Nanotechnology Perceptions
ISSN 1660-6795

WWW.nano-ntp.com

An Integrated Hybrid Approach for
Efficient Brain Tumor Analysis Using
Magnetic Resonance Imaging:
Preprocessing, Feature Extraction,
Optimization, and Classification

Pavan Kumar Pagadala'?, Malathy Batumalay?, Sudha Narang?,
Trinath Basu Miriyala!, Chidambaranathan C. M*, Basi Reddy
AS

'Department of Computer Science and Engineering, Koneru Lakshmaiah Education
Foundation, Aziz Nagar, Hyderabad, Telangana-500075, India.
’Faculty of Data Science and Information Technology, INTI International University,
71800 Nilai, Negeri Sembilan, Malaysia.
‘Maharaja Agrasen Institute of Technology, Sector 22, Rohini, Delhi.
* Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai,
India.
’Department of Computer Science and Engineering, School of Computing, Mohan Babu
University, Tirupati, Andhra Pradesh, India

The diagnosis of brain tumours in a timely and accurate manner is critical for effective therapy.
Using MRI data, we offer an integrated hybrid approach for efficient brain tumor analysis. The
technique is divided into five steps that handle various aspects of the analysis process. MRI scans
are preprocessed in the first stage using scaling and filtering techniques to standardize and improve
picture attributes. The second stage focuses on feature extraction by employing the Gray-Level Co-
occurrence Matrix (GLCM) method to distinguish tumour and non-tumour regions. Particle Swarm
Optimization (PSO) is used in the third stage to optimize specific features. In the fourth stage, a
Convolutional Neural Network (CNN) and Support Vector Machine (SVM) combination is
employed for tumour detection and classification, allowing for precise tumour location. The
suggested hybrid strategy is evaluated for performance in the final stage, reaching high metrics such
as specificity (99.573%), accuracy (99.8681%), precision (99.439%), recall (98.45%), and F1 score
(99.225%). The goal of this research is to create an accurate and efficient method for brain tumour
analysis, answering the demand for better diagnosis. To provide a reliable and exact study of brain
tumours, the integrated hybrid methodology combines preprocessing, feature extraction,
optimization, detection, and classification.

Keywords: Feature extraction, Gray-Level Co-occurrence Matrix (GLCM), Particle Swarm
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1. Introduction

The importance of digital information in the diagnosis of diseases, particularly brain tumours,
cannot be emphasised in today's digital world [1]. Medical images obtained using techniques
such as Magnetic Resonance Imaging (MRI) give critical data for the accurate and efficient
identification of disorders [2]. These digital materials are easily kept, shared, and analysed,
allowing healthcare providers to make informed patient care decisions. Computer vision is
critical in utilising these digital assets for illness detection [3-5]. Medical experts can extract
useful information from medical photos by using computer vision algorithms and techniques
[6]. Computer vision algorithms are meant to analyse and interpret visual data automatically,
allowing for the detection of patterns, structures, and abnormalities in medical images. This
improves the accuracy and efficiency of illness detection, localisation, and classification,
including brain tumours [7-9]. The brain's importance in the human body cannot be
emphasised [10]. The brain is the central nervous system's command centre, coordinating
different physical functions and cognitive processes [11-14]. Any anomaly or disease affecting
the brain, such as tumour growth, can have serious consequences for an individual's health and
well-being [15]. Brain tumours, in particular, can affect normal brain function, resulting in
neurological symptoms, cognitive deficits, and possibly fatal illnesses [16-18]. Tumours in the
brain can put pressure on surrounding tissues, resulting in a variety of symptoms depending
on their location, size, and kind. Common symptoms include recurrent headaches, seizures,
visual problems, motor skill impairments, cognitive decline, and personality changes [19].

Brain tumours are a major public health concern, and early identification is important for
effective treatment and better patient outcomes [20]. If not detected early, these aberrant brain
growths can cause severe neurological consequences and even death. As a result, there is an
urgent need for reliable and effective techniques of detecting brain tumours at the appropriate
time [21-23]. Advances in computer vision, machine learning, and deep learning have showed
considerable promise in medical image analysis in recent years, providing valuable tools for
brain tumour detection and classification. [24] These methods make use of the power of
algorithms and models to analyse complicated patterns and features in medical imaging data,
resulting in more accurate and trustworthy diagnoses. The intention to contribute to the
development of better tools for brain tumour analysis drives this research. The major goal is
to improve the diagnostic process and enable early detection of brain tumours so that timely
intervention and personalised treatment methods may be implemented. Here the best
methodology for the precise brain tumour detection by using the intrinsic information and
structures available in MRI scans using computer vision and advanced learning Al methods is
to be developed [25].

Despite advances in medical imaging and processing tools, existing methods for detecting
brain tumours continue to encounter obstacles [26]. These include the necessity for human
knowledge in analysing complex medical images, as well as limited accuracy and inefficiency.
These constraints can cause a delay in diagnosis and consequently jeopardise patient outcomes
[27]. As a result, the challenge is to create a superior methodology that overcomes these
limitations while still offering accurate and rapid brain tumour analysis from MRI data.

The following research questions will lead our analysis in order to address the problem
statement:
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o How might computer vision with latest methods be used to progress brain tumour
identification and classification from MRI scans?

o What are the main obstacles and limits of the current approaches for analyzing brain
tumours using these techniques?

o How can the proposed integrated approach, which combines stages of pre-processing,
feature extraction, optimization, detection and classification, and performance evaluation,
address these challenges and achieve superior performance in terms of various parameters?

o How does the suggested method's performance compare to other methodologies for
brain tumour analysis published in the literature?

