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Shell and tube heat exchangers are widely used in industries due to their ease of 

cleaning and adaptability, essential for efficient heat management. This study 

numerically examines heat transfer efficiency with 22% cut segmental baffles 

and helical baffles (200, 300, 400, and 500). Results show that 22% cut 

segmental baffles achieve a higher heat transfer coefficient compared to 

continuous helical baffles. Heat transfer efficiency increases with mass flow 

rate for all configurations: improvements of 34.75%, 58.87%, 71.70%, and 

80.08% for 200, 300, 400, and 500 helical baffles, respectively, were observed 

relative to the 22% cut segmental baffle. However, as the helix angle of baffles 

increases, the heat transfer coefficient decreases, with deviations of 26.89%, 

28.94%, 50.87%, 63.57%, and 72.49% observed in comparison to the 22% cut 

segmental baffle at the same water flow rate. 

Keywords: heat exchangers, baffles.  

 

 

1. Introduction 

Shell and tube heat exchangers are widely used in various industries, including chemical, 

food, power engineering, refrigeration, and air conditioning. They play a critical role in 

applications such as boilers, oil coolers, condensers, and pre-heaters due to their robustness 

and ability to handle high-pressure operations. 

The study of their design, thermal analysis, and construction is essential for mechanical, 

thermal, and chemical engineering scholars, as it is a fundamental aspect of their curriculum 

and research. Understanding the basic configuration and performance of shell and tube heat 

exchangers is crucial for practicing engineers, given their extensive use throughout the 

process industry. 
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2. Literature Review: 

Roetzel & Lee (1993) [2]Variables: Stream flow direction, shell side flow rate, tube side 

flow rate, clearance, and distance between baffles.Findings: Peclet number depends only on 

geometry, not on Reynolds number. 

Waseem Al Hadad et al. (2019) [3]Method: Proposed an impulse response technique for 

fouling detection.Conclusion: Impulse response can effectively detect fouling in heat 

exchangers. 

Huadong Li & Volker Kottke (1998) [4]Focus: Pressure drop and heat transfer response due 

to baffle-shell leakage.Results: Pressure drop coefficient reduced by up to 74% at Re=500 

and 69% at Re=16,000 due to shell side leakages. 

Wilfried Reotzel & Deiying W Lee (1994) [5]Study: Influence of baffle/shell leakage on 

thermal performance.Outcome: Peclet number is geometrically dependent; baffle-shell 

clearance impacts can be expressed empirically. 

Halle H et al. (1988) [6]Experiment: Pressure drop for various segmentally baffled 

configurations.Findings: Overall pressure drop varied significantly with nozzle size and tube 

layout. 

Mustapha Mellal et al. (2017) [8]Study: Turbulent flow and heat transfer with varying baffle 

spacing and orientation angles.Results: 180° orientation at 64 mm spacing had the highest 

heat transfer coefficient. 

Anuruddha Bhattacharjee et al. (2017) [9]Research: Baffle configurations with different 

helix angles.Conclusion: 25.52° helix angle was most effective; 10.81° performed poorly. 

Asif Ahmed et al. (2017) [10]Comparison: Segmental vs. helical baffles.Results: Helical 

baffles showed 72-127% higher heat transfer coefficient with 59-63% lower pressure drop. 

Bashir I Master et al. (2003) [11]Findings: Helixchanger heat exchangers showed 50% 

higher duty and extended run lengths between cleaning. 

Cong Dong et al. (2014) [13]Study: Flow and heat transfer characteristics of tri-sectional 

helical baffles.Conclusion: Circumferential overlap scheme yielded highest heat transfer 

coefficients. 

Jian Chen et al. (2020) [17]Research: Unilateral ladder type helical baffle vs. segmental 

baffle.Results: 15.3-47.1% reduction in pressure drop with improved heat transfer 

coefficients. 

Ya Ping Chen et al. (2013) [36]Focus: Trisection helical baffle heat 

exchangers.Conclusion: Secondary flows enhanced heat transfer and reduced fouling. 

