑛+1 = 0, 𝜏𝑛 ≤ 𝑥| 𝑋𝑛 = 𝑖}, 𝑖 = 0,1,…𝑁 − 1, 𝑥 ≥ 0, is the 

probability that the item has completed 𝑖 repairs by time 𝑡𝑛; and that at 𝑡𝑛+1, the item is new, 

and this interval of time is ≤ 𝑥: This can occur in only two ways during the time 𝑥, at some 

infinitesimal interval (𝑢, 𝑢 + 𝑑𝑢) ; an external non-repairable failure or an internal failure 

occurs; the corresponding probability is 

𝑄𝑖0(𝑥) = ∫ 𝜆𝑞 𝑒−𝜆𝑥 (1 − 𝐹(𝛽0
2𝑢)) 𝑑𝑢 + ∫  𝑒−𝜆𝑥 𝑑𝐹(𝛽0

2𝑢)
𝑥

0

𝑥

0
    … (4) 

 

The expression 𝑄𝑖𝑗+1(𝑥) = 𝑃{𝑋𝑛+1 = 𝑖 + 1, 𝜏𝑛 ≤ 𝑥| 𝑋𝑛 = 𝑖} 𝑖 = 0,1,2… , 𝑁 − 1, 𝑥 ≥ 0, is 

the conditional probability that between 𝑡𝑛 and 𝑡𝑛+1, a repairable failure occurs, given that 

the system enters state 𝑖 at time 𝑡𝑛. Moreover, in the time remaining until 𝑥; the repair is 

completed. That event has the probability 

𝑄𝑖,𝑖+1(𝑥) = ∫ 𝜆𝑝𝑒−𝜆𝑢 (1 − 𝐹(𝛽0
2𝑢)𝑑𝑢 + 𝐺(𝛼0

2(𝑥 − 𝑢)𝑑𝑢
𝑥

0
  … (5) 

 

From the state 𝑁; the only possible transition is to state 0, since if the system has been 

repaired 𝑁 times it is replaced by a new one at the next failure. The corresponding 

probability is 

𝑄𝑁0(𝑥) = ∫ 𝜆 𝑒−𝜆𝑢 (1 − 𝐹(𝛽0
2𝑁𝑢))𝑑𝑢 + ∫  𝑒−𝜆𝑢 𝑑𝐹(𝛽0

2𝑁𝑢)
𝑥

0

𝑥

0
    … (6) 

𝑄𝑖𝑗(𝑥) = 0 in all other cases. The matrix 𝑄(𝑥) therefore has the form 

𝑄(𝑥) =

(

 
 

𝑄00(𝑥) 𝑄01(𝑥) 0

𝑄10(𝑥) 0 𝑄12(𝑥)

𝑄20(𝑥) 0 0

⋯
⋯
⋯

0
0
0

   ⋯                 ⋯           ⋯          ⋯    ⋯
  𝑄𝑁0(𝑥)           0              0         ⋯      0 )

 
 
     … (7) 

The sojourn time distribution function in state 𝑖 is 
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𝑄𝑖(𝑥) =∑𝑄𝑖𝑗(𝑥) = 𝑄𝑖0(𝑥) + 𝑄𝑖,𝑖+1(𝑥)

𝑁

𝑗=0

, 𝑖 = 0,… ,𝑁 − 1 

𝑄𝑁(𝑥) = 𝑄𝑁0(𝑥)  … (8) 

It is routinely verified that 𝑄𝑖(∞) = 1. 
 

2.3. THE EMBEDDED MARKOV CHAIN 

We evaluate the Laplace–Stieltjes transforms (LST) 

𝜑𝑖𝑗(𝑠) = ∫ 𝑒−𝑠𝑥𝑑𝑄𝑖𝑗(𝑥),    𝑠 > 0
∞

0

 

The LST of the distribution functions 𝐹 and 𝐺 will be denoted by 𝜙 and 𝜓, respectively. 

These play a prominent role in the following section. It is well known that the transition 

matrix 𝑃 = (𝑝𝑖𝑗) of the embedded Markov chain {𝑋𝑛, 𝑛 ≥ 0} can be obtained by taking 

limits: 𝑝𝑖𝑗 = lim
𝑥→∞

𝑄𝑖𝑗(𝑥) = 𝑄𝑖𝑗(∞) = lim
𝑠→0

𝜑𝑖𝑗(𝑠). 