The paper is divided into five major sections to provide an organised summary of the research.
Section 1 serves as an introduction, presenting a brief history of brain tumours and
emphasising the necessity of early detection. The problem statement is well stated,
emphasising the importance of developing an effective method for detecting brain tumours at
an early stage. Section 2 provides a detailed review of publications released in the last seven
years that cover numerous techniques and approaches utilised in brain tumour analysis. A table
comparing and analysing the existing literature is supplied to highlight research gaps. Section
3 delves into the methodology of the suggested Integrated Hybrid approach, outlining the steps
and algorithms used in the research. Each level is discussed step by step, and the mathematical
formulas for each algorithm are provided. Section 4 describes the experimental studies that
were conducted to test the suggested approach. It offers a complete description of the extracted
features as well as a comprehensive performance evaluation, reporting measures like as
accuracy, precision, recall, and F1 score. Section 5 gives a succinct conclusion summarising
the research findings and emphasising their significance. The future scope is examined in order
to offer prospective directions for future research. The article finishes with a References
section that summarises the sources cited throughout the publication. This organisation ensures
a clear and logical presentation of the research, allowing readers to quickly understand the
context, methods, experimental results, and overall implications of the study.

2. Literature Review

In 2022, Kesav et al. suggested a RCNN method which was investigated on Kaggle datset
[28]and attained an accuracy of 98.21%. The system's key disadvantage is that it is confined
to object detection. Furthermore, the training and inference processes for RCNN models
usually need advanced technology and extensive processing periods, rendering them
unsuitable for real-time or resource-constrained applications. Furthermore, the RCNN
technique may fail to detect small or subtle tumour regions since the region proposal stage
may miss these areas or generate false positives. While RCNN has demonstrated promise in a
variety of computer vision tasks, its limitations in terms of processing complexity and
detection accuracy for brain tumour investigation should be considered before employing this
technology.

In 2021, Ozlem et al. suggested to utilize transfer learning method [29] and attained an overall
accuracy of 99.02%. Limited availability of labeled data specific to brain tumours can restrict
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the effectiveness of transfer learning approaches. Moreover, the generalizability of the pre-
trained model may be affected by the differences between the source task and the target task,
leading to suboptimal performance. While transfer learning can accelerate the development of
models for brain tumour detection, the reliance on high-quality and representative datasets
remains a significant limitation. Efforts to acquire larger and more diverse datasets specific to
brain tumours are necessary to fully exploit the potential of transfer learning in this domain.

In 2021, Srikanth et al. presented [30] a 16-layer VGG-16 deep NN as their proposed model.
The authors attained an outcome, which have a 98 percent accuracy. The VGG-16 architecture
has demonstrated promising results in a variety of computer vision tasks, including image
classification, because to its depth and large number of trainable parameters. However, when
it comes to detecting brain tumours, the limited quantity and variety of available datasets can
be a problem. Because of the complexity of brain tumour imaging data, as well as the probable
scarcity of labelled samples, the model may memorise the training data rather than generalising
successfully to unknown cases. When applied to new and different brain tumour images, this
overfitting issue can result in decreased performance and a lack of robustness.

In 2020, GS Tandel et al. [31] suggested a transfer learning-based type of a CNN and it
achieved a mean accuracy of 98.5 %. Transfer learning necessitates the use of a formerly
learned CNN model that has been trained on a big and diverse dataset. Finding a pre-trained
model specifically tailored for brain tumour detection, on the other hand, can be difficult. This
may result in the use of models trained on more broad image datasets, which may not correctly
capture the particular traits and characteristics of brain tumours.

In 2019, Deepak et al. [32] suggested to use CNN model with a pre-trained GoogleNet. The
reliance on pre-trained models limits the network architecture's ability to be fine-tuned and
adapted specifically for brain tumour detection. Different datasets and imaging modalities may
necessitate customised network setups to successfully capture the essential information. The
model's inability to be fine-tuned substantially may limit its ability to detect and categorise
brain tumours effectively and a property of overfitting was also noticed in this method.
However, it attained an accuracy of 98%.

In 2019, Gumaei et al. [33] suggested to use Principal Component Analysis (PCA) with
Regularized Extreme Learning Machine (RELM) classification. PCA presupposes that the
data is normally distributed and follows a linear relationship. If these assumptions are broken,
PCA performance may suffer. Nonlinear interactions and non-normal distributions can lead to
distorted or biassed main components, which can lead to incorrect dimensionality reduction
and feature extraction. The results reported 94.23% accuracy.

In 2018, Abiwinanda et al suggested a CNN along with ‘adam’ optimizer [34] and produced
an accuracy of 98.51%. CNNs with the “adam” optimizer necessitate meticulous adjustment
of hyperparameters. The Adam optimizer's learning rate, betal, beta2, and epsilon settings can
all have a major impact on the training process and convergence. The following Table 1
presents an engaging comparative discussion of the above topics.
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Table 1. Comparative discussion of previous methods

