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In this study, two machine learning models, Random Forest Regressor (RFR) 

and Decision Tree Regressor (DTR), were applied to predict surface roughness 

(SR) in machining processes (turning) based on key input parameters: spindle 

speed (SS), feed rate (FR), and depth of cut (DOC). The performance of both 

models was evaluated using R² (R-squared), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The Decision 

Tree Regressor achieved near-perfect accuracy with an R² score of 0.9999 and 

minimal error metrics. The Random Forest Regressor also performed 

exceptionally well, with an R² of 0.9988 and similarly low error values. Visual 

analyses, including residual and radar plots, confirmed the high accuracy of 

both models, with the Decision Tree Regressor slightly outperforming the 

Random Forest model. However, the Random Forest Regressor's ensemble 

structure provides better generalization and robustness, making it a more 

reliable model for larger or more complex datasets. This study concludes that 

both models are highly effective for predicting surface roughness, but the choice 

between them should depend on the specific trade-offs between accuracy and 

generalization needed in a given application. 

Keywords: Turning, Machine learning, Spindle, Feed, Depth of cut, 

Machining.  
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1. Introduction 

To meet human requirements, manufacturing entails transforming raw resources into 

completed items. The physical characteristics, size, and shape of a material are changed as a 

result of several manufacturing processes that are used to convert raw materials. Figure 1 

shows the results of turning, a type of machining that removes material to make pieces that 

can rotate. A lathe or turning machine, a workpiece, a fixture, and a cutting tool are all 

necessary for turning. The turning machine spins at high speeds while the work piece, which 

is a pre-shaped piece of material, is fastened to a fixture. The cutter is usually a machine-

secured, single-pointed cutting tool, while multi-point tools are used in some activities. To 

achieve the required shape, the cutting tool is fed into the spinning work piece and chips 

away material. 

 

Figure 1. Turning Process 

components with several characteristics, including holes, grooves, threads, tapers, different 

diameter steps, and even curved surfaces, may be produced by turning. These components 

are usually axi-symmetric. Components used in small numbers, maybe for prototypes, such 

custom-designed shafts and fasteners, are common in parts that are manufactured entirely by 

turning. Adding or refining features on items that were made using a different technique is a 

frequent secondary usage for turning. For parts with a basic shape already produced, turning 

is the appropriate process for adding precise rotating features because of the high tolerances 

and surface finishes it can deliver. Any discussion of spindle or work piece speed must 

include both. 

V =
πDN

1000
m min-1 

Here, v is the cutting speed in turning,  

D is the initial diameter of the work piece in mm and N is the spindle speed in RPM. 

Feed is the rate at which the tool advances along its cutting path. The feed of the tool also 

affects to the processing speed and the roughness of surface.  

Fm = f. N mm. min-1 

Here, Fm is the feed in mm per minute, f is the feed in mm/rev and N is the spindle speed in 

RPM. 

Depth of cut is practically self explanatory. It can be defined as the thickness of the layer 
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being removed (in a single pass) from the work piece or the distance from the uncut surface 

of the work to the cut surface, expressed in mm. 

dcut = 
D−d

2
 mm 

Here, D and d represent initial and final diameter (in mm) of the job respectively. 

It is important to note, though, that the diameter of the work piece is reduced by two times 

the depth of cut because this layer is being removed from both sides of the work. While 

turning flame-hardened medium carbon steel with inserts coated with TiN, Al2O3, and 

TiCN, Khrais et al. used a multiple regression model to determine surface roughness as a 

function of cutting parameters [1]. The impact of turning parameters on the surface finish of 

the workpiece was investigated using Taguchi approach in conjunction with an experimental 

design and signal-to-noise ratio (S/N). Analysis of variance (ANOVA) was used to study the 

impact of turning factors. The feed rate, cutting speed, and cutting depth were the factors that 

were evaluated. The interplay between depth of cut and feed was determined to be the most 

significant among the turning characteristics that were investigated. Inserts coated with TiN-

Al2O3-TiCN had an average surface roughness (Ra) of around 2.44 μm and a minimum 

value of 0.74 μm, as reported in references [2-4]. Furthermore, surface roughness levels were 

also reasonably predicted by the regression model when compared to experimental values. 

