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Optical Character Recognition (OCR) systems often face challenges in accurately 

processing text in morphologically rich Indic scripts like Devanagari, which is 

used by languages such as Hindi, Marathi, Sanskrit, and Sindhi. The complexity 

of these languages, where words can change form based on gender, meaning, or 

context, makes consistent text recognition difficult. While OCR systems have 

been developed for various languages, the Sindhi language written in Devanagari 

script has not been extensively studied, particularly in terms of OCR and post- 

processing. This work focuses on improving Sindhi (Devanagari) OCR accuracy 

by introducing a post-processing model based on Masked Language Modeling 

with BERT (MLM-BERT). The performance of the trained MLM-BERT model 

was evaluated on two distinct testing datasets: one from the same domain and the 

other from a different domain. The model improved OCR accuracy by 4.01% on 

the same-domain dataset and 1.90% on the different-domain dataset, 

demonstrating its effectiveness in enhancing OCR accuracy across varying 

contexts. 

Keywords: Sindhi (Devanagari) Script, MLM-BERT, OCR, Natural Language 

Processing, Error Correction, Deep Learning, Post-processing etc. 

 

 

1. Introduction 

The Sindhi language, written in the Devanagari script, belongs to the Indo-Aryan language 

family. The Sindhi Devanagari script is an adapted version of the standard Devanagari script 

which captures the distinct sounds and linguistic features of Sindhi. Devanagari’s adoption for 

Sindhi transcription gained prominence due to its compatibility and widespread use. This 

script features unique letter forms and ligatures, which are created by connecting various 

characters to form words. These ligatures and connections not only contribute to the script’s 

distinctive visual identity but also highlight its significance in Sindhi cultural and linguistic 

history. In addition to the consonants found in the Devanagari script for Hindi, Sindhi 

(Devanagari) includes four additional consonants, which are formed by adding a diacritical 
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bar beneath the standard consonants represented as ॻ, ॼ, ॾ and ॿ. These consonants are unique 

to Sindhi and have distinct phonetic values compared to GA, JA, DA, and BA [1]. Therefore, 

developing effective Optical Character Recognition (OCR) solutions for the Sindhi 

Devanagari script is a significant area of research. OCR involves the extraction of text from 

digitally scanned documents, and it is essential to maintain the meaning and integrity of the 

text for use in natural language processing (NLP) applications. NLP is vital for the 

preservation, processing, and expansion of language use in the digital era. However, the 

Devanagari script presents several challenges for OCR systems, including its complexity such 

as the formation of intricate syllables from combinations of vowels, consonants, and conjunct 

consonants and potential errors in contextual recognition. Moreover, the scarcity of language 

resources further complicates the training of OCR and NLP systems. Technological 

advancements are mainly concentrated on languages with abundant data, leaving many other 

languages overlooked. 

In the case of the Sindhi language written in Devanagari script, there is currently no 

publicly available OCR solution. To address this gap, we have developed a Deep Learning 

CNN-BLSTM model specifically for the Sindhi (Devanagari) script. The model has achieved 

an accuracy of 94.46% without the application of post-processing techniques. To enhance the 

OCR output further, it is essential to implement additional post-processing methods, which 

can significantly improve the accuracy. 

Our key contributions are outlined as follows: 

• A benchmark dataset specifically designed for OCR post-correction of the Sindhi 

language written in the Devanagari script is presented. 

• An OCR post-correction approach utilizing the MLM-BERT model for the Sindhi 

(Devanagari) script, achieving a significant improvement in accuracy is introduced. 

 

2. Related Work 

Recent post-processing techniques aimed at enhancing OCR accuracy include dictionary-

based methods [2], statistical language models [2, 3], deep learning with LSTM [4], word 

embedding combined with Levenshtein distance [5], sub-word embedding [6] and n-grams 

[7]. However, these techniques often fall short in addressing contextual errors. To overcome 

this limitation, we propose a context-sensitive automatic error correction method designed to 

improve the accuracy of Sindhi Devanagari OCR output. The objective of this approach is to 

correct errors in text documents generated by the Sindhi Devanagari OCR system by 

providing suggestions for incorrect words based on their context, thereby enhancing overall 

accuracy. Error correction is essential for enhancing the accuracy of OCR-generated text. 