S.No. Technique Used gj‘gfication of Observations Parameters Attained Gaps/Limitations
. The biggest
RCNN approach Used Public datab'fise . o disadvantage is that it is
1. 2022 Kaggle for carrying | Accuracy: 98.21 %
(28] out the entire work only  capable of
detecting objects.
. Uses pre-trained S
2. Transfer learning |, model  with vast | Accuracy: 99.02% generalizability of the
[29] amount of data pre-trained model
. the limited quantity and
Images are subjected . f
a 16-layer VGG- . 000 variety of available
3. 16 deep NN [30] 2021 tﬁ _be 1rr11ptr_oved for | Accuracy: 98% datasets can  be a
eir resolution problem
Authors used Accuracy:  94.70%, | Transfer learning
4 TL based CNN 2020 standard and basic Recall :98.70%, | necessitates the use of a
’ [31] ML aleorith 1 Precision: 98.60 %, F- | previously learned CNN
algorithms also. score: 99.98% model
Accuracy: 98%,
. 0,
CNN technique + Pre-trained model is Reca'll' . '97'906 ’ phenorqenon . of
5. GoogleNet [32] 2019 tilized her Precision: 99.2 %, | overfitting with smaller
ooglelve utiized here. Specificity: 99.4%, F- | training data
score: 97%
. PCA presupposes that
Feature  extraction :
6. PCA+RELM 2019 with Principal | Accuracy: 94.23% thp .data is normally
[33] C ¢ Analysi distributed and follows a
omponent Analysis linear relationship
. Suboptimal
A principle  of
7. CNN+§dam 2018 Stochastic form of | Accuracy: 98.51% hyperparameter .
Optimizer [34] Gradient tilized selection can result in
radients are utihize sluggish convergence
0,
Conventional Features were ?{Ce(:cl;rlTCy of 9376850//0’ non-linear character of
8. CNN [35] 2018 extracted using the Precision: 91 D/ 'F_o’ Conventional CNN
simple CNN oA 10 ” features
score: 94.1%
accuracy of 91.43%, | exact reasoning behind
9 Deep  Learning 2017 2 types of neural | Recall :98%, | the decision-making
’ [36] networks are utilized | Precision: 93 %, F- | process is frequently
score : 95% unclear

Suboptimal hyper parameter selection can result in sluggish convergence, unstable training, or
even failure to converge. Finding the appropriate selection of hyper parameters for a specific
problem can be difficult, and lengthy testing and fine-tuning may be required.

In 2018, Pashaei et al. [35] presented a simple and traditional CNN procedure along with its
model and 93.68%. of accuracy was determined here. While CNNs excel at feature extraction,
comprehending the learnt representations can be difficult. The high-dimensional and non-
linear character of Conventional CNN features makes understanding the underlying
significance of certain features or the network's decision-making process difficult.

In 2017, Paul et al. [36] used deep learning methods to attain 91.43%.of accuracy where basic
Deep Learning models create predictions based on data patterns learnt, but the exact reasoning
behind the decision-making process is frequently unclear. This lack of transparency can be
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problematic in areas where accountability and transparency are critical, such as healthcare and
judicial systems.

The review of the literature reveals significant shortcomings in current methodologies for brain
tumour analysis. Although effective for object recognition, the RCNN technique lacks the fine
segmentation needed for correct diagnosis and is computationally demanding, rendering it
unsuitable for real-time or resource-constrained applications. Transfer learning approaches
rely on limited labelled data from brain tumours and may not generalise effectively to other
tasks, demanding larger and more diversified datasets.

The review of the literature reveals significant shortcomings in current methodologies for brain
tumour analysis. Although effective for object recognition, the RCNN technique lacks the fine
segmentation needed for correct diagnosis and is computationally demanding, rendering it
unsuitable for real-time or resource-constrained applications. Transfer learning approaches
rely on limited labelled data from brain tumours and may not generalise effectively to other
tasks, demanding larger and more diversified datasets. While accurate in other tasks, the VGG-
16 deep neural network suffers with limited and heterogeneous brain tumour datasets, resulting
in overfitting and poor robustness. CNN approaches' reliance on pre-trained models restricts
adaptability and may necessitate customised setups for diverse datasets. The assumption of
linear correlations and normal distribution in Principal Component Analysis (PCA) has an
impact on accurate feature extraction. The "adam" optimizer is difficult to use for CNN
hyperparameter adjustment, and understanding the learnt representations and decision-making
process of CNNs can be difficult due to its high-dimensional and non-linear nature. These
constraints emphasise the importance of better segmentation, larger datasets, customised
models, a better understanding of learning features, and transparent decision-making
procedures in brain tumour analysis.

To address these shortcomings, the proposed method provides an integrated hybrid strategy
for efficient brain tumour analysis. This method tries to overcome the limitations of prior
methods by offering more exact tumour localization and employing a hybrid strategy that
integrates several methodologies for increased accuracy.

3. Methodology and Algorithm

The diagram provided in Fig. 1 depicts the proposed procedure for diagnosing brain tumours,
which includes five distinct stages. The input MRI scans are resized, the Median filter is
applied, and the Haar wavelet decomposition is performed during the pre-processing stage.
These techniques aid in image standardisation and enhancement of vital characteristics while
decreasing noise. The feature extraction in the upcoming stage is done using GLCM method.
Textural information is captured by GLCM, allowing for better distinction of tumour and non-
tumour regions. The final stage entails optimising the selected characteristics using Particle
Swarm Optimisation (PSO). PSO traverses the feature space effectively, maximising
discriminative power. The fourth stage employs a CNN and SVM to combine detection and
classification. By segmenting the brain tumour area, this combination allows for exact tumour
localization. Finally, the performance evaluation stage quantifies the effectiveness of the
suggested strategy. This image depicts the workflow of the projected technique and illustrates
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its probable for higher performance in brain tumour diagnostics.
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Fig. 1. Block Diagram of Proposed Algorithm
A. Algorithm for Stage 1 : Pre-Processing

Step i. Set the path or directory to the location where the brain tumour MR scan images are
stored.

Step ii. Read and import the images from the specified directory of MR Brain Scan Image
Dataset which is acquired from Kaggle [37] which contains 300 samples of Brain MR Scans.

Step iii. Set the desired dimensions for the resized image (e.g., width and height)

Step iv. Iterate through each imported image and Resize each image to the specified
dimensions using bilinear interpolation.

Step v. Check if the imported Brain Scan image is available in RGB format, convert it to
grayscale by eliminating the hue and saturation information while retaining the luminance.

Step vi. Apply a median filter to the image to remove artifacts and improve image quality.
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a. Given:
Input image: 1(x, y), say (X, y) denotes the pixel coordinates.