Yong Gang Lei et al. (2008) [38]Study: Impact of baffle inclination 

angles.Results: Increased Nusselt number with angle up to 30°, decreased pressure drop 

compared to segmental baffles. 

• Helical Baffles: Generally outperform segmental baffles in heat transfer efficiency 

and pressure drop. 
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• Design Variables: Helix angle, baffle spacing, and configuration significantly affect 

performance metrics such as heat transfer coefficient and pressure drop. 

• Fouling and Leakage: Effective detection methods and understanding of leakage 

effects are crucial for optimizing heat exchanger performance. 

Data reduction 

The tube pitch is Pt=1.25d0 
                                                                                                   (1) 

Where Pt is the tube pitch in mm
 

            d0 is the outer diameter of the tube in mm
 

Tube pitch ratio Pr =
Pt

d0
                                                                                                      (2) 

Inside diameter of tube di=0.8d0 
                                                                                     (3) 

Where di is the inner diameter of the tube in mm
 

Diameter ratio 
dr =

d0

di
                                                                                                    (4) 

Tube clearance Ct = Pt − d0                                                                                           (5) 

The equivalent/hydraulic diameter for square patterns 

De =
4(Pt

2−(
πd0

2

4
))

πd0
                                                                     (6) 

Equivalent diameter varies with the flow arrangements. 

 

For square tube pitch 

De =
1.27

d0
(Pt

2 − 0.785d0
2)                                                                                              (7) 

For triangular tube pitch 

De =
1.10

d0

(Pt
2 − 0.917d0

2) 

The constant values of K1 and n1 for different tube configurations are given in Table 1. 

These values are coefficients that are taking values according to flow arrangements and 

number of passes. For different arrangements these coefficients are shown in this below 

table.

 

Table 1: Values of constants

 

No. of passes Triangular Pitch Square and Rotated Square Pitch 

 K1 N1 K1 n1 

1 0.319 2.142 0.215 2.207 
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2 0.249 2.207 0.156 2.291 

4 0.175 2.285 0.158 2.263 

6 0.0743 2.499 0.0402 2.617 

8 0.0365 2.675 0.0331 2.643 

Number of tubes is calculated by 𝑁𝑡 = 𝐾1 (
𝐷𝑔−0.02

𝑑0
)
𝑛1

                                                  (8) 

Number of tubes given as      

 𝑁𝑡 = 𝐾1 (
𝐷𝑠

𝑑0
)
𝑛1

                                                                   (9) 

Where Nt is number of tubes, 

 

Author going to consider 4 number of tubes. (only integer values are considering)
 

Tube bundle outer diameter 

𝐷otl = 𝑑0 (
𝑁𝑡

𝐾1
)

1

𝑛1                                                             (10) 

The shell diameter is 𝐷𝑠 =
𝐷otl

0.95
+ 𝛿sb                                                                              (11) 

Where 𝛿sbis shell to baffle clearance, 

Free flow area of the shell 𝐴free =
𝜋

4
(𝐷𝑖

2 − 𝑁𝑡 × 𝑑0
2)                                                          (12) 

Fluid free flow area of the tube 𝐴𝑡,free =
𝜋

4
𝑑𝑖

2                                                                     (13) 

 

Shell side fluid velocity is 𝑉𝑠 =
𝑚
.

𝑠

𝜌𝑠𝐴𝑠
                                                                          (14) 

Liter per minute (LPM) =14, 17, 20, 23 and 26.

 

Volume flow rate (
𝑚3

𝑠
) =

Liter per minute

60×1000
                                                                              (15) 

Mass flow rate 𝑚𝑠 = Volume flow rate × Density of shell side fluid
kg

𝑠
                                               

(16) 

Shell side free flow area 𝐴𝑠(𝑚
2) =

𝜋

4
(𝐷𝑖

2 − 𝑁𝑡𝑑0
2)                                                                              

(17) 

𝑉𝑠 (
𝑚

𝑠
) =

𝑚𝑠

𝜌𝑠𝐴𝑠
                                                                                                                                          

(18) 

Liter per minute (LPM) =13, 16,19, 22 and 25.