This section explores various post-processing approaches used to correct OCR errors in 

Indian languages. [8] have briefly investigated a range of post-processing techniques. The 

post-processing methods are categorized into manual and semi-automatic approaches and 

further classified into isolated-word and context-dependent types based on the level of 

information utilized. Some methods identify the best possible alternative, while others 

generate the top-n potential alternatives. 
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The Dictionary-based approach on Hindi OCR showed an accuracy of 93% [9]. The 

classification output undergoes error detection and correction by partitioning the dictionary 

for faster processing. The correction process involves three steps: selecting a relevant 

dictionary partition based on the input word’s characteristics, matching the word with 

selected candidates, and either confirming the word’s accuracy if found or seeking the closest 

match using a distance measure or by generating aliases for an exact match if the word is not 

in the dictionary. The issue with the dictionary-based approach is that it automatically 

considers a word correct if it exists in the dictionary, and it lacks the ability to correct 

contextual errors. 

This paper [10] presents an OCR error detection and correction method for Bangla, a 

highly inflectional Indian language. The approach uses morphological parsing with separate 

lexicons for root words and suffixes to identify and correct errors. The system achieves an 

84.22% success rate in suggesting the correct word by generating alternatives and testing 

grammatical agreement. 

A shape-based post-processing system for OCR of Gurmukhi script has been developed, 

dividing Punjabi corpora by word size and shape [11]. The system combines statistical 

analysis of syllable combinations, corpora lookup, and recognition of common words. It 

encodes input words based on shape similarity, matching them with dictionary entries or 

suggesting structurally similar alternatives. This method improves recognition rates from 

94.35% to 97.34% but struggles with similar characters. 

Locality Sensitive Hashing (LSH) [12] was used to cluster words for enhancing Telugu 

OCR accuracy, achieving 79.12%. OCR outputs within each cluster were improved using 

Character Majority Voting or Dynamic Time Warping. However, the technique struggles with 

unique words that appear only once in a cluster. 

A post-processing method that uses sub-character level statistical language models to 

improve word recognition is presented [13]. The technique models the recognition task as an 

optimization problem using a multi-stage graph, where edges encode language data and nodes 

capture visual similarities. Tested on over 10,000 Malayalam words, it achieves 95% 

accuracy but struggles with rare words, proper nouns, and foreign terms. 

A straightforward method for learning word representations by integrating subword 

information through character n-grams into the skip-gram model is also explored [14]. The 

approach, is fast to train and requires no preprocessing or supervision. They have 

demonstrated that it outperforms models that ignore subword information and those relying 

on morphological analysis. Indic languages often contain many out-of-vocabulary (OOV) 

words due to complex word fusion rules, which complicates OCR error correction. Sub-word 

units, such as n-grams, can be extracted from OCR and language texts to capture context and 

detect errors, especially those related to word conjoining rules. This study explores two 

encoding methods for enhancing LSTM-based OCR correction models: one using sub-word 

frequency values for faster convergence and improved accuracy, and another using trainable 

sub-word embeddings, leading to significant gains in F-Scores and word-level accuracy 

across four languages. Sub-word embeddings have been successfully applied to OCR error 

correction in Hindi, Sanskrit, Kannada, and Malayalam, achieving a 90.42% word accuracy 

for Hindi. 
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OCR systems for Indian languages like Hindi face accuracy issues due to diverse 

characters and spelling errors. A Hindi spelling correction system using neural word 

embeddings and Levenshtein distance is proposed [5]. The Continuous Bag-of-Words 

(CBOW) model generates word embeddings from large corpora, while dictionary and context 

analysis detect errors. Candidate corrections are generated based on embedding similarity and 

evaluated using Levenshtein distance. Although the system achieves reasonable accuracy on 

’The Gita’ it struggles with contextual suggestions due to not considering word order. 

