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Shell and tube heat exchangers are widely used in industries due to their ease of
cleaning and adaptability, essential for efficient heat management. This study
numerically examines heat transfer efficiency with 22% cut segmental baffles
and helical baffles (200, 300, 400, and 500). Results show that 22% cut
segmental baffles achieve a higher heat transfer coefficient compared to
continuous helical baffles. Heat transfer efficiency increases with mass flow
rate for all configurations: improvements of 34.75%, 58.87%, 71.70%, and
80.08% for 200, 300, 400, and 500 helical baffles, respectively, were observed
relative to the 22% cut segmental baffle. However, as the helix angle of baffles
increases, the heat transfer coefficient decreases, with deviations of 26.89%,
28.94%, 50.87%, 63.57%, and 72.49% observed in comparison to the 22% cut
segmental baffle at the same water flow rate.
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1. Introduction

Shell and tube heat exchangers are widely used in various industries, including chemical,
food, power engineering, refrigeration, and air conditioning. They play a critical role in
applications such as boilers, oil coolers, condensers, and pre-heaters due to their robustness
and ability to handle high-pressure operations.

The study of their design, thermal analysis, and construction is essential for mechanical,
thermal, and chemical engineering scholars, as it is a fundamental aspect of their curriculum
and research. Understanding the basic configuration and performance of shell and tube heat
exchangers is crucial for practicing engineers, given their extensive use throughout the
process industry.
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2. Literature Review:

Roetzel & Lee (1993) [2]Variables: Stream flow direction, shell side flow rate, tube side
flow rate, clearance, and distance between baffles.Findings: Peclet number depends only on
geometry, not on Reynolds number.

Waseem Al Hadad et al. (2019) [3]Method: Proposed an impulse response technique for
fouling detection.Conclusion: Impulse response can effectively detect fouling in heat
exchangers.

Huadong Li & Volker Kottke (1998) [4]Focus: Pressure drop and heat transfer response due
to baffle-shell leakage.Results: Pressure drop coefficient reduced by up to 74% at Re=500
and 69% at Re=16,000 due to shell side leakages.

Wilfried Reotzel & Deiying W Lee (1994) [5]Study: Influence of baffle/shell leakage on
thermal performance.Outcome: Peclet number is geometrically dependent; baffle-shell
clearance impacts can be expressed empirically.

Halle H et al. (1988) [6]Experiment: Pressure drop for various segmentally baffled
configurations.Findings: Overall pressure drop varied significantly with nozzle size and tube
layout.

Mustapha Mellal et al. (2017) [8]Study: Turbulent flow and heat transfer with varying baffle
spacing and orientation angles.Results: 180° orientation at 64 mm spacing had the highest
heat transfer coefficient.

Anuruddha Bhattacharjee et al. (2017) [9]Research: Baffle configurations with different
helix angles.Conclusion: 25.52° helix angle was most effective; 10.81° performed poorly.

Asif Ahmed et al. (2017) [10]Comparison: Segmental vs. helical baffles.Results: Helical
baffles showed 72-127% higher heat transfer coefficient with 59-63% lower pressure drop.

Bashir 1 Master et al. (2003) [11]Findings: Helixchanger heat exchangers showed 50%
higher duty and extended run lengths between cleaning.

Cong Dong et al. (2014) [13]Study: Flow and heat transfer characteristics of tri-sectional
helical baffles.Conclusion: Circumferential overlap scheme yielded highest heat transfer
coefficients.

Jian Chen et al. (2020) [17]Research: Unilateral ladder type helical baffle vs. segmental
baffle.Results: 15.3-47.1% reduction in pressure drop with improved heat transfer
coefficients.

Ya Ping Chen et al. (2013) [36]Focus: Trisection helical baffle  heat
exchangers.Conclusion: Secondary flows enhanced heat transfer and reduced fouling.