Window size: N x N, where N is an odd integer.

b. Initialize an empty output image, O(X, y), with the same dimensions as the input
image.
c. Determine the window region centered around (x, y) with size N x N. b. Initialize an
empty list, pixel values.
d. For each pixel (i, j) within the window region: a. Add the pixel value I(i, j) to the pixel
values list and Sort the pixel values list in ascending order.
e. Compute the median value (M) of the sorted pixel values list using the following
formula:
M = pixel values [w ................................................................ (D

2

The pixel value at the centre of the N x N block can be calculated using this formula. Within
the block, this centre pixel is frequently used as a reference or anchor point to perform different
image processing or analysis operations.

f. Set the pixel value attained of the output image at (X, y) to the computed median value
M).

g. Repeat steps b-f for all pixels in the image.

h. Return the output image, O(x, y).

Step vii. Apply Haar wavelet transformation to the image for further analysis by

decomposing them into a set of wavelet coefficients
a. Given:
Input image: O(x, y).

Image dimensions: M x N.

b. Initialize an empty set of wavelet coefficients, C.
c. Set the initial approximation image, Ao, as the input image
A0(X,Y) = O(X, T) ceeereerienrienieeieete et eiteseesne e sre e e saeesnne e 2

The pixel value at coordinates (X, y) in the initial approximation image A0 is denoted by the
notation Ao(X, y). In image processing, this notation is commonly used to represent pixel
values in a specific image. O(X, y) represents the pixel value at coordinates (x, y) in the input
image O on the right side of the equation. We initialize Ao with the same pixel values as the
input image by assigning this value to the corresponding pixel in the initial approximation
image A0.

d. Set the level of decomposition, L.

e. For each decomposition level | from 1 to L:
Nanotechnology Perceptions Vol. 20 No. S15 (2024)
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1. Calculate the dimensions of the approximation and detail images at level
il. Approximation image: Ai(X, y) has dimensions M; x Nj, where
M.,
M, = ﬂoor(zl_l) ........................................................................ 3)
N
N, = floor (21_1) “

By systematically applying equations (3) and (4) with increasing "I" values, a series of
approximation images with reduced dimensions compared to the previous level can be
generated. This hierarchical image representation enables multi-resolution analysis or
compression techniques, with higher levels corresponding to lower spatial resolution
representations of the original image.

f. Compute the approximation and detail images at level 1 using the Haar wavelet
transformation:
1. Compute the approximation and detail coefficients for the row

Approximation coefficients

(Reven+ Rodd)
A +1(r, k) =
,+1(nk) () e (5)

Detail coefficients

D, (r,k) = Reven=Rodd) .. (6)

sqrt(2)
The approximation coefficients as provided by equation (5) represent the data's coarsest level
of approximation. The detail coefficients as provided by equation (6) capture the data's high-
frequency components or details. At each level, they represent the differences between the
original data and the approximation.

Where
Reven = AL(L) ZK) covooreveeeeeeoeeeeeeeeesseseseeeeseees e esse s (7)
Rodaa = Al(r, 2K A 1) o (8)

il. Compute the approximation and detail coefficients for the column

Approximation coefficients

(Ceven+ Codd)
A +1(k,c) =
,H 1k o) W e )

Detail coefficients

H (k, C) — (Coyen= Codd) -« ereeeereremmememeerieieieirisieieteteieseeeseeeieseenenene (10)
1 sqrt(2)

One can determine the approximation and detail coefficients for the given column of data using
the Haar wavelet transformation at each level by sequentially applying these equations. By
calculating the approximation and detail coefficients at various levels, we can analyse the data
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column at various resolution scales.

Where

Coven = AJ(2K, €) cveieiiieiieeeeeeseeee et (11)

Codd = Al 2K 4 1,0) coieieieieeeeee et (12)

iii. Store the computed approximation and detail coefficients in the set of wavelet
coefficients

C = {Alr Hl' Dl} ............................................................................................. (13)

These coefficients give a thorough representation of the data at various approximation and
detail levels, enabling additional processing, analysis, or reconstruction of the initial column
of data.

Algorithm for Stage 2: Feature Extraction

Stepi. Apply GLCM technique to the filtered image.
a. Given:

Filtered image: F(x, y).

Set of wavelet coefficients as said in equation (13)

b. Initialize an empty GLCM matrix for each component of the filtered image and
wavelet coefficients: GLCM_F, GLCM_A;, GLCM_H,, GLCM_D..
C. Set the desired distance and direction for computing the co-occurrence matrix
d. For each and every point of pixel (X, y) in the filtered image F:
i Compute the pixel intensity values at the current position and the corresponding pixel

at the specified distance and direction

Current pixel intensity

Fualte = F(X ¥ et (14)
Co-occurring pixel intensity
Co0Cyae = F(x + dcos(0),y + dsin(0)).....cccceevvveveeveeeenrennnne. (15)

Where d : distance, 0 : direction

The co-occurring pixel intensity in equation (15) represents the intensity value at a specific
distance and direction from the current pixel, whereas the current pixel intensity in equation
(14) represents the intensity value at a specific position. We can analyse the relationships and
characteristics of pixel intensities in an image by evaluating these equations with suitable
values, which is helpful for a variety of image processing tasks like feature extraction, texture
analysis, and edge detection.
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ii. Increment the corresponding entry in the GLCM_F matrix for the current distance and
direction:
GLCME (Fyatuer COOCyaiue) T = Lottt (16)

The co-occurrence count or frequency of those intensities is effectively updated by increasing
the GLCM_F matrix based on Equation (16) for the current distance, direction, and the
corresponding pixel intensities. In order to capture the spatial relationships between pixel
intensities in an image, this GLCM matrix is frequently used in texture analysis and pattern
recognition tasks.

e. using the wavelet coefficient component instead of the filtered image F, and update
the corresponding GLCM matrix
f. Normalize each GLCM matrix by dividing all entries for the corresponding distance
and direction, for each GLCM matrix

GLCM
GLCM, ormalized = TUMGLOM) e 17

Equation (17) explains how to divide each entry of a GLCM (Gray-Level Co-occurrence
Matrix) by the total number of entries in the GLCM for the corresponding distance and
direction to normalize it.