An automatic model for OCR error correction using correction pattern edits and an 

evolutionary algorithm is presented [15]. By combining these with a variant of the self- 

organizing migrating algorithm and a fitness function based on linguistic features, the model 

significantly improves candidate generation and error correction. It achieves a 33.7% 

improvement in Levenshtein distance and outperforms many baseline methods in the ICDAR 

2017 competition, though it still lags behind the top statistical and neural machine translation 

models. Future work aims to address additional OCR error types and refine the approach 

further. 

N-gram counts for error detection are introduced, which simplifies the process and 

reduces computational costs. By focusing on uni-grams, bi-grams, and tri-grams, the method 

achieves state-of-the-art F1-scores for eight out of ten European languages in the ICDAR 

2019 competition, outperforming previous systems. The most significant improvement was 

observed in Spanish, where the F1-score increased from 0.69 to 0.90, while the smallest gain 

was in Polish, with an improvement from 0.82 to 0.84. This approach’s simplicity eliminates 

the need for complex feature engineering and proves effective with relatively small datasets 

[7]. 

[4] used an LSTM-based character-level language model with a fixed delay to handle both 

error detection and correction in Indic OCR. It avoids suggesting corrections for correctly 

recognized words. Extensive testing on four Indian languages shows FScores above 92.4% 

and a reduction in Word Error Rates by at least 26.7%. 

 

3. Motivation 

Recent literature surveys reveal that no research has been conducted on post-processing 

the Sindhi (Devanagari) text output from Optical Character Recognition (OCR). The 

review of existing studies suggests that post-processing plays a vital role in improving the 

performance of Hindi OCR. However, the most widely used methods fail to address 

context-sensitive error correction, as demonstrated by the three examples in Table 1. The 

text highlighted in yellow represents a word that is technically correct according to the 

language dictionary but is incorrect when considering the context. These types of 

contextual errors must be accurately handled by the error correction model. To address 

such cases, an approach is needed that can suggest words based on the surrounding 

context. 

This can be accomplished by utilizing advanced techniques like the Masked Language 

Model (MLM) with Bidirectional Encoder Representations from Transformers (BERT), 

which have not yet been widely explored for OCR error correction in Indian languages. 
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Table 1: Few examples of OCR-recognized errors that  

necessitate contextual suggestions 
 

 

The MLM-BERT model has been applied to tasks like detection and correction, 

showcasing its capability to streamline the model’s architecture while delivering 

contextually relevant suggestions [16-20]. Also, the MLM-BERT model for correction of 

Hindi text has been explored in [21]. They have presented an OCR error correction method 

that leverages an advanced Masked Language Model (MLM) with BERT. Specifically, the 

”bert-base uncased ” model, pre-trained on uncased English text, was used for further 

training. By masking words that contain errors, the MLM BERT model generates 

suggestions for the masked word based on the surrounding context. This approach achieved 

a 3.58% improvement in word accuracy compared to Tesseract OCR. 

To develop an MLM BERT model for Sindhi (Devanagari) script, a BERT tokenizer and 

MLM BERT model for Sindhi (Devanagari) are required. This paper explores an OCR error 

correction method that is distinct from any pre-existing trained BERT models like ”bert-base 

uncased ” as used in [21], to offer contextually aware corrections. The process used is known 

as ”pre-training from scratch”. In the absence of pre-existing models for a language, a new 

BERT model has been initialized with random weights and trained on a large dataset in 

Sindhi (Devanagari) script. During this training, the model acquires an understanding of the 

language’s syntax, semantics, and contextual relationships directly from the data, enabling it 

to perform tasks such as error correction in natural language processing with high effectiveness  



Nanotechnology Perceptions Vol. 20 No.6 (2024)  

Enhancing Sindhi (Devanagari) OCR Performance ..... Arvind Kaur et al. 4446 

once sufficiently trained. 

