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In this study, two machine learning models, Random Forest Regressor (RFR)
and Decision Tree Regressor (DTR), were applied to predict surface roughness
(SR) in machining processes (turning) based on key input parameters: spindle
speed (SS), feed rate (FR), and depth of cut (DOC). The performance of both
models was evaluated using R2 (R-squared), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The Decision
Tree Regressor achieved near-perfect accuracy with an R2 score of 0.9999 and
minimal error metrics. The Random Forest Regressor also performed
exceptionally well, with an R2 of 0.9988 and similarly low error values. Visual
analyses, including residual and radar plots, confirmed the high accuracy of
both models, with the Decision Tree Regressor slightly outperforming the
Random Forest model. However, the Random Forest Regressor's ensemble
structure provides better generalization and robustness, making it a more
reliable model for larger or more complex datasets. This study concludes that
both models are highly effective for predicting surface roughness, but the choice
between them should depend on the specific trade-offs between accuracy and
generalization needed in a given application.
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1. Introduction

To meet human requirements, manufacturing entails transforming raw resources into
completed items. The physical characteristics, size, and shape of a material are changed as a
result of several manufacturing processes that are used to convert raw materials. Figure 1
shows the results of turning, a type of machining that removes material to make pieces that
can rotate. A lathe or turning machine, a workpiece, a fixture, and a cutting tool are all
necessary for turning. The turning machine spins at high speeds while the work piece, which
is a pre-shaped piece of material, is fastened to a fixture. The cutter is usually a machine-
secured, single-pointed cutting tool, while multi-point tools are used in some activities. To
achieve the required shape, the cutting tool is fed into the spinning work piece and chips
away material.
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Figure 1. Turning Process

components with several characteristics, including holes, grooves, threads, tapers, different
diameter steps, and even curved surfaces, may be produced by turning. These components
are usually axi-symmetric. Components used in small numbers, maybe for prototypes, such
custom-designed shafts and fasteners, are common in parts that are manufactured entirely by
turning. Adding or refining features on items that were made using a different technique is a
frequent secondary usage for turning. For parts with a basic shape already produced, turning
is the appropriate process for adding precise rotating features because of the high tolerances
and surface finishes it can deliver. Any discussion of spindle or work piece speed must
include both.
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Here, v is the cutting speed in turning,
D is the initial diameter of the work piece in mm and N is the spindle speed in RPM.

Feed is the rate at which the tool advances along its cutting path. The feed of the tool also
affects to the processing speed and the roughness of surface.

Fm=f. N mm. min?!

Here, Fm is the feed in mm per minute, f is the feed in mm/rev and N is the spindle speed in
RPM.

Depth of cut is practically self explanatory. It can be defined as the thickness of the layer
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being removed (in a single pass) from the work piece or the distance from the uncut surface
of the work to the cut surface, expressed in mm.

D-d
ot = - mm

Here, D and d represent initial and final diameter (in mm) of the job respectively.