 

Volume flow rate (
𝑚3

𝑠
) =

Liter per minute

60×1000
                                                                                                   

(19) 
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Mass flow rate 𝑚𝑡 = Volume flow rate × Density of tube side fluid
kg

𝑠
                                                

(20) 

The velocity of the fluid in the tubes is 𝑉𝑡 =
𝑁𝑝

𝑁𝑡

4𝑚
.

𝑡

𝜋𝑑𝑖
2𝜌𝑡

                                                                           

(21) 

Where 𝑁𝑝 
is the number of tube passes and 𝑁𝑡is the total number of tubes 

Tube side fluid velocity 𝑉𝑡 =
𝑛𝑝×𝑚𝑡

𝑁𝑡×
𝜋

4
×𝑑𝑖

2×𝜌𝑡
                                                                                              

(22) 

Where, 𝑛𝑝 = 1 for single pass fluid flow 

The effectiveness of counter flow shell and tub heat exchanger depends on the heat capacity 

ratio and the number of heat transfer units (NTU) parameters given by Kakac and Liu 

Heat exchanger effectiveness is 

                                            𝜀 =
1−𝑒(−NTU(1−𝐶))

1−Ce(−NTU(1−𝐶))
                                                                                      

(23) 

Sometimes in literature heat exchanger effectiveness is termed as the thermal efficiency. It is 

non-dimensional, and it is depends on the number of transfer units (NTU), the heat capacity 

rate ratio 

 and the flow arrangement for direct transfer type heat exchanger.
 

Shell side

 

              

 Cminimium is the minimum of Chot and Ccold 

 

              𝐶* =
𝐶minimum

𝐶maximum
=

(mC𝑝)
minimum

(mC𝑝)
maximum

                                                                                                      

(24) 

Heat exchanger surface Area is A0 = Nt x πd0 x L
                                                                                

(25) 

Tube side flow cross section area per pass area is 

                                        

𝐴0 =
𝜋

4

𝑑𝑖
2𝑁𝑡

𝑛𝑝
                                                                                                    

(26) 

Where, np=1  for single pass fluid flow

 

The number of transfer units 
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NTU =
UA0

𝐶minimum
=

UA0

(mC𝑝)
minimum                                                                                                  

(27)

 

Where U=1000 assumed, 

The effectiveness of counter flow shell and tube heat exchangers depends on the heat 

capacity ratio C* and the number of heat transfer units (NTU) parameters given by Kakac 

and Liu as

 

                      

𝜀 =
1−𝑒(−NTU(1−𝑐∗))

1−𝑐∗𝑒(−NTU(1−𝑐∗))
                                                                                                          

(28) 

The outlet temperatures of both the fluids can be calculated by using the effectiveness and 

the inlet temperatures of both (hot and cold) the fluids. 

Based on the 𝐶minimum            𝜀 =
𝑇𝑡,𝑜−𝑇𝑡,𝑖

𝑇𝑠,𝑖−𝑇𝑡,𝑖
                                                                                              

(29) 

𝑇𝑐,𝑜 = 𝑇𝑐,𝑖 + 𝜀(𝑇ℎ,𝑖 − 𝑇𝑐,𝑖)                                                                                                                     

(30) 

From the energy balance,  

                               
𝑚𝑠𝐶𝑝,𝑠(𝑇𝑠,𝑖 − 𝑇𝑠,𝑜) = 𝑚𝑡𝐶𝑝,𝑡(𝑇𝑡,𝑜 − 𝑇𝑡,𝑖)                                       

                                           
(𝑇𝑠,𝑖 − 𝑇𝑠,𝑜) =

𝑚𝑡𝐶𝑝,𝑡

𝑚𝑠𝐶𝑝,𝑠
(𝑇𝑡,𝑜 − 𝑇𝑡,𝑖) 

                                           
𝑇𝑠,𝑜 = 𝑇𝑠,𝑖 −

𝑚𝑡𝐶𝑝,𝑡

𝑚𝑠𝐶𝑝,𝑠
(𝑇𝑡,𝑜 − 𝑇𝑡,𝑖)                                                                   