 

4. Proposed Methodology 

This section outlines two key components of the experimental setup. The first component 

explains the specifics of training dataset and the second component explains the process of 

creating the test dataset for the error correction model.  

4.1 Creation of Training Dataset 

The dataset for the training of proposed error correction model comprises of 62,088 

sentences with varying lengths. The categories of Devanagari words [22] found in this 

training dataset are presented below: 

Words without modifier: Words with Devanagari vowels or consonants with no 

modifiers, e.g. कछ, मन, उन, इन, करण 

Words with Matra: Words with matras which is a dependent vowel sign like ◌  े , ◌  े , 

◌े , ◌े , e.g. ज , ह , ज क , द र, प र, घण  

Words with Eekar: Words with modifier which is a dependent vowel sign like िे, ◌े , 

e.g. अििम, िििि, ििखण, अहिमयत, हक म 

Words with Ookar: Words with modifier which is a dependent vowel sign like ◌  े , ◌  े , 

e.g. ज दा, हुन, म ज ब , द बद , प िि 

Words with conjunct consonant: Words which are formed when one consonant is 

followed by another consonant and both are written together as a single unit 

e.g.व्याख्या, दस्तयाब, क प्टन, प्रान्त, िक्त  

Words with Anusvara: Words with symbol ◌  े  e.g. जा , ि  ि , ज िह , िहता , प िह ज  

Words with Chandrabindu: Words with symbol ◌  े  e.g. गा ि अ, गा ि िाम, दा ह , न  हु , म  ह  

Words with Nukta: Words with symbol ◌  े  e.g. ओताक़ , िनच  इण, अिह ाज, प  गाम, ब दन 

Words with Sindhi (Devanagari) characters: Words with characters specific to Sindhi 

(Devanagari script) like ॻ, ॼ, ॾ, ॿ e.g. ॾहर, िॿयिन, ॼाति ,   ॻिाा  , अिॻयाड़ अ 

4.2 Creation of Test Dataset 

The testing dataset is needed to evaluate the performance of proposed Sindhi 

(Devanagari) trained MLM-BERT model. This section outlines the process of creation of two 

Test datasets to assess the model’s performance which is described below: 

1. Due to the absence of a publicly available OCR dataset for the Sindhi (Devanagari) 

script, we developed a custom OCR system by training a CNN-LSTM model on 

111,010 images paired with their corresponding text lines. This system achieved an 

accuracy of 94.46% on test dataset. 

2. The trained OCR system was subsequently used to generate test dataset for 

evaluating the error correction model. The OCR model takes Bitmap images as 

input and produces a set of corresponding text lines, referred to as N_OCR. 

3. To create the dataset, Ground Truth lines (N_GT) need to be aligned with the OCR 

output (N_OCR) to identify incorrect words in the sentences. For word-level  
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alignment, the Recursive Text Alignment System (RETAS) [23] is used. In this 

process, each word in the Ground Truth lines is compared with the corresponding 

OCR-generated word. If the words match, the OCR word is labeled as 0; if they do 

not, it is labeled as 1. 

4. The Sindhi_Testdataset_A consists of 400 pairs of N_GT and N_OCR lines, 

totaling 7,094 words. The N_GT lines were extracted from Sindhi (Devanagari) text 

within the same domain as the one used for model training. In contrast, the second 

dataset, Sindhi_Testdataset_B, also includes 400 N_GT and N_OCR lines, 

containing 8,750 words, but is derived from Sindhi (Devanagari) text belonging to a 

completely different domain than the one used for training. 