Optimising the machining parameters (feed rate, cutting speed, and depth of cut) in relation 

to surface roughness was studied by Yadav et al. [5]. This study makes use of an L'27 

orthogonal array, the signal-to-noise ratio (S/N), and analysis of variance (ANOVA). 

Experiments are conducted on a STALLION-100 HS CNC lathe using three levels of 

machining settings. It turns out that 0.89 is the sweet spot for surface roughness (Ra). Further 

analysis reveals that feed rate, followed by depth of cut, determines surface roughness to the 

greatest extent. When it comes to factors influencing surface roughness, cutting speed is the 

least important [6-9]. In the end, confirmation trials are used to confirm the best outcomes. 

While turning Ti-6Al-4V alloy under dry, flooded, and Minimum Quantity Lubrication 

(MQL) conditions, Ramana et al. used Taguchi's robust design methodology and multiple 

regression analysis to optimise process parameters for surface roughness [10]. In comparing 

the outcomes of dry, flooded, and MQL lubricant conditions, it is evident that MQL exhibits 

superior performance and an improvement in reducing surface roughness. Compared to dry 

and flooded lubricant conditions, Analysis of Mean (ANOM) shows that MQL is appropriate 

at deeper depths of cut [11–14]. According to ANOM, tools that are not coated perform 

better than tools that are coated with CVD or PVD under MQL circumstances, whereas tools 

that are coated with CVD perform better in dry and flooded lubricant conditions than tools 

that are not coated with either PVD or CVD. The analysis of variance also shows that feed 

rate is a key factor in achieving the ideal surface roughness. The impact of process 

parameters on material removal rate (MRR) during C34000 turning was studied by Hassan et 

al. [15]. Applying the Taguchi approach, we are able to optimise the MRR and other single-

response optimisation issues. To optimise MRR in the experimental domain, twenty-seven 

runs of the Taguchi method's L'27 orthogonal array are run. These runs yield objective 

functions. By itself, optimising the MRR yields an MRR of 8.91. We have found the best 

values for the process parameters that optimise MRR simultaneously. Verification trials were 

conducted to provide the best possible outcomes. [16] Manish kumar Thakur et al. used  a  
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deep neural network  in  conjunction with  the  tried-and-true  linear  regression  technique in  

order  to  predict  certain  cutting parameters  of CNC milling tool wear, to  build  their 

predictive models and found that the  accuracy  of  the  hybrid  model  that  included  

machine  learning methods was higher than that of traditional linear regression. 

 

2. Materials and Methods 

2.1. Data collection and pre-processing 

The dataset used in this study was obtained from machining experiments conducted using a 

lathe machine, where the cutting conditions, such as spindle speed (SS), feed rate (FR), and 

depth of cut (DOC), were systematically varied. The surface roughness (SR) of the machined 

parts was measured as the primary response variable to evaluate the quality of the machining 

process. The data includes a total of 9 samples augmented to 500 rows, with 70% used for 

model training and 30% for testing. Before applying machine learning techniques, the data 

was preprocessed. Missing values were checked, and none were found. All features were 

normalized to ensure uniformity and prevent bias during model training. The dataset was 

then split into independent variables (SS, FR, and DOC) and the dependent variable (SR). 

The final dataset was divided into training and testing sets with a 70:30 ratio, ensuring that 

the model could be adequately trained while preserving data for unbiased performance 

evaluation. The cutting parameters and design of experiments to calculate surface roughness 

are shown in Table 2 and 3. 