(31) 

Table 2: Outlet and bulk temperatures
 

𝑇𝑠,𝑖in K 𝑇𝑠,𝑜in K 𝑇𝑠,𝑏in K 𝑇𝑐,𝑖in K 𝑇𝑐,𝑜in K 𝑇𝑐,𝑏in K 

343.15 

333.54 338.69 

301.15 

313.07 305.95 

334.88 339.99 311.40 305.29 

335.92 340.80 310.12 304.77 

336.74 341.34 309.11 304.35 

337.40 341.71 308.29 304.02 
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               Fig. 1: Density Vs Temperature                     Fig. 2: Specific heat capacity Vs 

Temperature 

         

Fig. 3: Thermal conductivity Vs Temperature       Fig. 4: Dynamic viscosity Vs Temperature 

Table 3: Thermo-physical properties of water (H2O) 

Hot fluid 

(Shell side) 

ρhot 981.7185 kg/m3 

μhot 0.000335 m2/s 

khot 0.6430 W/mK 

Cphot 4161.972 J/kgK 

Cold fluid 

(Tube side) 

ρcold 995.3482 kg/m3 

μcold 0.000707 m2/s 

kcold 0.6147 W/mK 

Cpcold 4171.785 J/kgK 

The thermo-physical properties which are listed in table 3 are calculated based on the bulk 

fluid temperature. These thermos-physical properties are used to calculate the dimensionless 

numbers like Reynolds number, Prandtl number and Nusselt numbers. 
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             Fig. 5: NTU Vs Mass flow rate                   Fig. 6: Effectiveness Vs Mass flow rate 

To plot above two figures, equation (27) and (28) are used to find NTU and effectiveness of 

shell and tube heat exchanger using counter flow. The effect of mass flow rate on NTU and 

effectiveness are shown in the fig. 5. The results indicate that effectiveness decreases with an 

increase in mass flow rate. In this study, mass flow rate through the tube and shell side both 

are varying. The decrease in effectiveness is due to the formation of a dead zone, which 

reduces the heat transfer rate. This study shows better agreement with Ram Kunwer et al.  

    Density 

            
𝜌 = 0.002𝑇2 − 0.150𝑇 + 1003.2                                                                                              

(32) 

Specific Heat 

 
𝐶𝑝 = 0.00000000005𝑇6 − 0.00000004𝑇5 + 0.00001𝑇4 − 0.001𝑇3 + 0.128𝑇2 −

4.071𝑇4217        (33)                                                                                           
 

Thermal conductivity 

                     𝑘 = 0.00000000008𝑇4 + 0.00000005𝑇3 − 0.00002𝑇2 + 0.002𝑇 + 0.552                    

(34) 

Dynamic viscosity 

𝜇 = 0.00000000000003𝑇5 + 0.00000000002𝑇4 − 0.000000004𝑇3 + 0.0000005𝑇2 −
0.00004𝑇 + 0.001          

        (35)                                                                                                                        

Tube side heat transfer coefficient is calculated by Dittus-Boelter formula ℎ𝑡 =

0.023 (
𝜆𝑡

𝑑𝑖
) Re𝑡

0.8Pr𝑡
0.3

                          

       OR                

ℎ𝑡 = 0.023 × (
𝑘𝑡

𝑑𝑖
) × Re𝑡

0.8 × Pr𝑡
0.4                                                                            

(36) 

Tube side Prandtl number is 

0.145
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             Pr𝑡 =
𝜇𝑡𝐶𝑝𝑡

𝑘𝑡
                                                                                                                                 

(37) 

Tube side Reynolds number 

             

Re𝑡 =
𝜌𝑡𝜈𝑡𝑑𝑖

𝜇𝑡
                                                                                                                               

(38) 

Tube side heat transfer coefficient ℎ𝑡 =
𝑘𝑡

𝑑𝑖
[3.657 + (

0.0677(Re𝑡Pr𝑡
𝑑𝑖
𝐿
)
1.33

1+0.1Pr𝑡(Re𝑡
𝑑𝑖
𝐿
)
0.3 )]for Re𝑡 < 2300                   

(39) 