 

5. Framework for Error Correction Experimentation 

BERT is engineered to grasp the context of a word within sentences by simultaneously 

considering the words that precede and follow it, making it bidirectional. Unlike earlier 

models that process text in only one direction, either left-to-right or right-to-left, BERT 

analyzes text in both directions. This dual approach enables BERT to capture context more 

accurately. Built on the Transformer architecture, BERT leverages a self- attention mechanism 

that allows the model to evaluate the significance of each word in a sentence relative to the 

others, thereby enhancing its understanding of context. 

MLM, or Masked Language Model, is a crucial pre-training task in BERT. During this 

process, certain words in a sentence are randomly masked, replaced with a [MASK] token. 

BERT is then challenged to predict the original word by analyzing the surrounding context, 

enabling it to learn deep contextual relationships within the text [24]. 

In the proposed error correction method, we first mask the incorrect word and then use the 

model to suggest a contextually appropriate replacement for the masked word. Figure 1 

illustrates the proposed system, which is composed of three key modules: 1) Training the 

BERT tokenizer, 2) Training the BERT Masked Language Model (MLM) model, and 3) 

Performing Error Correction using the MLM BERT model. A detailed explanation for each 

phase of the process is described below: 

1. Training the BERT tokenizer: The BERT tokenizer is a key component of the BERT 

(Bidirectional Encoder Representations from Transformers) model, designed to convert 

text into a format suitable for processing by the model. In the proposed method, the 

‘BertWordPieceTokenizer’ is utilized to break down words into subword units and 

assign each token a unique ID. When the BERT tokenizer processes a word, it splits it 

into two subwords or tokens. The first token is typically a common prefix found in the 

corpus, while the second token, which represents the suffix, is pre-fixed with two 

hashes to indicate that it follows another subword [25]. Since the BERT model 

requires input sentences of a fixed length, padding is applied to ensure all sentences 

are of equal length before being fed into the model. The tokenizer creates an attention 

mask, a binary mask with 0s and 1s, where 1 indicates the tokens that the model 

should focus on, and 0 represents padding that should be ignored. This allows the 

model to concentrate on the actual content while disregarding the padding.
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The tokenizer ’Sindhi-Dev Tokenizer’ then produces a list of token IDs and the 

attention mask, both of which are input into the BERT model for further processing. 

 

     

Figure 1: Overall Research Methodology Process 

 
2. Training the BERT Masked Language Model (MLM) model: The 

‘BertWordPieceTokenizer’ is employed to manage subword tokenization. This 

tokenizer is trained on the provided text files to create a vocabulary of 30,522 tokens, 

including special tokens. It is also set to truncate sequences to a maximum of 512 

tokens. Once trained, the tokenizer is reloaded using ‘BertTokenizerFast’, which is 

used for encoding and decoding text during model training and evaluation. 

Additionally, a custom data collator is implemented to handle token masking for 

Masked Language Modeling (MLM) during training. This collator randomly masks 

certain tokens, substitutes some with others, and tracks these modifications for 

accurate loss computation. The model used for training is ‘BertForMaskedLM’, a 

variant of BERT specifically designed for masked language modeling tasks. This 

model consists of 12 layers, 768 hidden units, 12 attention heads, and a total of 110 

million parameters. The training parameters were configured as follows: Gaussian 

Error Linear Unit (GELU) was used as the hidden activation function, with the 

maximum position embeddings capped at 512. The training process was conducted for 

26 epochs, utilizing a per device batch size of 8. Gradient accumulation steps were set 

to 8, with a dataset containing 62,088 sentences, and the total number of optimization 

steps were 15,000. After the completion of training, the training loss came out to be 

0.072. The trained MLM-Bert model is named as ’Sindhi-Dev Model’. 

 

3. Performing Error Correction using the MLM BERT model: In this module, 

incorrect words in a sentence are masked using the [MASK] token. The word 
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correction process leverages the ‘Sindhi-Dev Model’ along with its corresponding 

tokenizer, ’Sindhi-Dev Tokenizer’. The input OCR text with the masked token is first 

tokenized using the ’Sindhi-Dev Tokenizer’, generating token IDs. The ’Sindhi-Dev 