Upon integration by parts, we get 

𝜑𝑖0(𝑠) = 𝜙((𝑠 + 𝜆)/𝛽0
2𝑖) + 𝜆𝑞

1−𝜙((𝑠+𝜆)/𝛽0
2𝑖)

𝑠+𝜆
, 𝑖 = 0,1,2, …𝑁 − 1  …. (9a) 

For 𝑖 = 𝑁; we similarly get 

         𝜑𝑁0(𝑠) = 𝜙((𝑠 + 𝜆)/𝛽0
2𝑁) + 𝜆

1−𝜙((𝑠+𝜆)/𝛽0
2𝑁)

𝑠+𝜆
            …. (9b) 

For 𝑖 = 0, 1, . . . , 𝑁 − 1; we get 

         𝜑𝑖,𝑗+1(𝑠) = 𝜆𝑝
1−𝜙(𝑠+𝜆/𝛽0

2𝑖)

𝑠+𝜆
𝜓(𝑠/𝛼0

2𝑖)              …. (10) 

In the transition matrix of the embedded Markov chain the repair factor is not involved: 

𝑃 =

(

 
 

𝑞 + 𝑝𝜙(𝜆)     𝑝 − 𝑝𝜙(𝜆)                                                            0

𝑞 + 𝑝𝜙(𝜆/𝛽0)                      𝑝 − 𝑝𝜙(𝜆/𝛽0)                                 ⋯     

𝑞 + 𝑝𝜙(𝜆/𝛽0
2)                                            𝑝 − 𝑝𝜙(𝜆/𝛽0

2)        ⋯  
     ⋯                                                                                                   ⋯    
     1                                                                                                     ⋯    )

 
 

 … (11) 

 

3. STATIONARY DISTRIBUTION 

The stationary distribution 𝑝 = {𝑝𝑗, 𝑗 ∈ 𝑆} of an irreducible and ergodic SMP {𝑍(𝑡), 𝑡 ≥ 0} 

with state space S is defined by 

              𝑝𝑗 = lim
𝑡→∞

𝑃{𝑍(𝑡) = 𝑗|𝑍(0) = 𝑖}, 𝑗 ∈ 𝑆          

As is well known [5], this stationary probability vector is given by 

𝑝𝑗 =
𝜋𝑗𝜂𝑗

∑ 𝜋𝑘𝜂𝑘𝑘∈𝑆
,   𝑗 ∈ 𝑆              … (12) 

with 𝜂𝑗 being the expected holding time in state 𝑗; and 𝜋 = (𝜋𝑗, 𝑗 ∈ 𝑆}, the stationary 

distribution of the embedded Markov chain. For calculating these probabilities 𝑝𝑗, 𝑗 ∈ 𝑆; we 

must first calculate 𝜋𝑗 and 𝜂𝑗 , 𝑗 ∈ 𝑆.              

  

3.1. STATIONARY DISTRIBUTION OF THE EMBEDDED MARKOV CHAIN 

In the embedded Markov chain the state space is 𝑆 = {0,1,2, . . . , 𝑁}; thus 

 𝜋 = (𝜋0, 𝜋1, … , 𝜋𝑁), with 𝜋𝑃 = 𝜋, 𝜋𝑗 ≥ 0 for all 𝑗, and 𝜋𝑒 =  1, 𝑒 being an (𝑁 + 1)-
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dimensional vector. The equations resulting of the formula 𝜋𝑃 =  𝑝 are 

𝜋𝑖 = 𝑝(1 − 𝜙(𝜆/𝛽0
2𝑖−1))𝜋𝑖−1,  𝑖 = 1,2,…𝑁 − 1 

and  

𝜋0 =∑ 𝜋𝑖(𝑞 + 𝑝𝜙(𝜆/𝛽0
2𝑖)) + 𝜋𝑁

𝑁−1

𝑖=0
 

By recurrence we get 

𝜋1 = 𝜋0𝑝
𝑖∏ (1 − 𝜙(𝜆/𝛽0

2𝑘))𝑖−1
𝑘=0 ,  𝑖 = 1,2, …𝑁     … (13a) 

and from the normalization condition 𝜋𝑒 = 11; the value of 𝜋0 is calculated: 

𝜋0 = [1 + ∑ 𝑝𝑖∏ (1 − 𝜙(𝜆/𝛽0
2𝑘))𝑖−1

𝑘=0  𝑁
𝑖=1 ]

−1
       … (13b) 
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