It is important to note, though, that the diameter of the work piece is reduced by two times
the depth of cut because this layer is being removed from both sides of the work. While
turning flame-hardened medium carbon steel with inserts coated with TiN, Al203, and
TiCN, Kbhrais et al. used a multiple regression model to determine surface roughness as a
function of cutting parameters [1]. The impact of turning parameters on the surface finish of
the workpiece was investigated using Taguchi approach in conjunction with an experimental
design and signal-to-noise ratio (S/N). Analysis of variance (ANOVA) was used to study the
impact of turning factors. The feed rate, cutting speed, and cutting depth were the factors that
were evaluated. The interplay between depth of cut and feed was determined to be the most
significant among the turning characteristics that were investigated. Inserts coated with TiN-
Al203-TiCN had an average surface roughness (Ra) of around 2.44 pm and a minimum
value of 0.74 um, as reported in references [2-4]. Furthermore, surface roughness levels were
also reasonably predicted by the regression model when compared to experimental values.
Optimising the machining parameters (feed rate, cutting speed, and depth of cut) in relation
to surface roughness was studied by Yadav et al. [5]. This study makes use of an L'27
orthogonal array, the signal-to-noise ratio (S/N), and analysis of variance (ANOVA).
Experiments are conducted on a STALLION-100 HS CNC lathe using three levels of
machining settings. It turns out that 0.89 is the sweet spot for surface roughness (Ra). Further
analysis reveals that feed rate, followed by depth of cut, determines surface roughness to the
greatest extent. When it comes to factors influencing surface roughness, cutting speed is the
least important [6-9]. In the end, confirmation trials are used to confirm the best outcomes.
While turning Ti-6Al-4V alloy under dry, flooded, and Minimum Quantity Lubrication
(MQL) conditions, Ramana et al. used Taguchi's robust design methodology and multiple
regression analysis to optimise process parameters for surface roughness [10]. In comparing
the outcomes of dry, flooded, and MQL lubricant conditions, it is evident that MQL exhibits
superior performance and an improvement in reducing surface roughness. Compared to dry
and flooded lubricant conditions, Analysis of Mean (ANOM) shows that MQL is appropriate
at deeper depths of cut [11-14]. According to ANOM, tools that are not coated perform
better than tools that are coated with CVD or PVD under MQL circumstances, whereas tools
that are coated with CVD perform better in dry and flooded lubricant conditions than tools
that are not coated with either PVD or CVD. The analysis of variance also shows that feed
rate is a key factor in achieving the ideal surface roughness. The impact of process
parameters on material removal rate (MRR) during C34000 turning was studied by Hassan et
al. [15]. Applying the Taguchi approach, we are able to optimise the MRR and other single-
response optimisation issues. To optimise MRR in the experimental domain, twenty-seven
runs of the Taguchi method's L'27 orthogonal array are run. These runs yield objective
functions. By itself, optimising the MRR yields an MRR of 8.91. We have found the best
values for the process parameters that optimise MRR simultaneously. Verification trials were
conducted to provide the best possible outcomes. [16] Manish kumar Thakur et al. used a
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deep neural network in conjunction with the tried-and-true linear regression technigue in
order to predict certain cutting parameters of CNC milling tool wear, to build their
predictive models and found that the accuracy of the hybrid model that included
machine  learning methods was higher than that of traditional linear regression.

2. Materials and Methods
2.1. Data collection and pre-processing

The dataset used in this study was obtained from machining experiments conducted using a
lathe machine, where the cutting conditions, such as spindle speed (SS), feed rate (FR), and
depth of cut (DOC), were systematically varied. The surface roughness (SR) of the machined
parts was measured as the primary response variable to evaluate the quality of the machining
process. The data includes a total of 9 samples augmented to 500 rows, with 70% used for
model training and 30% for testing. Before applying machine learning techniques, the data
was preprocessed. Missing values were checked, and none were found. All features were
normalized to ensure uniformity and prevent bias during model training. The dataset was
then split into independent variables (SS, FR, and DOC) and the dependent variable (SR).
The final dataset was divided into training and testing sets with a 70:30 ratio, ensuring that
the model could be adequately trained while preserving data for unbiased performance
evaluation. The cutting parameters and design of experiments to calculate surface roughness
are shown in Table 2 and 3.

Table 1. Cutting parameters and levels for dry turning

level
Parameters/Factors
1 2 3
A | Spindle speed (rpm) 160 320 620
B | Feed rate (mm/rev) 0.3 0.4 0.5
C | Depth of cut (mm) 0.7 0.8 0.9
Table 2. Design of Experiments
Experiment no Spindle speed Feed rate Depth of cut Surface roughness, Ra
) (rpm), N (mm/rev), f (mm), A (um)
1 160 0.3 0.7 2.24
2 160 0.4 0.8 5.67
3 160 0.5 0.9 5.93
4 320 0.3 0.8 5.34
5 320 0.4 0.9 4.87
6 320 0.5 0.7 6.07
7 620 0.3 0.9 2.91
8 620 0.4 0.7 3.78
9 620 0.5 0.8 5.05

3. Machine Learning Algorithm: Random Forest Regressor

To predict the surface roughness based on the machining parameters, two machine learning
regression models were applied: Random Forest Regressor (RFR) and Decision Tree
Regressor (DTR).
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import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import r2_score, mean_squared_error, mean_sbsolute_error
import numpy as np

import matplotlib.pyplot as plt

import numpy as np

file_path = r'C:\Users\HPF\Downloadshaugmented_CPO-Paper.csv'
df = pd.read_csv{file_path}
T 1

efine ithe fegture columns ond The target varigble

I
X = dF[['55", 'FR', 'DOC’

y = df["SR’
# Split the daotaset into troini and testing sets (78% troin, 38% test)
¥_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.3, random_state=41)