Model’ then predicts potential replacements for the masked word, providing token IDs 

and their associated probabilities. These token IDs are converted back to words using 

the ’Sindhi-Dev Tokenizer’. The incorrect word is typically replaced with the 

prediction that has the highest probability. While this method is highly effective at 

selecting contextually appropriate words, it may sometimes introduce words that, 

though correct in context, are incorrect for the specific sentence content. For example, 

if the error correction model is trained on Sindhi Devanagari lines (as shown in Table 

2), and the sentence to be corrected is “हूअ   ठ आह ”, where “  ठ” is incorrect, the 

process involves masking the incorrect word (e.g., “हूअ [MASK] आह ”) and feeding it 

into the model. The model then predicts the correct word to update the sentence. 

 

Table 2: Examples of Sindhi Devanagari Text Lines 

Consider the scenario where the error correction model predicts words like “हुिियार,” 

“मा  म ,” “  ठ ,” “   दरु,” and “आि  ” from highest to lowest score as shown in Table 3. If 

the original token is replaced with the word having the highest score, the incorrect sentence 

“हूअ   ठ आह ” would incorrectly become “हूअ हुिियार आह ”. This means that, rather than 

correcting the incorrect word, the word has been entirely replaced. While the new word 

is contextually appropriate, the original meaning of the sentence is lost. 

Table 3: Predictions and score for “हूअ [MASK] आह ” 

 

To prevent such errors, the Levenshtein distance is applied to the top five candidates. 

This approach measures the similarity between the original and predicted tokens, selecting  
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only those with a similarity score greater than or equal to 0.60 for Sindhi_Testdataset_A. 

For Sindhi_Testdataset_B, which belongs to a different domain than the training data, the 

Levenshtein distance has been reduced to 0.50. Among these, the word with the highest 

similarity score is then chosen as the most appropriate replacement. In cases where the error 

correction system does not suggest any suitable alternatives, the original word remains 

unchanged. This whole process is explained in Figure 2. In this figure, the incorrect sentence 

“इहा अ ा  पिह ज अखखय िन  ा  िॾठ  आह  ।” from OCR is corrected using the proposed 

‘Sindhi_Dev_Error_Correction_Model’. The Ground Truth for this sentence is “इहा अ ा  प िह ज  

अखखय िन  ा  िॾठ  आह  ।”. Examples illustrating these scenarios are discussed in section 6. 

 

Figure 2: Overall Research Methodology Process 



Nanotechnology Perceptions Vol. 20 No.6 (2024)  

4451 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance.... 

6. Experimental results and Analysis 

6.1 Performance of trained BERT Model on Sindhi_Testdataset_A and 

Sindhi_Testdataset_B 

The proposed error correction approach was evaluated using Sindhi_Testdataset_A and 

Sindhi_Testdataset_B, as outlined in Section 4. The evaluation metric applied was Word Error 

Rate, Character Error Rate and Accuracy. 

Word Error Rate: It is calculated by dividing the total number of incorrect words by the 

total word count in the ground truth text, and is represented as: 

 

𝑊𝐸𝑅(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
× 100 

The line chart in Figure 3 visualizes error correction in sentences of varying lengths in 

Sindhi_Testdataset_A and Sindhi_Testdataset_B respectively. It compares the number of 

initial incorrect words with the remaining incorrect words after post-processing and 

calculates the corrected words. 

(a) Sindhi_Testdataset_A                               (b) Sindhi_Testdataset_B 

Figure 3: Comparison of Initial and Remaining Incorrect Words After Post-Processing 

 

The relative improvement in Word Error Rate (WER) across different sentence lengths for 

our datasets, Sindhi_Testdataset_A and Sindhi_Testdataset_B, is shown in Figure 4. Relative 

improvement refers to the percentage reduction or gain in a value compared to its initial value, 

highlighting the extent of change or progress from the starting point.  

