
Nanotechnology Perceptions 20 No.6 (2024) 4441–4459

Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Enhancing Sindhi (Devanagari) OCR

Performance Through MLM-BERT-

Based Error Correction Model

Arvind Kaur, Gurpreet Singh Lehal

Department of Computer Science, Punjabi University, Patiala

Optical Character Recognition (OCR) systems often face challenges in accurately

processing text in morphologically rich Indic scripts like Devanagari, which is

used by languages such as Hindi, Marathi, Sanskrit, and Sindhi. The complexity

of these languages, where words can change form based on gender, meaning, or

context, makes consistent text recognition difficult. While OCR systems have

been developed for various languages, the Sindhi language written in Devanagari

script has not been extensively studied, particularly in terms of OCR and post-

processing. This work focuses on improving Sindhi (Devanagari) OCR accuracy

by introducing a post-processing model based on Masked Language Modeling

with BERT (MLM-BERT). The performance of the trained MLM-BERT model

was evaluated on two distinct testing datasets: one from the same domain and the

other from a different domain. The model improved OCR accuracy by 4.01% on

the same-domain dataset and 1.90% on the different-domain dataset,

demonstrating its effectiveness in enhancing OCR accuracy across varying

contexts.

Keywords: Sindhi (Devanagari) Script, MLM-BERT, OCR, Natural Language

Processing, Error Correction, Deep Learning, Post-processing etc.

1. Introduction

The Sindhi language, written in the Devanagari script, belongs to the Indo-Aryan language

family. The Sindhi Devanagari script is an adapted version of the standard Devanagari script

which captures the distinct sounds and linguistic features of Sindhi. Devanagari’s adoption for

Sindhi transcription gained prominence due to its compatibility and widespread use. This

script features unique letter forms and ligatures, which are created by connecting various

characters to form words. These ligatures and connections not only contribute to the script’s

distinctive visual identity but also highlight its significance in Sindhi cultural and linguistic

history. In addition to the consonants found in the Devanagari script for Hindi, Sindhi

(Devanagari) includes four additional consonants, which are formed by adding a diacritical

http://www.nano-ntp.com/

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4442

bar beneath the standard consonants represented as ॻ, ॼ, ॾ and ॿ. These consonants are unique

to Sindhi and have distinct phonetic values compared to GA, JA, DA, and BA [1]. Therefore,

developing effective Optical Character Recognition (OCR) solutions for the Sindhi

Devanagari script is a significant area of research. OCR involves the extraction of text from

digitally scanned documents, and it is essential to maintain the meaning and integrity of the

text for use in natural language processing (NLP) applications. NLP is vital for the

preservation, processing, and expansion of language use in the digital era. However, the

Devanagari script presents several challenges for OCR systems, including its complexity such

as the formation of intricate syllables from combinations of vowels, consonants, and conjunct

consonants and potential errors in contextual recognition. Moreover, the scarcity of language

resources further complicates the training of OCR and NLP systems. Technological

advancements are mainly concentrated on languages with abundant data, leaving many other

languages overlooked.

In the case of the Sindhi language written in Devanagari script, there is currently no

publicly available OCR solution. To address this gap, we have developed a Deep Learning

CNN-BLSTM model specifically for the Sindhi (Devanagari) script. The model has achieved

an accuracy of 94.46% without the application of post-processing techniques. To enhance the

OCR output further, it is essential to implement additional post-processing methods, which

can significantly improve the accuracy.

Our key contributions are outlined as follows:

• A benchmark dataset specifically designed for OCR post-correction of the Sindhi

language written in the Devanagari script is presented.

• An OCR post-correction approach utilizing the MLM-BERT model for the Sindhi

(Devanagari) script, achieving a significant improvement in accuracy is introduced.

2. Related Work

Recent post-processing techniques aimed at enhancing OCR accuracy include dictionary-

based methods [2], statistical language models [2, 3], deep learning with LSTM [4], word

embedding combined with Levenshtein distance [5], sub-word embedding [6] and n-grams

[7]. However, these techniques often fall short in addressing contextual errors. To overcome

this limitation, we propose a context-sensitive automatic error correction method designed to

improve the accuracy of Sindhi Devanagari OCR output. The objective of this approach is to

correct errors in text documents generated by the Sindhi Devanagari OCR system by

providing suggestions for incorrect words based on their context, thereby enhancing overall

accuracy. Error correction is essential for enhancing the accuracy of OCR-generated text.