# Apply Random Forest Regressor
rf_regressor = RandomForestRegressor(random_state=42)
rf_regressor.fit{X_train, y_train}

redictions

t
-
=]
ar
m
0™

rf_regressor.predict(¥_test)

# Calculate K2, RMSE;, MSE, and Md

r2 = r2_score(y_test, y_pred)

mse = mean_squared_error{y_test, y_pred)
rmse = np.sgrt{mse)

mae = mean_absolute_error(y_test, y_pred)
# Dutput the results

print(f'R2: {r2}")

print(f'MSE: {msel}")

print(f'RMSE: {rmsel’)

print(f'MAE: {mael’)

Figure 2. Python code for random forest regressor
3.1 Random Forest Regressor (RFR)

Random Forest Regressor is an ensemble learning method that builds multiple decision trees
and combines their results to improve prediction accuracy and reduce overfitting. The key
advantage of Random Forest is its ability to capture complex, non-linear relationships within
the data while maintaining robust generalization capabilities. The Random Forest Regressor
was trained on 70% of the dataset using 100 trees (estimators). Default hyperparameters
were used for computational efficiency, while the random state parameter ensured
reproducibility. The model combined the results of multiple decision trees to provide more
accurate predictions. Once trained, the model was used to predict the surface roughness
values for the test set (30% of the dataset).

3.2 Decision Tree Regressor (DTR)

The Decision Tree Regressor is a single-tree model that splits the data recursively based on
feature values to predict a continuous target variable. While Decision Trees are easy to
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interpret and can model complex patterns, they are prone to overfitting, especially with small
datasets, leading to reduced generalization performance. The Decision Tree Regressor was
also trained on the same 70% of the dataset. The tree was grown to full depth to allow it to
capture as much variance in the training data as possible. As with the Random Forest model,
the random state parameter was used for reproducibility. Similar to the Random Forest
model, the Decision Tree was used to predict surface roughness on the test data.

4, Model Evaluation

Both the Random Forest Regressor and Decision Tree Regressor were evaluated on the test
set using the metrics. R-squared (R?): This metric measures the proportion of variance in the
target variable (SR) explained by the input features (SS, FR, DOC). A higher R2 indicates a
better fit of the model to the data. Mean Squared Error (MSE): The average squared
difference between actual and predicted values, providing an overall indication of model
performance. Root Mean Squared Error (RMSE): The square root of MSE, making it easier
to interpret the error in the same units as the target variable (SR). Mean Absolute Error
(MAE): The average of the absolute differences between actual and predicted values,
indicating the magnitude of errors in predictions.

5. Results and discussion
5.1. Random Forest Regressor Results

The Random Forest Regressor demonstrated exceptional performance in predicting surface
roughness (SR) based on the given machining parameters. The model achieved an R2 value
of 0.9988, indicating that it explained 99.88% of the variance in surface roughness. The error
metrics further supported the model's accuracy, with a Mean Squared Error (MSE) of
0.0020, a Root Mean Squared Error (RMSE) of 0.0449, and a Mean Absolute Error (MAE)
of 0.0165. These low error values suggest that the predictions made by the Random Forest
model were very close to the actual values, confirming the model's high precision.

Predicted vs Actual Values for SR

@ Predicted vs Actual
= Ideal Line

Predicted Values (SR)

T T T T . T T T
25 30 35 40 45 5.0 55 6.0
Actual Values (SR)

Figure 3. Actual v/s predicted values on mean line for random forest regressor
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Radar Plot: Predicted vs Actual Values for 5 Samples

Sample 2
Sample
Sample 1
Sample
Actual
Predicted
Sample 5

Figure 4. Actual v/s predicted values on spiral chart for random forest regressor

The Residual Plot for the Random Forest Regressor (fig. 3 and 4) further validated the
model’s accuracy. Most of the residuals (the difference between actual and predicted values)
were clustered around zero, indicating minimal errors in predictions. While there were a few
outliers with larger residuals (below -0.25), the majority of the residuals remained close to
zero, suggesting that the model was able to generalize well to the test data. The Radar Plot,
which compared actual and predicted values for five samples, showed near-perfect alignment
between the two sets of values. The overlap of the actual and predicted areas on the radar
plot highlights the strong predictive power of the Random Forest Regressor.