Yong Gang Lei et al. (2008) [38]Study: Impact of baffle inclination
angles.Results: Increased Nusselt number with angle up to 30°, decreased pressure drop
compared to segmental baffles.

. Helical Baffles: Generally outperform segmental baffles in heat transfer efficiency
and pressure drop.
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. Design Variables: Helix angle, baffle spacing, and configuration significantly affect
performance metrics such as heat transfer coefficient and pressure drop.

. Fouling and Leakage: Effective detection methods and understanding of leakage
effects are crucial for optimizing heat exchanger performance.

Data reduction

The tube pitch is P=1.25do @
Where Pt is the tube pitch in mm
do is the outer diameter of the tube in mm

Tube pitch ratio P. = % (2
0

o _ 3)
Inside diameter of tube di=0.8d,
Where di is the inner diameter of the tube in mm

—do

Diameter ratio dr = d; (4)
Tube clearance C; = P, — d, (5)

The equivalent/hydraulic diameter for square patterns

o)

T[do

De = (6)

Equivalent diameter varies with the flow arrangements.

For square tube pitch

D, = =22 (P2 — 0.785d2) ()

e dO

For triangular tube pitch

1.10
De = d_(Ptz - 0917(1%)
0

The constant values of K1 and nl for different tube configurations are given in Table 1.
These values are coefficients that are taking values according to flow arrangements and
number of passes. For different arrangements these coefficients are shown in this below
table.

Table 1: Values of constants

No. of passes Triangular Pitch Square and Rotated Square Pitch
Ky N K1 Ny
1 0.319 2.142 0.215 2.207
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2 0.249 2207 0.156 2291

4 0.175 2.285 0.158 2.263

6 0.0743 2499 0.0402 2617

8 0.0365 2675 0.0331 2643

_ n
Number of tubes is calculated by N, = K; (ngo.oz) ' (8)
0
Ds\™
Ne =K (2
| =K (2) ©)
Number of tubes given as
Where Nt is number of tubes,
Author going to consider 4 number of tubes. (only integer values are considering)
1
Ne\ng
Do = do ()" (10)
Tube bundle outer diameter
The shell diameter is Dg = f;‘; + &g, (11)
Where 6&,is shell to baffle clearance,
Free flow area of the shell Ay, =5 (D7 — N, x df) (12)
Fluid free flow area of the tube A, e = 7 d7 (13)
Shell side fluid velocity is V; = pm; (14)
Liter per minute (LPM) =14, 17, 20, 23 and 26.
m3\ _ Liter per minute
Volume flow rate (T) = o000 (15)
Mass flow rate mg = Volume flow rate X Density of shell side ﬂuid];—g
(16)
Shell side free flow area Ag(m?) = Z(DF = Nydj)
(17)
m mg

W (5) = o
(18)

Liter per minute (LPM) =13, 16,19, 22 and 25.

m3 Liter per minute
lume flo rate (1) = L
Volume flow rate . 0% 1000

(19)
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Mass flow rate m; = Volume flow rate X Density of tube side ﬂuidks—g
(20)
The  velocity of the  fluid in  the  tubes is  V, =AM
N mdj pe
(21)
Where N, is the number of tube passes and N;is the total number of tubes
Tube side fluid velocity V, = —2X
NtxZXdi Xpt
(22)

Where, n,, = 1 for single pass fluid flow

The effectiveness of counter flow shell and tub heat exchanger depends on the heat capacity
ratio and the number of heat transfer units (NTU) parameters given by Kakac and Liu

Heat exchanger effectiveness is

1—e(-NTU(1-0))
T 1 —ce(-NTUQ-0)

(23)

Sometimes in literature heat exchanger effectiveness is termed as the thermal efficiency. It is
non-dimensional, and it is depends on the number of transfer units (NTU), the heat capacity
rate ratio

and the flow arrangement for direct transfer type heat exchanger.
Shell side

Chminimium 1S the minimum of Chet and Ceord

C* — Crinimum — (mcp)minimum

Cmaximum (me)maximum
(24)
Heat exchanger surface Area is Ao = Ne x  mdo X L
(25)