This section explores various post-processing approaches used to correct OCR errors in

Indian languages. [8] have briefly investigated a range of post-processing techniques. The

post-processing methods are categorized into manual and semi-automatic approaches and

further classified into isolated-word and context-dependent types based on the level of

information utilized. Some methods identify the best possible alternative, while others

generate the top-n potential alternatives.

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4443 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

The Dictionary-based approach on Hindi OCR showed an accuracy of 93% [9]. The

classification output undergoes error detection and correction by partitioning the dictionary

for faster processing. The correction process involves three steps: selecting a relevant

dictionary partition based on the input word’s characteristics, matching the word with

selected candidates, and either confirming the word’s accuracy if found or seeking the closest

match using a distance measure or by generating aliases for an exact match if the word is not

in the dictionary. The issue with the dictionary-based approach is that it automatically

considers a word correct if it exists in the dictionary, and it lacks the ability to correct

contextual errors.

This paper [10] presents an OCR error detection and correction method for Bangla, a

highly inflectional Indian language. The approach uses morphological parsing with separate

lexicons for root words and suffixes to identify and correct errors. The system achieves an

84.22% success rate in suggesting the correct word by generating alternatives and testing

grammatical agreement.

A shape-based post-processing system for OCR of Gurmukhi script has been developed,

dividing Punjabi corpora by word size and shape [11]. The system combines statistical

analysis of syllable combinations, corpora lookup, and recognition of common words. It

encodes input words based on shape similarity, matching them with dictionary entries or

suggesting structurally similar alternatives. This method improves recognition rates from

94.35% to 97.34% but struggles with similar characters.

Locality Sensitive Hashing (LSH) [12] was used to cluster words for enhancing Telugu

OCR accuracy, achieving 79.12%. OCR outputs within each cluster were improved using

Character Majority Voting or Dynamic Time Warping. However, the technique struggles with

unique words that appear only once in a cluster.

A post-processing method that uses sub-character level statistical language models to

improve word recognition is presented [13]. The technique models the recognition task as an

optimization problem using a multi-stage graph, where edges encode language data and nodes

capture visual similarities. Tested on over 10,000 Malayalam words, it achieves 95%

accuracy but struggles with rare words, proper nouns, and foreign terms.

A straightforward method for learning word representations by integrating subword

information through character n-grams into the skip-gram model is also explored [14]. The

approach, is fast to train and requires no preprocessing or supervision. They have

demonstrated that it outperforms models that ignore subword information and those relying

on morphological analysis. Indic languages often contain many out-of-vocabulary (OOV)

words due to complex word fusion rules, which complicates OCR error correction. Sub-word

units, such as n-grams, can be extracted from OCR and language texts to capture context and

detect errors, especially those related to word conjoining rules. This study explores two

encoding methods for enhancing LSTM-based OCR correction models: one using sub-word

frequency values for faster convergence and improved accuracy, and another using trainable

sub-word embeddings, leading to significant gains in F-Scores and word-level accuracy

across four languages. Sub-word embeddings have been successfully applied to OCR error

correction in Hindi, Sanskrit, Kannada, and Malayalam, achieving a 90.42% word accuracy

for Hindi.

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4444

OCR systems for Indian languages like Hindi face accuracy issues due to diverse

characters and spelling errors. A Hindi spelling correction system using neural word

embeddings and Levenshtein distance is proposed [5]. The Continuous Bag-of-Words

(CBOW) model generates word embeddings from large corpora, while dictionary and context

analysis detect errors. Candidate corrections are generated based on embedding similarity and

evaluated using Levenshtein distance. Although the system achieves reasonable accuracy on

’The Gita’ it struggles with contextual suggestions due to not considering word order.

An automatic model for OCR error correction using correction pattern edits and an

evolutionary algorithm is presented [15]. By combining these with a variant of the self-

organizing migrating algorithm and a fitness function based on linguistic features, the model

significantly improves candidate generation and error correction. It achieves a 33.7%

improvement in Levenshtein distance and outperforms many baseline methods in the ICDAR

2017 competition, though it still lags behind the top statistical and neural machine translation

models. Future work aims to address additional OCR error types and refine the approach

further.