                                 

ℎ𝑡 =
𝑘𝑡

𝑑𝑖

[
 
 
 
 𝑓𝑡

8
(Re𝑡−1000)Pr𝑡

1+12.7√
𝑓𝑡
8

(Pr𝑡

2
3−1)

[1 + (
𝑑𝑖

𝐿
)
0.67

]

]
 
 
 
 

 for 2300 < Re𝑡 < 10,000                      

(40) 

ℎ𝑡 = 0.027
𝑘𝑡

𝑑𝑖
Re𝑡

0.8Pr𝑡
0.33 (

𝜇𝑡

𝜇𝑤
)
0.14

for Re𝑡 > 10,000  

ℎ𝑡 = 0.023 × (
𝑘𝑡

𝑑𝑖
) × Re𝑡

0.8 × Pr𝑡
0.4                                                                                                         

(41) 

Shell side heat transfer rate ℎ𝑠 =
1

1

𝑄avg
−(

1

ℎ𝑡

𝑑0
𝑑𝑖

)−(
𝑑0
2𝑘𝑡

ln(
𝑑0
𝑑𝑖

))

                                                                         

(42) 

𝑄𝑠 = 𝑚𝑠 × 𝑐𝑝,𝑠 × (𝑇𝑠,in − 𝑇𝑠,out)                                                                                                            

(43) 

Tube side heat transfer rate 
𝑄𝑡 = 𝑀𝑡 × 𝑐𝑝,𝑡 × (𝑇𝑡,out − 𝑇𝑡,in)                                                                

(44) 

Average heat transfer rate 

 
𝑄ave =

(𝑄𝑠+𝑄𝑡)

2
                                                                                                                                        

(45) 

ℎ𝑠 = 0.023 × (
𝑘𝑠

𝐷𝑒
) × Re𝑠

0.8 × Pr𝑠
0.3                                                                                                        

(46) 

ℎ𝑠 =
1

1
𝐾 − (

1
ℎ𝑡

𝑑0
𝑑𝑖

) − (
𝑑0
2𝑘𝑤

ln (
𝑑0
𝑑𝑖

))
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Shell side heat transfer coefficient 

                                   

1

𝑈
=

1

ℎ𝑡
×

𝑑0

𝑑𝑖
+

𝑑0

2𝜆𝑤
ln (

𝑑0

𝑑𝑖
) +

1

ℎ𝑠
                                                                             

(47) 

% Difference
𝑈0−𝑈

𝑈
× 100%                                                                                                                     

(48) 

According to Kern’s limitations, this difference may accept up to 30%. 

Shell side Reynolds number Re𝑠 =
𝜌𝑠𝑣𝑠𝐷𝑒

𝜇𝑠
                                                                                             

(49) 

Shell side Reynolds number is 

Re𝑠 =
𝑚𝑠𝐷𝑒

𝐴cross𝜇𝑠
                                                                                         

(50) 

For segmental baffle 

𝐴cross = 𝐵 [(𝐷𝑖 − 𝐷otl) + (
𝐷otl−𝑑0

𝑃𝑡
) (𝑃𝑡 − 𝑑0)]                                                     

(51) 

For 75.5 mm baffle space
 

For non continuous helical baffles, the helical pitch is 𝐵 = √2𝐷𝑠tan(𝛽𝑠) 

For continuous helical baffle, the helical pitch is 
𝐵 = 𝜋𝐷𝑠tan(𝛽𝑠)                                                      

(52) 

Shell side Reynolds number Re𝑠 =
ud0

𝜈𝑠
                                                                                                 

(53) 

Where, 𝑢 =
Volumeflowrate

CrossFlowArea
                                                                                                      

The shell side 

Prandtl number is Pr𝑠 =
𝐶ps𝜇𝑠

𝑘𝑠
                                                                                        

(54) 

The overall heat transfer coefficient 𝐾 =
𝑄ave

𝐴0×𝛥𝑇𝑚
                                                                                

(55) 