Table 1. Cutting parameters and levels for dry turning 

Parameters/Factors 
level 

1 2 3 

A Spindle speed (rpm) 160 320 620 

B Feed rate (mm/rev) 0.3 0.4 0.5 

C Depth of cut (mm) 0.7 0.8 0.9 

Table 2. Design of Experiments 

Experiment no. 
Spindle speed 

(rpm), N 

Feed rate 

(mm/rev), f 

Depth of cut 

(mm), A 

Surface roughness, Ra 

(µm) 

1 160 0.3 0.7 2.24 

2 160 0.4 0.8 5.67 

3 160 0.5 0.9 5.93 

4 320 0.3 0.8 5.34 

5 320 0.4 0.9 4.87 

6 320 0.5 0.7 6.07 

7 620 0.3 0.9 2.91 

8 620 0.4 0.7 3.78 

9 620 0.5 0.8 5.05 

 

3. Machine Learning Algorithm: Random Forest Regressor 

To predict the surface roughness based on the machining parameters, two machine learning 

regression models were applied: Random Forest Regressor (RFR) and Decision Tree 

Regressor (DTR). 
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Figure 2. Python code for random forest regressor 

3.1 Random Forest Regressor (RFR) 

Random Forest Regressor is an ensemble learning method that builds multiple decision trees 

and combines their results to improve prediction accuracy and reduce overfitting. The key 

advantage of Random Forest is its ability to capture complex, non-linear relationships within 

the data while maintaining robust generalization capabilities. The Random Forest Regressor 

was trained on 70% of the dataset using 100 trees (estimators). Default hyperparameters 

were used for computational efficiency, while the random state parameter ensured 

reproducibility. The model combined the results of multiple decision trees to provide more 

accurate predictions. Once trained, the model was used to predict the surface roughness 

values for the test set (30% of the dataset). 

3.2 Decision Tree Regressor (DTR) 

The Decision Tree Regressor is a single-tree model that splits the data recursively based on 

feature values to predict a continuous target variable. While Decision Trees are easy to 
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interpret and can model complex patterns, they are prone to overfitting, especially with small 

datasets, leading to reduced generalization performance. The Decision Tree Regressor was 

also trained on the same 70% of the dataset. The tree was grown to full depth to allow it to 

capture as much variance in the training data as possible. As with the Random Forest model, 

the random state parameter was used for reproducibility. Similar to the Random Forest 

model, the Decision Tree was used to predict surface roughness on the test data. 

 

4. Model Evaluation 

Both the Random Forest Regressor and Decision Tree Regressor were evaluated on the test 

set using the metrics. R-squared (R²): This metric measures the proportion of variance in the 

target variable (SR) explained by the input features (SS, FR, DOC). A higher R² indicates a 

better fit of the model to the data. Mean Squared Error (MSE): The average squared 

difference between actual and predicted values, providing an overall indication of model 

performance. Root Mean Squared Error (RMSE): The square root of MSE, making it easier 

to interpret the error in the same units as the target variable (SR). Mean Absolute Error 

(MAE): The average of the absolute differences between actual and predicted values, 

indicating the magnitude of errors in predictions. 

 

5. Results and discussion 

5.1. Random Forest Regressor Results 

The Random Forest Regressor demonstrated exceptional performance in predicting surface 

roughness (SR) based on the given machining parameters. The model achieved an R² value 

of 0.9988, indicating that it explained 99.88% of the variance in surface roughness. The error 

metrics further supported the model's accuracy, with a Mean Squared Error (MSE) of 

0.0020, a Root Mean Squared Error (RMSE) of 0.0449, and a Mean Absolute Error (MAE) 

of 0.0165. These low error values suggest that the predictions made by the Random Forest 

model were very close to the actual values, confirming the model's high precision. 

 

Figure 3. Actual v/s predicted values on mean line for random forest regressor 
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Figure 4. Actual v/s predicted values on spiral chart for random forest regressor 

The Residual Plot for the Random Forest Regressor (fig. 3 and 4) further validated the 

model’s accuracy. Most of the residuals (the difference between actual and predicted values) 

were clustered around zero, indicating minimal errors in predictions. While there were a few 

outliers with larger residuals (below -0.25), the majority of the residuals remained close to 

zero, suggesting that the model was able to generalize well to the test data. The Radar Plot, 

which compared actual and predicted values for five samples, showed near-perfect alignment 

between the two sets of values. The overlap of the actual and predicted areas on the radar 

plot highlights the strong predictive power of the Random Forest Regressor. 