N-gram counts for error detection are introduced, which simplifies the process and

reduces computational costs. By focusing on uni-grams, bi-grams, and tri-grams, the method

achieves state-of-the-art F1-scores for eight out of ten European languages in the ICDAR

2019 competition, outperforming previous systems. The most significant improvement was

observed in Spanish, where the F1-score increased from 0.69 to 0.90, while the smallest gain

was in Polish, with an improvement from 0.82 to 0.84. This approach’s simplicity eliminates

the need for complex feature engineering and proves effective with relatively small datasets

[7].

[4] used an LSTM-based character-level language model with a fixed delay to handle both

error detection and correction in Indic OCR. It avoids suggesting corrections for correctly

recognized words. Extensive testing on four Indian languages shows FScores above 92.4%

and a reduction in Word Error Rates by at least 26.7%.

3. Motivation

Recent literature surveys reveal that no research has been conducted on post-processing

the Sindhi (Devanagari) text output from Optical Character Recognition (OCR). The

review of existing studies suggests that post-processing plays a vital role in improving the

performance of Hindi OCR. However, the most widely used methods fail to address

context-sensitive error correction, as demonstrated by the three examples in Table 1. The

text highlighted in yellow represents a word that is technically correct according to the

language dictionary but is incorrect when considering the context. These types of

contextual errors must be accurately handled by the error correction model. To address

such cases, an approach is needed that can suggest words based on the surrounding

context.

This can be accomplished by utilizing advanced techniques like the Masked Language

Model (MLM) with Bidirectional Encoder Representations from Transformers (BERT),

which have not yet been widely explored for OCR error correction in Indian languages.

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4445 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

Table 1: Few examples of OCR-recognized errors that

necessitate contextual suggestions

The MLM-BERT model has been applied to tasks like detection and correction,

showcasing its capability to streamline the model’s architecture while delivering

contextually relevant suggestions [16-20]. Also, the MLM-BERT model for correction of

Hindi text has been explored in [21]. They have presented an OCR error correction method

that leverages an advanced Masked Language Model (MLM) with BERT. Specifically, the

”bert-base uncased ” model, pre-trained on uncased English text, was used for further

training. By masking words that contain errors, the MLM BERT model generates

suggestions for the masked word based on the surrounding context. This approach achieved

a 3.58% improvement in word accuracy compared to Tesseract OCR.

To develop an MLM BERT model for Sindhi (Devanagari) script, a BERT tokenizer and

MLM BERT model for Sindhi (Devanagari) are required. This paper explores an OCR error

correction method that is distinct from any pre-existing trained BERT models like ”bert-base

uncased ” as used in [21], to offer contextually aware corrections. The process used is known

as ”pre-training from scratch”. In the absence of pre-existing models for a language, a new

BERT model has been initialized with random weights and trained on a large dataset in

Sindhi (Devanagari) script. During this training, the model acquires an understanding of the

language’s syntax, semantics, and contextual relationships directly from the data, enabling it

to perform tasks such as error correction in natural language processing with high effectiveness

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4446

once sufficiently trained.

4. Proposed Methodology

This section outlines two key components of the experimental setup. The first component

explains the specifics of training dataset and the second component explains the process of

creating the test dataset for the error correction model.

4.1 Creation of Training Dataset

The dataset for the training of proposed error correction model comprises of 62,088

sentences with varying lengths. The categories of Devanagari words [22] found in this

training dataset are presented below:

Words without modifier: Words with Devanagari vowels or consonants with no

modifiers, e.g. कछ, मन, उन, इन, करण

Words with Matra: Words with matras which is a dependent vowel sign like ◌ े , ◌ े ,

◌े , ◌े , e.g. ज , ह , ज क , द र, प र, घण

Words with Eekar: Words with modifier which is a dependent vowel sign like िे, ◌े ,

e.g. अििम, िििि, ििखण, अहिमयत, हक म

Words with Ookar: Words with modifier which is a dependent vowel sign like ◌ े , ◌ े ,

e.g. ज दा, हुन, म ज ब , द बद , प िि

Words with conjunct consonant: Words which are formed when one consonant is

followed by another consonant and both are written together as a single unit

e.g.व्याख्या, दस्तयाब, क प्टन, प्रान्त, िक्त

Words with Anusvara: Words with symbol ◌ े e.g. जा , ि ि , ज िह , िहता , प िह ज

Words with Chandrabindu: Words with symbol ◌ े e.g. गा ि अ, गा ि िाम, दा ह , न हु , म ह