Tube side flow cross section area per pass area is

4 ny

4o
(26)

Where, n,=1 for single pass fluid flow

The number of transfer units
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NTU = UAy UA,

Crinimum (mcp)minimum

(27)
Where U=1000 assumed,

The effectiveness of counter flow shell and tube heat exchangers depends on the heat
capacity ratio C* and the number of heat transfer units (NTU) parameters given by Kakac
and Liu as

1—e(~NTUQ~c#)
€= 1—cxe(~NTUQ-c¥))

(28)

The outlet temperatures of both the fluids can be calculated by using the effectiveness and
the inlet temperatures of both (hot and cold) the fluids.

Based on the  Coinimum = ?;Z:;Z
(29)

Tc,o = Tc,i + S(Th,i - TC.i)

(30)

From the energy balance,
mst,s(Ts,i - Ts,o) = thp,t(Tt,o - Tt,i)

(Ts,i - Ts,o) = :;g:: (Tt,o - Tt,i)

meCpt
Tso=Ts; — msc:s (Tt,o - Tt,i)
(31)
Table 2: Outlet and bulk temperatures
T, in K Ty oin K Tspin K T.;in K T.,inK T.pin K
333.54 338.69 313.07 305.95
334.88 339.99 311.40 305.29
343.15 335.92 340.80 301.15 310.12 304.77
336.74 341.34 309.11 304.35
337.40 341.71 308.29 304.02
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Fig. 4: Dynamic viscosity Vs Temperature

sical properties of water (H-0)

Dhot 981.7185 kg/m?
Hot fluid | Hhot 0.000335 m?/s
(Shell side) Kot 0.6430 W/mK
CPhot 4161.972 JlkgK
Peold 995.3482 kg/m3
Cold fluid | Heold 0.000707 m%/s
(Tube side) Keold 0.6147 W/mK
CpPeots 4171.785 JkgK

The thermo-physical properties which are listed in table 3 are calculated based on the bulk
fluid temperature. These thermos-physical properties are used to calculate the dimensionless
numbers like Reynolds number, Prandtl number and Nusselt numbers.
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Fig. 5: NTU Vs Mass flow rate Fig. 6: Effectiveness Vs Mass flow rate

To plot above two figures, equation (27) and (28) are used to find NTU and effectiveness of
shell and tube heat exchanger using counter flow. The effect of mass flow rate on NTU and
effectiveness are shown in the fig. 5. The results indicate that effectiveness decreases with an
increase in mass flow rate. In this study, mass flow rate through the tube and shell side both
are varying. The decrease in effectiveness is due to the formation of a dead zone, which
reduces the heat transfer rate. This study shows better agreement with Ram Kunwer et al.

Density

p = 0.002T?% — 0.150T + 1003.2
(32)
Specific Heat

C, = 0.00000000005T° — 0.00000004T> + 0.00001T* — 0.00173 + 0.128T2 —
4.071T4217 (33)
Thermal conductivity

k = 0.00000000008T* + 0.00000005T3 — 0.00002T2 + 0.002T + 0.552
(34)
Dynamic viscosity
u = 0.000000000000037° + 0.000000000027* — 0.000000004T3 + 0.0000005T > —
0.00004T + 0.001

(35)
Tube side heat transfer coefficient is calculated by Dittus-Boelter formula h, =
0.023 (?) Re?8pr0-3
h, = 0.023 x (%) x Re%8 x prd-
OR ‘

(36)
Tube side Prandtl number is
Nanotechnology Perceptions Vol. 20 No.6 (2024)
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Pl‘t == _“tcpt
ket
@37)
Tube side Reynolds number
Re, = Peved;
Ut

(38)