5.2. Decision Tree Regressor Results 

The Decision Tree Regressor also exhibited remarkable performance, achieving an R² value 

of 0.9999, which was slightly higher than that of the Random Forest Regressor. The MSE 

was 0.0001966, and the RMSE was 0.0140, both of which were very low, indicating 

extremely accurate predictions. The MAE was also very low at 0.0113, suggesting that the 

model made only minimal errors in predicting surface roughness. 
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Figure 5. Actual v/s predicted values on mean line for decision tree regressor 

 

Figure 6. Actual v/s predicted values on spiral chart for decision tree regressor 

The visual analysis supported these numerical results. The Predicted vs Actual Plot showed 

that the predicted values were almost perfectly aligned with the actual values, with very few 

deviations (fig. 5 and 6). Similarly, the Radar Plot comparing actual and predicted values for 

five samples demonstrated close alignment, reinforcing the model’s predictive accuracy. In 

this case, the Decision Tree Regressor's predictions were nearly identical to the actual values, 

further highlighting its strong performance for this dataset. 

5.3. Comparative Discussion 

Both the Random Forest Regressor and Decision Tree Regressor exhibited outstanding 

performance in predicting surface roughness based on machining parameters. However, 



                             Cutting Parameter Optimization of Single Point.... Sunil Kumar Patidar et al. 4228 
 

Nanotechnology Perceptions Vol. 20 No.6 (2024) 

there were some differences worth noting. While the Decision Tree Regressor achieved 

slightly better accuracy, as indicated by its higher R² score and lower error metrics (MSE, 

RMSE, MAE), the Random Forest Regressor offers superior generalization capabilities. The 

Residual Plot for the Random Forest model showed a more balanced error distribution, while 

the Decision Tree model, although highly accurate, is more prone to overfitting, especially 

when applied to larger or more complex datasets. The error values and R-squared value is 

shown in Table 3. 

Table 3 
Model R² MSE RMSE MAE 

Random Forest Regressor 0.9988 0.0020 0.04487 0.0165 

Decision Tree Regressor 0.9998 0.0001 0.0140 0.0112 

The Random Forest Regressor, being an ensemble model, is inherently more robust and less 

likely to overfit compared to a single Decision Tree. This makes Random Forest a better 

option for applications where generalization to unseen data is critical. Despite the slightly 

lower accuracy of the Random Forest model in this specific dataset, its ensemble nature 

ensures that it handles data variability better, making it a more reliable choice for larger and 

more complex datasets. Summarizing both the techniques, the Random Forest Regressor and 

Decision Tree Regressor are highly effective at predicting surface roughness from machining 

parameters, achieving near-perfect accuracy. The Decision Tree Regressor slightly 

outperformed the Random Forest model in this particular dataset, but the Random Forest 

Regressor is more robust and generalizable, making it a preferable model in cases where 

overfitting is a concern or when dealing with more complex datasets. Both models are 

suitable for use in predictive modelling of machining processes, but the choice of model 

should depend on the specific requirements of the application, particularly in terms of the 

balance between accuracy and generalization. 

 

6. Conclusion 

This study explored the predictive capabilities of two machine learning models, Random 

Forest Regressor (RFR) and Decision Tree Regressor (DTR), in estimating surface 

roughness (SR) based on machining parameters: spindle speed (SS), feed rate (FR), and 

depth of cut (DOC). Both models demonstrated outstanding predictive accuracy, with near-

perfect results in terms of R², MSE, RMSE, and MAE. The Decision Tree Regressor 

exhibited slightly better performance in this dataset, achieving an R² score of 0.9999 and 

lower error values. However, the Random Forest Regressor, while marginally less accurate, 

offers superior generalization capabilities due to its ensemble nature, which makes it more 

robust and less prone to overfitting. In practical applications, the Decision Tree Regressor 

can be highly effective when the focus is on obtaining the most accurate predictions for 

smaller, simpler datasets. On the other hand, the Random Forest Regressor is the preferred 

choice for more complex or larger datasets, where overfitting may pose a risk. Overall, both 

models are well-suited for predictive modelling in machining processes, but the choice 

between them should depend on the specific requirements of the task, particularly the trade-

off between accuracy and generalization. 
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