Words with Nukta: Words with symbol ◌ े e.g. ओताक़ , िनच इण, अिह ाज, प गाम, ब दन

Words with Sindhi (Devanagari) characters: Words with characters specific to Sindhi

(Devanagari script) like ॻ, ॼ, ॾ, ॿ e.g. ॾहर, िॿयिन, ॼाति , ॻिाा , अिॻयाड़ अ

4.2 Creation of Test Dataset

The testing dataset is needed to evaluate the performance of proposed Sindhi

(Devanagari) trained MLM-BERT model. This section outlines the process of creation of two

Test datasets to assess the model’s performance which is described below:

1. Due to the absence of a publicly available OCR dataset for the Sindhi (Devanagari)

script, we developed a custom OCR system by training a CNN-LSTM model on

111,010 images paired with their corresponding text lines. This system achieved an

accuracy of 94.46% on test dataset.

2. The trained OCR system was subsequently used to generate test dataset for

evaluating the error correction model. The OCR model takes Bitmap images as

input and produces a set of corresponding text lines, referred to as N_OCR.

3. To create the dataset, Ground Truth lines (N_GT) need to be aligned with the OCR

output (N_OCR) to identify incorrect words in the sentences. For word-level

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4447 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

alignment, the Recursive Text Alignment System (RETAS) [23] is used. In this

process, each word in the Ground Truth lines is compared with the corresponding

OCR-generated word. If the words match, the OCR word is labeled as 0; if they do

not, it is labeled as 1.

4. The Sindhi_Testdataset_A consists of 400 pairs of N_GT and N_OCR lines,

totaling 7,094 words. The N_GT lines were extracted from Sindhi (Devanagari) text

within the same domain as the one used for model training. In contrast, the second

dataset, Sindhi_Testdataset_B, also includes 400 N_GT and N_OCR lines,

containing 8,750 words, but is derived from Sindhi (Devanagari) text belonging to a

completely different domain than the one used for training.

5. Framework for Error Correction Experimentation

BERT is engineered to grasp the context of a word within sentences by simultaneously

considering the words that precede and follow it, making it bidirectional. Unlike earlier

models that process text in only one direction, either left-to-right or right-to-left, BERT

analyzes text in both directions. This dual approach enables BERT to capture context more

accurately. Built on the Transformer architecture, BERT leverages a self- attention mechanism

that allows the model to evaluate the significance of each word in a sentence relative to the

others, thereby enhancing its understanding of context.

MLM, or Masked Language Model, is a crucial pre-training task in BERT. During this

process, certain words in a sentence are randomly masked, replaced with a [MASK] token.

BERT is then challenged to predict the original word by analyzing the surrounding context,

enabling it to learn deep contextual relationships within the text [24].

In the proposed error correction method, we first mask the incorrect word and then use the

model to suggest a contextually appropriate replacement for the masked word. Figure 1

illustrates the proposed system, which is composed of three key modules: 1) Training the

BERT tokenizer, 2) Training the BERT Masked Language Model (MLM) model, and 3)

Performing Error Correction using the MLM BERT model. A detailed explanation for each

phase of the process is described below:

1. Training the BERT tokenizer: The BERT tokenizer is a key component of the BERT

(Bidirectional Encoder Representations from Transformers) model, designed to convert

text into a format suitable for processing by the model. In the proposed method, the

‘BertWordPieceTokenizer’ is utilized to break down words into subword units and

assign each token a unique ID. When the BERT tokenizer processes a word, it splits it

into two subwords or tokens. The first token is typically a common prefix found in the

corpus, while the second token, which represents the suffix, is pre-fixed with two

hashes to indicate that it follows another subword [25]. Since the BERT model

requires input sentences of a fixed length, padding is applied to ensure all sentences

are of equal length before being fed into the model. The tokenizer creates an attention

mask, a binary mask with 0s and 1s, where 1 indicates the tokens that the model

should focus on, and 0 represents padding that should be ignored. This allows the

model to concentrate on the actual content while disregarding the padding.

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4448

The tokenizer ’Sindhi-Dev Tokenizer’ then produces a list of token IDs and the

attention mask, both of which are input into the BERT model for further processing.