Character Error Rate: Character Error Rate (CER) is calculated using the Edit Distance 

(Levenshtein distance). This metric is defined as the ratio of Insertion (I), Substitution (S), 

and Deletion (D) errors to the total number of characters, and is given by: 
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𝐶𝐸𝑅(%) =
𝐼 + 𝑆 + 𝐷

𝑇𝑜𝑡𝑎𝑙_𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
× 100   

In this context, S indicates the number of substitutions, D represents the number of 

deletions, and I refer to the instances of insertions. The Total Characters corresponds to the 

annotation size or the total count of characters in the reference text. The Edit Distance is used 

to measure the difference between two strings (e.g., words) by determining the minimum 

number of operations required to convert one string into the other.  

 

(a) Sindhi_Testdataset_A                              (b) Sindhi_Testdataset_B 
 

  Figure 4: Relative Improvement in Word Error Rate (WER) for Different Sentence 

Lengths 
 

The Character Error Rate in Figure 5 visualizes the relationship between sentence length 

and Character Error Rate (CER) using a scatter plot. It compares the original CER with the 

post-processed CER for different document lengths. These results demonstrate a clear 

improvement in accuracy for both testing datasets. In Sindhi_Testdataset_A, a higher 

concentration of red and green dots indicates less improvement, however, a lower 

concentration suggests that the CER has improved to a satisfactory level. 

Accuracy: Accuracy measures the percentage of correctly recognized characters by the 

post-processing system relative to the total characters in the dataset and is expressed as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
× 100 

 

 

Sindhi Devanagari OCR achieved accuracy rates of 94.45% on Sindhi_Testdataset_A and  
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96.19% on Sindhi_Testdataset_B. After applying the ‘Sindhi_Dev_Error_Correction_Model’ 

to Sindhi_Testdataset_A, the accuracy improved from 94.45% to 98.46%, representing a 

4.01% increase. Similarly, applying error correction to Sindhi_Testdataset_B raised the 

accuracy from 96.19% to 98.09%, a 1.90% improvement, as detailed in Table 4. 

  

 
 

(a) Sindhi_Testdataset_A                              (b) Sindhi_Testdataset_B 

 

Figure 5: Character Error Rate (CER) for Sentences of Varying  

Lengths: Original vs. Post-Processed 

 

Table 4: Performance of ‘Sindhi_Dev_Error_Correction_Model’ on Test Datasets 
 

These results demonstrate a clear improvement in accuracy for both testing datasets. 

 

6.2 Error Analysis 

A systematic analysis of all recognition errors in the output of our post-correction model 

is conducted to identify the sources of improvement over the OCR output and the factors 

affecting accuracy. Additionally, the types of errors introduced during the post-correction 

process are also investigated. In Figure 6, the examples of errors corrected through post- 

processing are provided. 

While the performance of the trained model is promising, some errors are introduced by 

the model during the correction process which are presented in Figure 7. After post-

processing with the MLM-BERT model, some incorrect words were replaced with 

completely different word from the dictionary. In Sindhi_Testdataset_A, 1.49% of the words, 

and in Sindhi_Testdataset_B, 11.34% of the words were replaced by the valid words as per 

dictionary but they are contextually incorrect, with some correct characters within the words 

being replaced as well. 
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The findings of this research demonstrate that the proposed model provides precise 

recommendations, as evidenced by the data in Table 5. For instance, the Sindhi Devanagari 

OCR mistakenly recognizes the word “हुओ” as “हुआ,” and the 

‘Sindhi_Dev_Error_Correction_Model’ accurately corrects it back to “हुओ” as shown in 

Table 6. In this, if there are more than one tokens having same similarity score greater than 

or equal to the threshold, then the token occurring first will be taken into consideration. 

Conversely, the incorrect word “िह ” is corrected to “ह  ” instead of “ह ि ” because the 

Levenshtein Distance between “िह ” and “ह  ” is smaller compared to other predictions as 

presented in Table 7. 