Step ii. Using the GLCM matrix, calculate the entropy as a measure of the amount of
information or randomness in the image.

i Given:
a. GLCM matrix: GLCM,ormalized-
b. Initialize the entropy value, entropy = 0
c. Iterate over each entry (i, j) in the GLCMy,grmalizeq Matrix
d. Compute the probability of occurrence for the current intensity pair
P(i,j) = GLCM_normalized(i,j).....ccccccemrrrmremrieiienienriereeieeeeseesveeveeneens (18)

The probability of occurrence for the current intensity pair (i, j) is determined by equation
(18). It shows how likely it is that the intensity pair (i, j) will appear in the image. A higher
frequency of occurrence is indicated by higher values.

e If P(i, j) is non-zero, calculate the entropy contribution Ec for the intensity pair
Ec = —P(@,j) * 1082(P(1,]))ccceereerrereerieeieeieerieesee e sre e (19)
f. Add the entropy contribution to the overall entropy value

entropy += E¢

If P(i, j) is greater than zero, equation (19) calculates the entropy contribution for the intensity
pair (i, j). Entropy is a measure of how random or uncertain an intensity pair distribution is.
The probability is multiplied by the probability's logarithm, and the result is negated to
determine the contribution of entropy. Each intensity pair's entropy contribution (Ec) is tallied
up and added to the total entropy value in Equation (20). The distribution of intensity pairs
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across the entire image is represented by the average amount of information or randomness by
the overall entropy.

g. Return the calculated entropy value
h. Similarly, other significant features Energy, Contrast, Correlation and Homogeneity
are computed and they are provided by
.o\ 2
Energy = Z(GLCMnormalized(l, ])) ........................................... (21)

The energy feature is calculated in equation (21) by adding the squared probabilities of all
intensity pairs. The uniformity or homogeneity of the image as a whole is reflected in the
energy. The distribution of intensity pairs is more uniformly distributed at higher energy
values.

Contrast = Y(i — j)2* GLCMyormalized (i, J)«eeevereerereereenennn (22)

By adding the squared differences in intensities (i - j) multiplied by the corresponding
probability, equation (22) calculates the contrast feature. The local variations or differences
between intensity pairs are measured by contrast. The difference between adjacent intensities
is greater when the contrast value is higher.

Z((l — Mean;)* G- Mean]')* GLCMnormalized(i,j))

ion=——mmmmmF7—F———— ... 2
Correlation StdDevi*StdDev;j (23)

By taking into account the intensities' mean values and standard deviations, equation (23)
calculates the correlation feature. It gauges the spatial dependence of intensities and their linear
relationship. A stronger linear relationship between intensities is indicated by higher

correlation values.
GLCMnormali ed (i:j)

@+1i—jh

Homogeneity = Y (

By adding the normalised probabilities of intensity pair divisions by the absolute difference in
intensities (1 + [i - j|), equation (24) calculates the homogeneity feature. The homogeneity of
intensity pairs is a measure of how similar or close they are. A more homogeneous texture
with comparable intensities is indicated by higher homogeneity values.

C. Algorithm for Stage 3: PSO
Stepi. Prolvide the extracted features from GLCM and Initialize the PSO Algorithm

a. Begin the PSO algorithm with its required amount variable
b. Generate an initial swarm of particles:
1. Each particle represents a candidate solution and consists of feature values
c. Perform the PSO optimization loop:
1. Iterate for a specified number of iterations (max_iter)
ii. For each particle in the swarm, Update the particle's velocity using the following
formula:
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v=wx*vVv+cl xrand() * (Ppest — Cp) + c2 * rand() * (Gpest — Cp)....(25)
Where

particle best position = Pgest, Current Position = C, global best position = Ggest, Velocity
=v, rand() generates a random number between 0 and 1

The formula given by (25) updates each particle's velocity by combining these elements,
enabling it to adjust its movement and explore the search space in search of more effective
solutions. In particle swarm optimisation (PSO) algorithms, the velocity update is a crucial
step that enables particles to move towards advantageous areas of the solution space.

iii. Update the particle's position:
position = Cp t Ve (26)

In order to determine the particle's new position, equation (26) merely adds the particle's
current velocity to its current position. This revision depicts the particle's motion in the
solution space based on its present velocity. The PSO algorithm explores and looks for optimal
or nearly optimal solutions in the problem space while updating the positions of each particle
in real-time.

iv. Clip the position values to ensure they remain within the specified bounds
v. Evaluate the fitness of the new position and update when required.
d. Obtain the optimized feature values: The global best-known position represents the

optimized feature values after the PSO algorithm convergence
e. Return the optimized feature values for further analysis and classification task

Step ii. The optimized set of features are obtained from the PSO algorithm, which maximizes
the fitness based on the objective function.

D. Algorithm for Stage 4: Detection and Classification

Step i.Select a pre-trained CNN model with 4 hidden layers that has been optimized for
image classification tasks.

Step ii.Train the CNN model by means of weights using backpropagation and gradient
descent.

Step iii.Extract the optimized features from the tumour region of the MR scan images using
the trained CNN model.

Step iv.Combine the extracted features with the corresponding tumour labels.
Step v.Split the combined dataset into training and testing sets.

Step vi.Train an SVM classifier using the training set and the optimized features.

a. Initialize the SVM classifier with desired hyperparameter

b. Compute the Gram matrix (K) for the training dataset

K(i,j) = kernel_function(feature_vector_i, feature_vector_j) ....(27)

Nanotechnology Perceptions Vol. 20 No. S15 (2024)



1037 Pavan Kumar Pagadala et al. An Integrated Hybrid Approach for Efficient...

To help the SVM classifier learn the decision boundary that best divides various classes in the
input space, we compute the Gram matrix as given in equation (27), which summarizes the
connections and similarities between training samples [41].