Figure 1: Overall Research Methodology Process

2. Training the BERT Masked Language Model (MLM) model: The

‘BertWordPieceTokenizer’ is employed to manage subword tokenization. This

tokenizer is trained on the provided text files to create a vocabulary of 30,522 tokens,

including special tokens. It is also set to truncate sequences to a maximum of 512

tokens. Once trained, the tokenizer is reloaded using ‘BertTokenizerFast’, which is

used for encoding and decoding text during model training and evaluation.

Additionally, a custom data collator is implemented to handle token masking for

Masked Language Modeling (MLM) during training. This collator randomly masks

certain tokens, substitutes some with others, and tracks these modifications for

accurate loss computation. The model used for training is ‘BertForMaskedLM’, a

variant of BERT specifically designed for masked language modeling tasks. This

model consists of 12 layers, 768 hidden units, 12 attention heads, and a total of 110

million parameters. The training parameters were configured as follows: Gaussian

Error Linear Unit (GELU) was used as the hidden activation function, with the

maximum position embeddings capped at 512. The training process was conducted for

26 epochs, utilizing a per device batch size of 8. Gradient accumulation steps were set

to 8, with a dataset containing 62,088 sentences, and the total number of optimization

steps were 15,000. After the completion of training, the training loss came out to be

0.072. The trained MLM-Bert model is named as ’Sindhi-Dev Model’.

3. Performing Error Correction using the MLM BERT model: In this module,

incorrect words in a sentence are masked using the [MASK] token. The word

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4449 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

correction process leverages the ‘Sindhi-Dev Model’ along with its corresponding

tokenizer, ’Sindhi-Dev Tokenizer’. The input OCR text with the masked token is first

tokenized using the ’Sindhi-Dev Tokenizer’, generating token IDs. The ’Sindhi-Dev

Model’ then predicts potential replacements for the masked word, providing token IDs

and their associated probabilities. These token IDs are converted back to words using

the ’Sindhi-Dev Tokenizer’. The incorrect word is typically replaced with the

prediction that has the highest probability. While this method is highly effective at

selecting contextually appropriate words, it may sometimes introduce words that,

though correct in context, are incorrect for the specific sentence content. For example,

if the error correction model is trained on Sindhi Devanagari lines (as shown in Table

2), and the sentence to be corrected is “हूअ ठ आह ”, where “ ठ” is incorrect, the

process involves masking the incorrect word (e.g., “हूअ [MASK] आह ”) and feeding it

into the model. The model then predicts the correct word to update the sentence.

Table 2: Examples of Sindhi Devanagari Text Lines

Consider the scenario where the error correction model predicts words like “हुिियार,”

“मा म ,” “ ठ ,” “ दरु,” and “आि ” from highest to lowest score as shown in Table 3. If

the original token is replaced with the word having the highest score, the incorrect sentence

“हूअ ठ आह ” would incorrectly become “हूअ हुिियार आह ”. This means that, rather than

correcting the incorrect word, the word has been entirely replaced. While the new word

is contextually appropriate, the original meaning of the sentence is lost.

Table 3: Predictions and score for “हूअ [MASK] आह ”

To prevent such errors, the Levenshtein distance is applied to the top five candidates.

This approach measures the similarity between the original and predicted tokens, selecting

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance…. Arvind Kaur et al. 4450

only those with a similarity score greater than or equal to 0.60 for Sindhi_Testdataset_A.

For Sindhi_Testdataset_B, which belongs to a different domain than the training data, the

Levenshtein distance has been reduced to 0.50. Among these, the word with the highest

similarity score is then chosen as the most appropriate replacement. In cases where the error

correction system does not suggest any suitable alternatives, the original word remains

unchanged. This whole process is explained in Figure 2. In this figure, the incorrect sentence

“इहा अ ा पिह ज अखखय िन ा िॾठ आह ।” from OCR is corrected using the proposed

‘Sindhi_Dev_Error_Correction_Model’. The Ground Truth for this sentence is “इहा अ ा प िह ज

अखखय िन ा िॾठ आह ।”. Examples illustrating these scenarios are discussed in section 6.