) - ke 0.0677(Retprt%)1'33
Tube side heat transfer coefficient h; == 3.657 + 53 ||for Re; <2300

1+0.1Pr (Re, ')

(39)
Lt (Re,~1000)Pr, 2\ 067
hy = %[s(ef—zt [1 + (df) ] for 2300 < Re, < 10,000
‘ ll+12.7\/§(Pr§—1)
(40)

0.14
h, = 0.027%Re?‘8Pr?'33 (:—;) for Re, > 10,000

ht—0023><( )xRe x Prd#
(41)
1

1 _( 1 do)_ do ln(do)
Qavg ht di Zkt di

Shell side heat transfer rate hg =

(42)

Qs = mg X Cps X (Ts,in - Ts,out)

(43)

Tube side heat transfer rate Qr = M¢ X cp e X (Trou = Ttin)
(44)

Average heat transfer rate

(Qs+Q¢)
Qave = Tt
(49)

hg —0023><( )xRe x Prd3
(46)
1

hs =
() (@)
K~ \n d;) \2k, ™"\d
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Shell side heat transfer coefficient

—==x=2 eV et} -
U h g + 2y In + hs

d;
(47)
. Uo—U
% Difference TR 100%
(48)
According to Kern’s limitations, this difference may accept up to 30%.
Shell side Reynolds number Re = %SDe
(49)
Re; = MsDe
- - ACI‘OSSI"‘S
Shell side Reynolds number is
(50)
Doy—d
Across =B [(Di - Dotl) + (#) (Pt - do)]
For segmental baffle
(51)

For 75.5 mm baffle space
For non continuous helical baffles, the helical pitch is B = v2Dgtan(Bs)
B = mDgtan(f)

For  continuous  helical baffle, the helical pitch is
(52)

Shell side Reynolds number Reg = “Vﬂ
S
(53)
Volumeflowrate
Where’ u= CrossFlowArea
Prandl number is Pry = %
The shell side °
(54)
The overall heat transfer coefficient K = —Sae
AgX ATy,
(55)

. ATpax = Tsin — T,
Maximum temperature ~ ™ sin L tout

Maximum temperature difference AT, = T,y — Ty

. . AT, =T ou — Trs
Minimum temperature difference min = Lsout — Itin
(56)
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Minimum temperature difference ATin = Ty, — Tout
(57)

AT, =

ATmax—AT min
AT,
ln( max)
AT in

(58)

— Qave
AgXATy,

(59)
Maximum temperature difference AT,,.x = Tsin — T
Minimum temperature difference AT, = Ts oy — Tw

Where Ty, is the temperature of tube walls

ATmax - ATmin

In (%‘:i‘)

(\/R2+1)Xln(—1_1(;im)
2—P(R+1—\/R2+1)
2—P(R+1+\/R2+1)

AT, =

Y=

for even number of tube passes
(R—l)xln< )

¥=1 for single pass
Efficiency P = Ltew"Ttin

s,in_Tt,in

H - Te: —T.
Correction coefficient R = 22—

t,out_Tt,in
Tube side heat transfer coefficient is calculated using Gnielinski equation

(%) (Re — 1000) X Pr, 2

di\3
2 X 1+(_> XCt
1+12.7< %)(Pr§—1>

L
(Prf)o.ll
= Pr,,

Nu; =

1

The Colebrook’s equation fe= (0.782xIn(Rey)—1.51)2

(60)

The Petukhov’s correlation is fe = (1.82xRe- 82><R: 1.64)2
. t—1.

(61)
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1

The Darcy friction factor/The Colebrook’s equation is f; = SR —160)?
. t - 4.