Maximum temperature 
𝛥𝑇max = 𝑇𝑠,in − 𝑇𝑡,out 

Maximum temperature difference 𝛥𝑇max = 𝑇𝑤 − 𝑇in 

Minimum temperature difference 
𝛥𝑇min = 𝑇𝑠,out − 𝑇𝑡,in                                                                      

(56) 
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Minimum temperature difference 𝛥𝑇min = 𝑇𝑤 − 𝑇out                                                                          

(57) 

𝛥𝑇𝑚 = [
𝛥𝑇max−𝛥𝑇min

ln(
𝛥𝑇max

𝛥𝑇min
)

]                                                                                                                             

(58) 

𝐾 =
𝑄ave

𝐴0×𝛥𝑇𝑚
                                                                                                                                          

(59) 

Maximum temperature difference 𝛥𝑇max = 𝑇𝑠,in − 𝑇𝑤 

Minimum temperature difference 𝛥𝑇min = 𝑇𝑠,out − 𝑇𝑤 

Where Tw is the temperature of tube walls 

𝛥𝑇𝑚 = 𝜓 [
𝛥𝑇max − 𝛥𝑇min

ln (
𝛥𝑇max

𝛥𝑇min
)

] 

𝜓 =
(√𝑅2+1)×ln(

1−𝑃

1−(𝑃×𝑅)
)

(𝑅−1)×ln(
2−𝑃(𝑅+1−√𝑅2+1)

2−𝑃(𝑅+1+√𝑅2+1)
)

 for even number of tube passes 

Ψ=1 for single pass 

Efficiency 𝑃 =
𝑇𝑡,out−𝑇𝑡,in

𝑇𝑠,in−𝑇𝑡,in
 

Correction coefficient 𝑅 =
𝑇𝑠,in−𝑇𝑠,out

𝑇𝑡,out−𝑇𝑡,in
 

Tube side heat transfer coefficient is calculated using Gnielinski equation 

Nu𝑡 =
(
𝑓𝑡
8
) (Re − 1000) × Pr𝑡

1 + 12.7(√𝑓𝑡
8)(Pr𝑡

2
3 − 1)

× [1 + (
𝑑𝑖

𝐿
)

2
3
] × 𝑐𝑡 

𝑐𝑡 = (
Pr𝑓

Pr𝑤
)
0.11

 

The Colebrook’s equation 𝑓𝑡 =
1

(0.782×ln(Re𝑡)−1.51)2
                                                                            

(60) 

The Petukhov’s correlation is 𝑓𝑡 =
1

(1.82×Re𝑡−1.64)2
                                                                            

(61) 
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The Darcy friction factor/The Colebrook’s equation is 𝑓𝑡 =
1

(1.82ln(Re𝑡)−1.64)2
                                  

(62) 

Friction factors is calculated by using Hagen-Poiseuille equation is 

for laminar flow is ft=64/Re              Re<=2*105                                                                             

(63) 

Friction factor for turbulent flow is ft=0.079/Re0.25    Re<=2*105                                                   

(64) 

Heat transfer coefficient 

 

ℎ𝑡 = 0.023 (
𝑘𝑡

𝑑𝑖
) Re𝑡

0.8Pr𝑡

1

3 (
𝜇𝑡

𝜇tw
)
0.14

 

According to Kern’s  shell side heat transfer coefficient for segmental baffled shell and tube 

exchangers 

 

ℎ𝑠 = 0.36
𝜆

𝐷𝑒
Re𝑠

0.55Pr𝑠

1

3 (
𝜇𝑡

𝜇𝑤
)
0.14

 

Nu𝑠 = 𝑐 × Re𝑠
𝑚 × Pr𝑠

1
3 

Shell side Nusselt number is Nu𝑠 =
ℎ𝑠𝑑0

𝜆𝑠
                                                                                          

(65) 

Sielder Tate Nu = 1.86 (RePr
𝐷

𝐿
)