Figure 2: Overall Research Methodology Process

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4451 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

6. Experimental results and Analysis

6.1 Performance of trained BERT Model on Sindhi_Testdataset_A and

Sindhi_Testdataset_B

The proposed error correction approach was evaluated using Sindhi_Testdataset_A and

Sindhi_Testdataset_B, as outlined in Section 4. The evaluation metric applied was Word Error

Rate, Character Error Rate and Accuracy.

Word Error Rate: It is calculated by dividing the total number of incorrect words by the

total word count in the ground truth text, and is represented as:

𝑊𝐸𝑅(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠
× 100

The line chart in Figure 3 visualizes error correction in sentences of varying lengths in

Sindhi_Testdataset_A and Sindhi_Testdataset_B respectively. It compares the number of

initial incorrect words with the remaining incorrect words after post-processing and

calculates the corrected words.

(a) Sindhi_Testdataset_A (b) Sindhi_Testdataset_B

Figure 3: Comparison of Initial and Remaining Incorrect Words After Post-Processing

The relative improvement in Word Error Rate (WER) across different sentence lengths for

our datasets, Sindhi_Testdataset_A and Sindhi_Testdataset_B, is shown in Figure 4. Relative

improvement refers to the percentage reduction or gain in a value compared to its initial value,

highlighting the extent of change or progress from the starting point.

Character Error Rate: Character Error Rate (CER) is calculated using the Edit Distance

(Levenshtein distance). This metric is defined as the ratio of Insertion (I), Substitution (S),

and Deletion (D) errors to the total number of characters, and is given by:

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance…. Arvind Kaur et al. 4452

𝐶𝐸𝑅(%) =
𝐼 + 𝑆 + 𝐷

𝑇𝑜𝑡𝑎𝑙_𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
× 100

In this context, S indicates the number of substitutions, D represents the number of

deletions, and I refer to the instances of insertions. The Total Characters corresponds to the

annotation size or the total count of characters in the reference text. The Edit Distance is used

to measure the difference between two strings (e.g., words) by determining the minimum

number of operations required to convert one string into the other.

(a) Sindhi_Testdataset_A (b) Sindhi_Testdataset_B

 Figure 4: Relative Improvement in Word Error Rate (WER) for Different Sentence

Lengths

The Character Error Rate in Figure 5 visualizes the relationship between sentence length

and Character Error Rate (CER) using a scatter plot. It compares the original CER with the

post-processed CER for different document lengths. These results demonstrate a clear

improvement in accuracy for both testing datasets. In Sindhi_Testdataset_A, a higher

concentration of red and green dots indicates less improvement, however, a lower

concentration suggests that the CER has improved to a satisfactory level.

Accuracy: Accuracy measures the percentage of correctly recognized characters by the

post-processing system relative to the total characters in the dataset and is expressed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠
× 100

Sindhi Devanagari OCR achieved accuracy rates of 94.45% on Sindhi_Testdataset_A and

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4453 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

96.19% on Sindhi_Testdataset_B. After applying the ‘Sindhi_Dev_Error_Correction_Model’

to Sindhi_Testdataset_A, the accuracy improved from 94.45% to 98.46%, representing a

4.01% increase. Similarly, applying error correction to Sindhi_Testdataset_B raised the

accuracy from 96.19% to 98.09%, a 1.90% improvement, as detailed in Table 4.

(a) Sindhi_Testdataset_A (b) Sindhi_Testdataset_B

Figure 5: Character Error Rate (CER) for Sentences of Varying

Lengths: Original vs. Post-Processed

Table 4: Performance of ‘Sindhi_Dev_Error_Correction_Model’ on Test Datasets

These results demonstrate a clear improvement in accuracy for both testing datasets.

6.2 Error Analysis

A systematic analysis of all recognition errors in the output of our post-correction model

is conducted to identify the sources of improvement over the OCR output and the factors

affecting accuracy. Additionally, the types of errors introduced during the post-correction

process are also investigated. In Figure 6, the examples of errors corrected through post-

processing are provided.

While the performance of the trained model is promising, some errors are introduced by

the model during the correction process which are presented in Figure 7. After post-

processing with the MLM-BERT model, some incorrect words were replaced with

completely different word from the dictionary. In Sindhi_Testdataset_A, 1.49% of the words,

and in Sindhi_Testdataset_B, 11.34% of the words were replaced by the valid words as per

dictionary but they are contextually incorrect, with some correct characters within the words

being replaced as well.