 
 

Figure 6: Summary of Errors Corrected Through Post-Processing 

 

 

 
Figure 7: Analysis of Errors Introduced During Post-Processing 

 

Furthermore, the trained model demonstrates the ability to make context-based 

corrections, as shown in Table 8. In Example 1, the word “नाक,” though correct in isolation, 

is contextually incorrect, and the model successfully corrects it based on the surrounding 

context. 

Similarly, in Example 2, OCR may introduce errors by adding unnecessary characters to a 

word, rendering it incorrect. The model leverages contextual information to rectify these errors 

as well. Sometimes, the error correction model struggles to provide accurate predictions for 

words that include special characters, such as the hyphen in "रक्षा-ब िन", "ॾह िन-प द्रहिन", "ट - 

फर िा",etc. A hyphen is used to link words or parts of words.  For instance, the OCR 
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Table 5: Precise Recommendations by the Proposed Model 

 
 

output is "छा-ॿ िन," instead of "रक्षा-ब िन" but the correction model fails to make the correct 

predictions. Instead, it might suggest words like "रक्षा," "किाकारिन," "र कािडिंग," "फि ," and 

"ब िन". This issue also extends to hyphenated dates, such as ”13-13-2003,” where the model is 

unable to generate the correct prediction. 

 

Table 6: Accurate replacement of incorrect word with the correct prediction 

for the sentence: ” हू िहन्द अ में ब कििताऊ  ििख द  हुआ । ” 
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Table 7: Inaccurate replacement of incorrect word 

for the sentence: ” नढपण खा  ई नाटकिन ज  ि  क िह  ।" 

Additional examples are shown in Table 9, where the error correction model generates 

predictions but fails when the similarity score between the predicted word and the incorrect 

word is below the threshold. 

After analyzing the errors, it has been observed that correction depends on several factors, 

including the degree of distortion in the incorrect word, the set threshold for the acceptance 

of predicted word, location of incorrect word in the sentence and the presence of consecutive 

errors in a sentence. When a word is severely distorted, the model may identify the correct 

word, but it is highly likely that the distance between the incorrect and predicted words will 

not meet the required threshold, leaving the word unchanged. Also, the model struggles when 

most of the words in the sentence are incorrectly recognized by the OCR, making it 

challenging for the model to accurately predict corrections based on the surrounding context. 

 

7 Conclusion 

This research paper addresses the challenge of automatic error correction for OCR outputs 

in Sindhi written in Devanagari script. A state-of-the-art error correction model using Masked 

Language Modeling (MLM) with BERT is proposed. The model selects the most suitable  
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Table 8: Output of ‘Sindhi_Dev_Error_Correction_Model’ indicating suitable output as per 

context. 
 

 

 

Table 9: Examples where it fails due to low similarity score than the set threshold. 
 

 

word among the top five candidates based on their assigned probabilities. Next, a similarity 

score is determined using the Levenshtein Distance, and the incorrect word is replaced with 

the new word if the similarity score is equal or above the threshold. The model provides 

context-sensitive suggestions, a novel approach for this language. This automatic error 

correction model achieved a 4.01% accuracy improvement on the dataset from the same 

domain as the training set, and a 1.90% increase on the dataset from a completely different 

domain. Lowering the threshold value for Sindhi_Testdataset_B improves accuracy to a  
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certain degree but also leads to contextually incorrect word replacements in some instances. 

It was observed that the MLM BERT model sometimes fails to provide appropriate 

suggestions, particularly for numbers or words containing hyphens (-). Additionally, the 

model struggles to offer corrections when most of the words in a sentence are incorrect. Future 

work will focus on increasing the dataset for training so that more domains can be covered, 

the accuracy enhancement of the model through ensemble approaches and exploring more 

effective language models for Sindhi Devanagari OCR error correction. 
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