5.2. Decision Tree Regressor Results

The Decision Tree Regressor also exhibited remarkable performance, achieving an R2 value
of 0.9999, which was slightly higher than that of the Random Forest Regressor. The MSE
was 0.0001966, and the RMSE was 0.0140, both of which were very low, indicating
extremely accurate predictions. The MAE was also very low at 0.0113, suggesting that the
model made only minimal errors in predicting surface roughness.
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Predicted vs Actual Values for SR {Decision Tree Regressor)
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Figure 5. Actual v/s predicted values on mean line for decision tree regressor

Radar Plot: Predicted vs Actual Values for 5 Samples
Sample 2

Actual
Predicted

Sample 5

Figure 6. Actual v/s predicted values on spiral chart for decision tree regressor

The visual analysis supported these numerical results. The Predicted vs Actual Plot showed
that the predicted values were almost perfectly aligned with the actual values, with very few
deviations (fig. 5 and 6). Similarly, the Radar Plot comparing actual and predicted values for
five samples demonstrated close alignment, reinforcing the model’s predictive accuracy. In
this case, the Decision Tree Regressor's predictions were nearly identical to the actual values,
further highlighting its strong performance for this dataset.

5.3. Comparative Discussion

Both the Random Forest Regressor and Decision Tree Regressor exhibited outstanding
performance in predicting surface roughness based on machining parameters. However,
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there were some differences worth noting. While the Decision Tree Regressor achieved
slightly better accuracy, as indicated by its higher R2 score and lower error metrics (MSE,
RMSE, MAE), the Random Forest Regressor offers superior generalization capabilities. The
Residual Plot for the Random Forest model showed a more balanced error distribution, while
the Decision Tree model, although highly accurate, is more prone to overfitting, especially
when applied to larger or more complex datasets. The error values and R-squared value is
shown in Table 3.

Table 3
Model R2 MSE RMSE MAE
Random Forest Regressor 0.9988 0.0020 0.04487 0.0165
Decision Tree Regressor 0.9998 0.0001 0.0140 0.0112

The Random Forest Regressor, being an ensemble model, is inherently more robust and less
likely to overfit compared to a single Decision Tree. This makes Random Forest a better
option for applications where generalization to unseen data is critical. Despite the slightly
lower accuracy of the Random Forest model in this specific dataset, its ensemble nature
ensures that it handles data variability better, making it a more reliable choice for larger and
more complex datasets. Summarizing both the techniques, the Random Forest Regressor and
Decision Tree Regressor are highly effective at predicting surface roughness from machining
parameters, achieving near-perfect accuracy. The Decision Tree Regressor slightly
outperformed the Random Forest model in this particular dataset, but the Random Forest
Regressor is more robust and generalizable, making it a preferable model in cases where
overfitting is a concern or when dealing with more complex datasets. Both models are
suitable for use in predictive modelling of machining processes, but the choice of model
should depend on the specific requirements of the application, particularly in terms of the
balance between accuracy and generalization.

6. Conclusion

This study explored the predictive capabilities of two machine learning models, Random
Forest Regressor (RFR) and Decision Tree Regressor (DTR), in estimating surface
roughness (SR) based on machining parameters: spindle speed (SS), feed rate (FR), and
depth of cut (DOC). Both models demonstrated outstanding predictive accuracy, with near-
perfect results in terms of R?, MSE, RMSE, and MAE. The Decision Tree Regressor
exhibited slightly better performance in this dataset, achieving an R2 score of 0.9999 and
lower error values. However, the Random Forest Regressor, while marginally less accurate,
offers superior generalization capabilities due to its ensemble nature, which makes it more
robust and less prone to overfitting. In practical applications, the Decision Tree Regressor
can be highly effective when the focus is on obtaining the most accurate predictions for
smaller, simpler datasets. On the other hand, the Random Forest Regressor is the preferred
choice for more complex or larger datasets, where overfitting may pose a risk. Overall, both
models are well-suited for predictive modelling in machining processes, but the choice
between them should depend on the specific requirements of the task, particularly the trade-
off between accuracy and generalization.
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