1

3
      for laminar flow 

𝑓𝑠 = 𝑐2Re𝑠
𝑚1 

For Segmental baffle Nu𝑠 = 0.012Re𝑠
0.98 × Pr𝑠

1

3 

For helical baffle Nu𝑠 = 0.037Re𝑠
0.75 × Pr𝑠

1

3 

The shell side pressure drop is 

                                      

𝛥𝑃𝑠 =
𝜌𝑠𝜈𝑠

2

2
𝑓𝑠

𝐿

𝐵

𝐷𝑠

𝐷𝑒
 

Where Ps is shell side pressure drop

 

ρs shell side fluid density

 

             L is the length of the tube in mm

 

Shell side friction factor 𝑓𝑠 =
2𝑏0

Re𝑠
0.15 
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From Peters and Timmer Haus 

                      𝑏0 = 0.72 where Re𝑠 < 40,000 

Swirl angle of fluid flow in helical channel 
𝛽0 = arctan (

𝑉𝑃

𝑉𝑅
) 

Where, 
𝑉𝑃 = 𝑉𝑎 

𝑉𝑅 = √𝑉𝑡
2 + 𝑉𝑟

2 

Va, Vt and Vr are the axial, tangential and radial components of velocity.
 

 

Fig. 7: Side view of shell and tube heat exchanger 

 

Figure 8: 22% cut segmental baffles for shell and tube exchanger 

 

Figure 9: Front and side view of shell and tube heat exchanger 
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Fig. 10: Front view of helical baffles for shell and tube heat exchanger 

 

 

Fig. 11: Front view of helical baffles (200, 300, 400) for shell and tube heat exchanger 
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Fig. 12: Tubes for shell and tube heat exchangers 

Governing equations and boundary conditions 

The renormalization group (RNG) 𝑘 − 𝜀 model is adopted in the simulation because the 

model provides improved predictions of near-wall flows. The RNG 𝑘 − 𝜀model was derived 

by a statistical technique called renormalization method, which is widely used in industrial 

flow and heat transfer because of its economy and accuracy. The governing equations for 

continuity, momentum, energy, k and ε in the computational domain can be expressed as 

follows: 

Continuity equation: 
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 

Momentum equation: 
𝜕(𝜌𝑢𝑖𝑢𝑘)

𝜕𝑥𝑖
+

𝜕𝑃

𝜕𝑥𝑘
−

𝜕(𝜇
𝜕𝑢𝑘
𝜕𝑥𝑖

)

𝜕𝑥𝑖
= 0 

Energy equation: 
𝜕(𝜌𝑢𝑖𝑡)

𝜕𝑥𝑖
−

𝜕(
𝑘

𝐶𝑝
×

𝜕𝑡

𝜕𝑥𝑖
)

𝜕𝑥𝑖
= 0 

Turbulent kinetic energy equation: 
𝜕(𝜌𝑘)

𝜕𝑡
−

𝜕(𝛼𝑘𝜇eff
𝜕𝑘

𝜕𝑥𝑗
)

𝜕𝑥𝑗
+

𝜕(𝜌ku𝑖)

𝜕𝑥𝑖
+ ρε − 𝐺𝑘 = 0 

Turbulent dissipation energy equation: 
𝜕(ρε)

𝜕𝑡
−

𝜕(𝛼𝜀𝜇eff
𝜕𝜀

𝜕𝑥𝑗
)

𝜕𝑥𝑗
+

𝜕(𝜌𝑢𝑖𝜀)

𝜕𝑥𝑖
− 𝐶1𝜀

∗ 𝜀𝐺𝑘

𝑘
+

𝜌𝐶2𝜀𝜀
2

𝑘
= 0 

Where, 

𝜇eff = 𝜇 +
𝜌𝑐𝜇𝑘2

𝜀
 

𝐶1𝜀
∗ = 𝐶1𝜀 −

𝜂 (1 −
𝜂
𝜂0

)

1 + 𝜂3𝛽
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𝜂 =
𝑘√2𝐸ij.𝐸ij

𝜀
 

𝐸ij = 0.5 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
] 

The empirical constants for the RNG k − εmodel are assigned the following value: 