(62)

Friction factors is calculated by using Hagen-Poiseuille equation is

for laminar flow is ft=64/Re Re<=2*10°
(63)

Friction factor for turbulent flow is ft=0.079/Re%% Re<=2*10°
(64)

Heat transfer coefficient

h; = 0.023 (Z_j) Re?'spé (:_;)0.14

According to Kern’s shell side heat transfer coefficient for segmental baffled shell and tube

exchangers
1
1 = 0.14
hs = 0.36 >-Re2¥Pr} (££)
De Hw
1
Nug = ¢ X Rey* X Pr?
- : hsdo
Shell side Nusselt number is Nug ===
S

(65)

Sielder Tate Nu = 1.86 (RePrg)g for laminar flow

— mq
fs =G Res
1

For Segmental baffle Nug = 0.012Re%® x Pr?

N

1
For helical baffle Nug = 0.037Re2” x Pr?
The shell side pressure drop is

L Dg

2
_ PsVs
ap =ELEf L

2

Where Ps is shell side pressure drop
ps shell side fluid density

L is the length of the tube in mm

Shell side friction factor f; = ;e—'(ff’ls
S
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From Peters and Timmer Haus
by, = 0.72 where Reg < 40,000

0 — 142
Swirl angle of fluid flow in helical channel #~ = retan (VR)

Where, /P = Va

Ve = V241

Va, Vt and Vr are the axial, tangential and radial components of velocity.

@#25.40mm—p——

Fig. 7: Side view of shell and tube heat exchanger

Figure 8: 22% cut segmental baffles for shell and tube exchanger

Figure 9: Front and side view of shell and tube heat exchanger
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I 832.00mm

Fig. 10: Front view of helical baffles for shell and tube heat exchanger
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Fig. 11: Front view of helical baffles (20°, 30°, 40°) for shell and tube heat exchanger
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Fig. 12: Tubes for shell and tube heat exchangers
Governing equations and boundary conditions

The renormalization group (RNG) k — & model is adopted in the simulation because the
model provides improved predictions of near-wall flows. The RNG k — emodel was derived
by a statistical technique called renormalization method, which is widely used in industrial
flow and heat transfer because of its economy and accuracy. The governing equations for
continuity, momentum, energy, k and € in the computational domain can be expressed as
follows:

Continuity equation: % =0
l

d(pujug) , AP "’(“_auk)

. i dx;

Momentum equation: =52k 2 _ 2 T/ —
axi 6xk axi

kot
dpuit) "(ﬁxa_x)
axi 6xi

Energy equation: =0

al ok
(i) _ A\ | apkup

N N
Turbulent kinetic energy equation: or o, ox;

+pe—G,=0

de
i a
aps) ( s”“‘a) " d(puie) s £Gk n pCyee?

=0
at ax; ax; ek k

Turbulent dissipation energy equation:

Where,
pc,k?

1(1-75)

1+n3p

Uefr = U +

Cl*e = (e —
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k‘IZElJElJ

&

n=
B = 05|24 e
Y dx;  Ox;
The empirical constants for the RNG k — emodel are assigned the following value:
C,=845x107°
Cie = 142 x 1072
Cpe = 168 X 1072
B=12x1073
No = 438 x 1072
o = ag = 139 x 1072

Non-slip boundary condition is adopted on the wall. The standard wall function method is
used. The wall temperatures of the tubes and shell are uniform and fixed to 301.15 K and
343.15 K respectively. The internal surfaces of the shell are non-slip, impermeable and
adiabatic. Hot fluid is adopted as shell side and cold fluid is adopted as tube side working
fluid. The boundary conditions of shell side inlet and outlet are mass flow rate (kg/s) and
atmospheric pressure as outlet.

Mesh Generation and Boundary Conditions

A tetrahedral unstructured mesh was chosen for the 3D geometry in ANSYS to optimize
complex fluid flow simulations, using the RNG k-& model for accurate wall treatment.

Fig. 13: Selection view of generated Mesh

Hot (shell) and cold (tube) water with specified thermo-physical properties (Table 3) are
simulated in a counter-flow setup in the STHX, with a coupled thermal boundary, no-slip
walls, and adiabatic outlets for incompressible, viscous 3D flow at constant temperatures of
343.15 K and 301.15 K.