C. Solve the optimization problem to obtain the support vectors (o) and bias term (b):
Minimize: 0.5 * (=1t N) XG=1t0 n) ADa(yDy(OKGE ) — Xi=1 to Ny ali)
........ (28)

By minimizing a cost function and adhering to certain constraints, equation (28) represents the
optimisation problem in SVM that aims to determine the ideal values for the bias term (b) and
support vectors (o).

d. Store the support vectors (SV) and corresponding labels (SV_labels) for later use
Step vii.Test the trained SVM classifier on the testing set to obtain tumour localization results.
a. For each feature vector in the testing dataset, Compute the decision function value
(fx)):

f(x) = Y(i = 1to SV oun)a(i)y(i)kernel function(SV(i),x) + b ....(29)

Step viii.Apply the trained SVM classifier to the entire MR scan image to predict the presence
or absence of a tumour in each region.

a. Classify the feature vector based on the decision function value:
i. If f(x) > 0, then tumour
ii.If f(x) <= 0, then non-tumour
Step ix.Identify the regions predicted as tumour regions based on the SVM classifier's output.

Step x.Use the tumour localization results to locate and segment the brain tumour area in the
MR scan image

E. Process flow for Stage 4: Performance Evaluation

Step i.Performance evaluation metrics to assess the accuracy and performance of the
proposed approach via various parameters.
LGS ) OO

a. Accuracy =
(TP + TN + FP + FN)

1. Here TP — True Positive (identified Tumours),
il. TN — True Negative, FP — False Positive,
1. FN — False Negative (not identified)

Step ii.Specificity is the proportion of true negatives identified correctly by the model. It
indicates the model's ability to correctly classify non-tumour or non-cancer cases.

Specificity =
(TN + FP)

Step iii.Sensitivity or Recall is the proportion of true positives that were identified by the
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model. It indicates the model's ability to correctly classify tumour or cancer cases.

e TP
Sensitivity =

Precision = (33)
(TP + FP)

Step v.The F1 score is the harmonic mean of Recall and Precision. It provides a single metric
that balances both Recall and Precision.

F1Score = 2 * (Precision * Recall) ....c.ccceeerenieinieieinieieceeceeeseecseeeenenee (34)

(Precision + Recall)

4. Experimental Investigations
a. Pre-Processing and Segmentation Results

The Kaggle [37] was used to obtain the input MRI image of a brain tumour shown in Fig. 2.
We used an 80-20% split for training and testing with 300 samples available. This means we
shuffled the dataset at random and assigned 240 images (80% of 300) to training and 60 images
(20% of 300) to testing. This graphic serves as the analysis' starting point, displaying the raw
data that will be analyzed and altered in later steps.

Fig. 2. Input MRI image Fig. 3. Resized Image

Figure 3 shows how to resize an image. An iterative procedure is conducted on each imported
image in this step. The purpose is to use bilinear interpolation to resize each image to the
desired dimensions. Bilinear interpolation is a technique for estimating pixel values in a scaled
image based on the values of nearby pixels. This technique ensures that the image is changed
to the necessary size while retaining the original image's overall quality and integrity. Figure
4 shows the pre-processed image after using the Median Filter. The Median Filter is a digital
image processing technique for removing noise and artefacts from images. It operates by
replacing each pixel value with the median value of the pixels around it. The Median Filter
improves the image's clarity and successfully removes undesirable artefacts, resulting in a
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cleaner and clearer portrayal of the brain tumour.

Fig. 4. Pre-processed Image via Median Filter Fig. 5. Haar Wavelet transformation

The Haar Wavelet transformation for decomposition is shown in Figure 5. The Haar Wavelet
transformation is a signal and image processing mathematical approach. It decomposes the
image into a set of wavelet coefficients that represent the image's various frequency
components. At different scales, these coefficients provide useful information on the texture
and structure of the image. The Haar Wavelet transformation aids in the extraction of key
features and the recording of important details from images, which shall then be used in future
analysis phases.

4 Warning Dialog ~ — X

Brain Tumor Detected

Fig. 6. PSO + CNN segmented image Fig. 7. Dialog box mentioning the stage

The PSO + CNN segmented image is shown in Figure 6. To segment the brain tumour, the
optimised features acquired from the Particle Swarm Optimisation (PSO) method are merged
with the Convolutional Neural Network (CNN) model in this stage. The PSO method aids in
the optimisation of picture characteristics, while the CNN model executes the segmentation
process. The segmented image that results emphasises the precise regions related to the
tumour, allowing for a clear contrast between the tumour and the surrounding areas.
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Figure 7 depicts a dialogue box indicating the state of the process. It is an informative element
that indicates the current stage or step in the overall workflow. This dialogue box can display
useful information such as the progress of the process, the exact algorithm or technique being
used, or any other relevant information to help the user or observer through the process.