Cμ = 84.5 × 10−3 

C1ε = 142 × 10−2 

C2ε = 168 × 10−2 

β = 12 × 10−3 

η0 = 438 × 10−2 

αk = αε = 139 × 10−2 

Non-slip boundary condition is adopted on the wall. The standard wall function method is 

used. The wall temperatures of the tubes and shell are uniform and fixed to 301.15 K and 

343.15 K respectively. The internal surfaces of the shell are non-slip, impermeable and 

adiabatic. Hot fluid is adopted as shell side and cold fluid is adopted as tube side working 

fluid. The boundary conditions of shell side inlet and outlet are mass flow rate (kg/s) and 

atmospheric pressure as outlet. 

Mesh Generation and Boundary Conditions 

A tetrahedral unstructured mesh was chosen for the 3D geometry in ANSYS to optimize 

complex fluid flow simulations, using the RNG k-ε model for accurate wall treatment. 

 

 

Fig. 13: Selection view of generated Mesh 

Hot (shell) and cold (tube) water with specified thermo-physical properties (Table 3) are 

simulated in a counter-flow setup in the STHX, with a coupled thermal boundary, no-slip 

walls, and adiabatic outlets for incompressible, viscous 3D flow at constant temperatures of 

343.15 K and 301.15 K. 
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Fig. 14: Validation test 

A grid of 9.90022 million nodes and 0.002 m element size was selected for optimized 

accuracy, achieving stable outlet temperatures, pressure drop, and grid independence, with 

an average orthogonal quality of 0.82, skewness of 0.2, and aspect ratio of 2.6. 

.  

Fig. 15: Shell side velocity                         Fig. 16: Shell side pressure drop 
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Larger helical angles result in lower shell-side velocities and reduced pressure drops, with 

the 22% cut segmental baffle showing the highest velocity and the 400 helical baffle 

achieving the lowest pressure drop, consistent with prior studies. 

 

Figure 17: Shell side Reynolds number 

Reynolds number increases with mass flow rate for all heat exchangers, with helical baffles 

showing higher increases compared to the 22% cut segmental baffle, reaching 80.08% for 

the 500 helical baffle. 

 

Figure 18: Shell side heat transfer coefficient 

The heat transfer coefficient increases with mass flow rate, with the 22% cut segmental 

baffle achieving the highest values, while helical baffles show lower coefficients that 

decrease as the helix angle increases, consistent with previous findings. 
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Figure 19: Shell side Nusselt number 

Nusselt number increases with mass flow rate, showing a 1.73% difference compared to 

Xing Lu’s model for the 400 helical baffle; however, it decreases with larger helical angles at 

the same mass flow rate, consistent with Simin Wang’s findings. 

 

Figure 20: Friction factor in tube 

Friction factor decreases with the increase of mass flow rate. The friction factor is calculated 

by using equation (60) to (62). In figure 20 all the empirical equations/relations are 

calculated and were compared, all are having good agreement and following same trends.   

Among the studied friction factor equations/relations,   present work has less friction factor.  
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3. Conclusions: 

The study investigates shell and tube heat exchangers, revealing that effectiveness decreases 

with increasing mass flow rate due to dead zones that reduce heat transfer, as noted by Ram 

Kunwer et al. Shell side velocity decreases with larger helical angles; 22% cut segmental 

baffles have the highest velocity, while 50° helical baffles have the lowest, aligning with 

findings from Simin Wang et al. 

Pressure drop is lower with higher helical angles, with the 40° helical baffle showing the 

least drop. Reynolds numbers increase with mass flow rate, with reductions of 34.75% to 

80.08% for helical baffles compared to the 22% cut segmental baffle. Heat transfer 

coefficients also increase with mass flow rate, with the segmental baffle outperforming 

helical designs by significant margins. 

The Nusselt number rises with mass flow rate, with only a 1.73% deviation from Xing Lu’s 

model for the 40° helical baffle. Friction factors decrease with mass flow rate, with the 

present study showing lower values compared to existing empirical models, indicating strong 

agreement across analyzed equations. 
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