Nanotechnology Perceptions Vol. 20 No.6 (2024)



Optimization of Shell and Tube Heat Exchangers.... Hemavathi P et al. 4266

18
- 309
& 2809
o ,
o 08
g £
26 £308
) o O
g i
(2l
35 72308
3 =308
© 807
& © 540000 740000 940000
550000 Nu?n Ogroc())f nodes 950000 Number of nodes
106 337
5 o
éo 5337
405 L
S £337
o] [<5)
&04 i
2 23%6
@04 3
o =]
?03 ...—3336
303 £336
500000 700000 900000 570000 770000 970000
Number of nodes Number of nodes

Fig. 14: Validation test

A grid of 9.90022 million nodes and 0.002 m element size was selected for optimized
accuracy, achieving stable outlet temperatures, pressure drop, and grid independence, with
an average orthogonal quality of 0.82, skewness of 0.2, and aspect ratio of 2.6.
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Fig. 15: Shell side velocity Fig. 16: Shell side pressure drop
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Larger helical angles result in lower shell-side velocities and reduced pressure drops, with
the 22% cut segmental baffle showing the highest velocity and the 40° helical baffle
achieving the lowest pressure drop, consistent with prior studies.

21000 —22% Cut SB
20 D HB

_ ——30DHB
& 16000 | — 40D HB
= 50 D HB
o]
E 11000
[
[72]
=
o
2
@

1000

0.23 0.28 0.33 0.38 0.43

Mass flow rate (kg/s) '
Figure 17: Shell side Reynolds number

Reynolds number increases with mass flow rate for all heat exchangers, with helical baffles
showing higher increases compared to the 22% cut segmental baffle, reaching 80.08% for
the 50° helical baffle.
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» ——20DHB
$ 1830 30D HB
'S ——40DHB
& 1530 | — 50DH
38X
3 £ 1230
22
€7 930
3
s
330
0.23 0.28 0.33 0.38 0.43

Mass flow rate (kg/s)
Figure 18: Shell side heat transfer coefficient

The heat transfer coefficient increases with mass flow rate, with the 22% cut segmental
baffle achieving the highest values, while helical baffles show lower coefficients that
decrease as the helix angle increases, consistent with previous findings.
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Figure 19: Shell side Nusselt number

Nusselt number increases with mass flow rate, showing a 1.73% difference compared to
Xing Lu’s model for the 40° helical baffle; however, it decreases with larger helical angles at
the same mass flow rate, consistent with Simin Wang’s findings.
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Figure 20: Friction factor in tube

Friction factor decreases with the increase of mass flow rate. The friction factor is calculated
by using equation (60) to (62). In figure 20 all the empirical equations/relations are
calculated and were compared, all are having good agreement and following same trends.
Among the studied friction factor equations/relations, present work has less friction factor.
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3. Conclusions:

The study investigates shell and tube heat exchangers, revealing that effectiveness decreases
with increasing mass flow rate due to dead zones that reduce heat transfer, as noted by Ram
Kunwer et al. Shell side velocity decreases with larger helical angles; 22% cut segmental
baffles have the highest velocity, while 50° helical baffles have the lowest, aligning with
findings from Simin Wang et al.

Pressure drop is lower with higher helical angles, with the 40° helical baffle showing the
least drop. Reynolds numbers increase with mass flow rate, with reductions of 34.75% to
80.08% for helical baffles compared to the 22% cut segmental baffle. Heat transfer
coefficients also increase with mass flow rate, with the segmental baffle outperforming
helical designs by significant margins.

The Nusselt number rises with mass flow rate, with only a 1.73% deviation from Xing Lu’s
model for the 40° helical baffle. Friction factors decrease with mass flow rate, with the
present study showing lower values compared to existing empirical models, indicating strong
agreement across analyzed equations.
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