Cluster: 1 Cluster: 2

Fig. 8. Image Clusters

Figure 8 depicts the image clusters created by the CNN model's four hidden layers. Hidden
layers in the CNN architecture are in charge of extracting and learning complicated
characteristics from input images. These layers combine to generate a hierarchical
representation of the image, with each layer capturing varying levels of abstraction. The
clusters in Fig. 8 show how the CNN model grouped similar features or patterns together,
which helps with overall image analysis and interpretation.
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Fig. 9. Tumour Localization Image Fig. 10. Tumour extracted area

The tumour localization image is shown in Fig. 9. The localization method tries to identify
specific regions within the image that contain the tumour once the CNN model and SVM
classifier have been trained and tested. This image pinpoints the exact site of the tumour,
allowing for more precise examination and diagnosis. Figure 10 depicts the tumour-extracted
area. Only the region of interest, which corresponds to the tumour area in the brain scan, is
shown in this image. Healthcare practitioners and researchers can focus their attention on the
precise region of interest by isolating and extracting the tumour area from the rest of the image,
allowing for further analysis, measurement, or additional diagnostic procedures.

b. Feature Extraction

The input MRI image of a brain tumour shown in Fig. 2 was obtained using the Kaggle dataset
known as "Brain Tumour MRI Dataset" [37] by Masoud Nickparvar. With 300 samples
available, we divided training and testing by 80/20. This means that we randomly shuffled the
dataset and assigned 240 images (80% of the total of 300) to training and 60 images (20% of
the total of 300) to testing. As the main tool for implementation, MATLAB R2017b was used
to carry out the experiment. The testing environment was a PC with an Intel Core i5-8265U
CPU operating at a base frequency of 1.60GHz and a maximum turbo frequency of 1.80GHz.
The computer had 8.00 GB of installed RAM, of which 7.85 GB were usable. The computer
used an x64-based processor and a 64-bit operating system.

For applications in science and engineering, such as image processing, data analysis, and
algorithm development, MATLAB R2017b offered a complete environment. The fact that
MATLAB was used suggested that the experiment involved numerical computations and
probably made use of a variety of built-in functions, toolboxes, and algorithms found within
the MATLAB ecosystem.

The PC's hardware configuration, which included an Intel Core i5 processor and 8 GB of
RAM, suggested a moderate computing environment suitable for running MATLAB and
effectively completing computational tasks. Large datasets and memory-intensive operations
were made possible thanks to the 64-bit operating system and x64-based processor's improved
system resource utilisation. For the five matched samples that were analysed for the proposed
system, the features that were recovered using the feature extraction technique are listed in
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Table 2.
Table 2. Features extracted for Samples of Brain Tumour Images
Sample Brain Tumour Images
Features Extracted Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
Entropy 9.8267 9.7467 9.7632 9.7651 9.6529
Contrast 0.525 0.463 0.531 0.5231 0.513
Correlation 0.9246 0.9341 0.9141 0.9136 0.9219
Energy 0.01088 0.01103 0.01058 0.01085 0.01075
Homogeneity 0.4165 0.4173 0.4145 0.4138 0.4147

Table 2 shows the features retrieved from five brain tumour samples in the process. Here
GLCM is a texture analysis approach that evaluates the spatial relationships between pixels in
an image with different grey levels is utilized to extract features.

Several GLCM properties are determined for each sample, including entropy, contrast,
homogeneity, correlation, and energy. These features provide quantitative metrics that define
the textural aspects of tumour images, which can help distinguish between different types of
tumours or identify anomalies.

The entropy characteristics of the samples are depicted in Fig. 11. Entropy is a measure of the
unpredictability or uncertainty in an image's distribution of pixel intensities. High entropy
values in brain tumour photos imply a more complicated texture pattern, whilst low entropy
values indicate a more uniform or homogenous texture.

B Sample 5

W Sample 4

H Sample 3
Sample 2
9.55 9.6 9.65 9.7 9.75 9.8 9.85
Entropy Values

Fig. 11. Entropy Features of Samples

The contrast and homogeneity characteristics of the samples are also shown in Fig. 12.
Contrast is the difference in intensity between neighbouring pixels in an image, suggesting the
presence of sharp transitions or borders. In contrast, homogeneity assesses the similarity or
uniformity of pixel intensities within an image. High contrast values indicate greater intensity
differences, whilst high homogeneity values indicate a more uniform texture pattern.
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|
Q
o
% Sample 4
v m Sample 3
_ .Samplez
H Sample 1

0.1 0.2 0.3 0.4 0.5 0.6
Contrast and homogeneity Values

o

Fig. 12. Contrast and Homogeneity Features of Samples

B Sample 5
B Sample 4
m Sample 3
] Sample 2
W Sample 1
0.9 0.91 0.92 0.93 0.94
Correlation Values
Fig. 13. Correlation Features of Samples
K]
% B Sample 4
v Sample 3
B Sample 1

0.0102 0.0104 0.0106 0.0108 0.011 0.0112
Energy Values

Fig. 14. Energy Features of Samples

The correlation features of the samples are depicted in Fig. 13. Correlation quantifies the linear
relationship between pixel intensities in an image. A high correlation value shows a strong
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linear link between pixel intensities, whereas a low correlation value indicates a weaker or
more scattered association.

Figure 14 depicts the energy characteristics of the samples. Energy is calculated as the sum of
squared GLCM values and represents the overall magnitude or strength of the texture pattern
in the image. Low energy values indicate a smoother or less pronounced texture, whereas high
energy values indicate a more noticeable or dominant texture pattern.

c. Performance Evaluation

Table 3 shows the accuracy values of the proposed methods as well as previous methods such

as the RCNN approach [28], the concept of transfer learning [29], a 16-layer VGG-16 deep
NN [30], a transfer learning-based Convolutional Neural Network (CNN) [31], PCA+RELM
[33], CNN+adam Optimizer [34], Conventional CNN [35], and Deep Learning [36]. The
proposed method for diagnosing and localising brain tumours achieved a remarkable
99.8681% accuracy, outperforming previous methods.

Table 3. Accuracy Performance evaluation

Year Techniques used Accuracy (%)
2022 RCNN approach [28] 98.21
2021 concept of transfer learning [29] 99.02
2021 a 16-layer VGG-16 deep NN [30] 98
2020 transfer learning-based Convolutional Neural Network (CNN) [31] 94.70
2019 CNN technique + GoogleNet [32] 98
2019 PCA+RELM [33] 94.23
2018 CNN-+adam Optimizer [34] 98.51
2018 Conventional CNN [35] 93.68
2017 Deep Learning [36] 91.43
Proposed Method 99.8681
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Fig. 15. Accuracy Comparative Plot
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Figure 15 shows Comparable Accuracy A comparison of accuracy values (in percentages) on
the Y-axis and comparison methods, including the proposed method, on the X-axis is depicted
in the plot. The plot shows that the proposed method outperforms the others in terms of
accuracy, emphasising its superiority in diagnosing and localising brain tumours.

Table 4 compares the three approaches’ sensitivity, accuracy, and F1 score. The classifier's
sensitivity denotes its ability to correctly identify positive instances (tumours) that provides an
overall assessment of the classifier's performance. The suggested technique has high recall and
precision scores, suggesting its accuracy in recognising tumours. The transfer learning-based
Convolutional Neural Network (CNN) technique [31] achieves a higher F1 score, indicating a
better balance of precision and recall.

Table 4. Sensitivity, Precision and F1 Score Comparison

Year Techniques used Sensitivity/Recall (%) Precision (%) F1 Score (%)
2020 transfer learning-based | 98.70 98.6 99.98
Convolutional Neural
Network (CNN) [31]
2019 CNN technique + GoogleNet | 97.9 99.2 97
[32]
2018 Conventional CNN [35] 97.5 91 94.1
2017 Deep Learning [36] 98 93 95
Proposed Method 99.35 99.439 99.225

Figure 16 shows a comparison of sensitivity, accuracy, and F1 score values for various
approaches. This plot clearly depicts the performance disparities and underlines the suggested
method's capabilities in terms of sensitivity and precision
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Fig. 16. Sensitivity, Precision and F1 Score Comparison

Table 5 contrasts the specificity parameter, which measures the classifier's ability to properly
identify non-tumour negative cases out of all actual negative cases. The proposed method had
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a higher specificity value of 99.573% than the CNN methodology + GoogleNet [32], which
had a specificity value of 99.4%. This demonstrates the suggested method's robustness and
accuracy in correctly recognising non-tumour zones.

Table 5. Specificity parameter Comparison

Year Techniques used Specificity (%)
2023 Chronological Artificial Vultures Optimization (CAVO) [38] 93.8
2022 i-YOLOVS5 [39] 98.78
2020 Whale Harris Hawks optimization (WHHO) + deep convolution 79.1
neural network (DCNN) [40]
2019 CNN technique + GoogleNet [32] 99.4
Proposed Method 99.573

Figure 17 shows a comparison plot of specificity values to show where the proposed method
sits in terms of specificity performance

Specificity

100
90
8
7
6
5
4
3 B Specificity
2
1

o OO oo Oo

Specificity Values

o

0
0
CAVO [38] i-YOLOV5 WHHO + CNN + Proposed
[39] DCNN [40] GoogleNet method
[32]
Methods

Fig. 17. Specificity values Comparison

Finally, the proposed method in this work exhibits outstanding accuracy, sensitivity, precision,
and specificity in the detection and localization of brain tumours. It outperforms various
existing methods described in the literature in terms of accuracy, recall, precision, F1 score,
and specificity. These findings show the suggested method's effectiveness and potential as a
valuable tool for accurate brain tumour analysis and diagnosis, holding tremendous promise
in the field of medical imaging and healthcare.
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5. Conclusion and Future Scope

Eventually, employing MRI data, this study proposes an integrated hybrid technique for
efficient brain tumour analysis. The proposed method is organised into five steps, each of
which addresses a distinct component of the analysis process and dataset used is collected
from the open source Kaggle database. Scaling and filtering procedures are used in the pre-
processing stage to standardise and improve the properties of MRI scans. GLCM approach is
used in the feature extraction step to distinguish between tumour and non-tumour regions
based on statistical features. Then, Particle Swarm Optimisation (PSO) is used to optimise
individual features in order to improve analysis speed. In the fourth stage, a CNN and SVM
combination is used for tumour detection and classification, allowing for exact tumour
location. In the last stage, the proposed hybrid technique is tested, with excellent metrics such
as high specificity (99.573%), accuracy (99.8681%), precision (99.439%), recall (98.45%),
and F1 score (99.225%). These findings emphasise the proposed method's accuracy and
efficiency in brain tumour analysis. The primary purpose of this study is to address the demand
for better brain tumour diagnosis by developing an accurate and efficient analysis approach.
To provide a reliable and precise analysis of brain tumours, the integrated hybrid technique
integrates preprocessing, feature extraction, optimisation, detection, and classification. The
proposed method outperforms existing approaches in the literature due to the incorporation of
several strategies and algorithms.

While the proposed hybrid technique has yielded promising results in the investigation of brain
tumours, there are various opportunities for future research and enhancements, including
Extending the dataset used for training and evaluation can increase the proposed method's
performance and generalizability. Access to larger and more diversified information can help
the model detect and classify brain tumours more correctly. Integrating Advanced Deep
Learning Techniques Later: Investigating the integration of more advanced deep learning
techniques, such as recurrent neural networks or attention processes, can potentially improve
the accuracy and resilience of the tumour detection and classification process. Including
Multimodal Imaging in the Future: Integrating several imaging modalities, such as MRI, CT
scans, or PET scans, can provide complementary data and increase overall accuracy of brain
tumour analysis. Future research should focus on developing algorithms that can successfully
combine information from many modalities. Finally, extending the proposed technology to
real-time analysis could be advantageous for clinical applications. The development of fast
algorithms and hardware implementations capable of processing MRI data in real-time can
considerably increase the system's performance and usefulness.

Overall, the proposed hybrid technique lays the groundwork for future advances in brain
tumour analysis. This strategy has the potential to improve brain tumour detection and therapy
by resolving constraints and embracing future research paths, ultimately leading to better
patient outcomes.
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