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4454

The findings of this research demonstrate that the proposed model provides precise

recommendations, as evidenced by the data in Table 5. For instance, the Sindhi Devanagari

OCR mistakenly recognizes the word “हुओ” as “हुआ,” and the

‘Sindhi_Dev_Error_Correction_Model’ accurately corrects it back to “हुओ” as shown in

Table 6. In this, if there are more than one tokens having same similarity score greater than

or equal to the threshold, then the token occurring first will be taken into consideration.

Conversely, the incorrect word “िह ” is corrected to “ह ” instead of “ह ि ” because the

Levenshtein Distance between “िह ” and “ह ” is smaller compared to other predictions as

presented in Table 7.

Figure 6: Summary of Errors Corrected Through Post-Processing

Figure 7: Analysis of Errors Introduced During Post-Processing

Furthermore, the trained model demonstrates the ability to make context-based

corrections, as shown in Table 8. In Example 1, the word “नाक,” though correct in isolation,

is contextually incorrect, and the model successfully corrects it based on the surrounding

context.

Similarly, in Example 2, OCR may introduce errors by adding unnecessary characters to a

word, rendering it incorrect. The model leverages contextual information to rectify these errors

as well. Sometimes, the error correction model struggles to provide accurate predictions for

words that include special characters, such as the hyphen in "रक्षा-ब िन", "ॾह िन-प द्रहिन", "ट -

फर िा",etc. A hyphen is used to link words or parts of words. For instance, the OCR

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4455 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

Table 5: Precise Recommendations by the Proposed Model

output is "छा-ॿ िन," instead of "रक्षा-ब िन" but the correction model fails to make the correct

predictions. Instead, it might suggest words like "रक्षा," "किाकारिन," "र कािडिंग," "फि ," and

"ब िन". This issue also extends to hyphenated dates, such as ”13-13-2003,” where the model is

unable to generate the correct prediction.

Table 6: Accurate replacement of incorrect word with the correct prediction

for the sentence: ” हू िहन्द अ में ब कििताऊ ििख द हुआ । ”

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4456

Table 7: Inaccurate replacement of incorrect word

for the sentence: ” नढपण खा ई नाटकिन ज ि क िह ।"

Additional examples are shown in Table 9, where the error correction model generates

predictions but fails when the similarity score between the predicted word and the incorrect

word is below the threshold.

After analyzing the errors, it has been observed that correction depends on several factors,

including the degree of distortion in the incorrect word, the set threshold for the acceptance

of predicted word, location of incorrect word in the sentence and the presence of consecutive

errors in a sentence. When a word is severely distorted, the model may identify the correct

word, but it is highly likely that the distance between the incorrect and predicted words will

not meet the required threshold, leaving the word unchanged. Also, the model struggles when

most of the words in the sentence are incorrectly recognized by the OCR, making it

challenging for the model to accurately predict corrections based on the surrounding context.

7 Conclusion

This research paper addresses the challenge of automatic error correction for OCR outputs

in Sindhi written in Devanagari script. A state-of-the-art error correction model using Masked

Language Modeling (MLM) with BERT is proposed. The model selects the most suitable

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4457 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

Table 8: Output of ‘Sindhi_Dev_Error_Correction_Model’ indicating suitable output as per

context.

Table 9: Examples where it fails due to low similarity score than the set threshold.

word among the top five candidates based on their assigned probabilities. Next, a similarity

score is determined using the Levenshtein Distance, and the incorrect word is replaced with

the new word if the similarity score is equal or above the threshold. The model provides

context-sensitive suggestions, a novel approach for this language. This automatic error

correction model achieved a 4.01% accuracy improvement on the dataset from the same

domain as the training set, and a 1.90% increase on the dataset from a completely different

domain. Lowering the threshold value for Sindhi_Testdataset_B improves accuracy to a

Nanotechnology Perceptions Vol. 20 No.6 (2024)

Enhancing Sindhi (Devanagari) OCR Performance Arvind Kaur et al. 4458

certain degree but also leads to contextually incorrect word replacements in some instances.

It was observed that the MLM BERT model sometimes fails to provide appropriate

suggestions, particularly for numbers or words containing hyphens (-). Additionally, the

model struggles to offer corrections when most of the words in a sentence are incorrect. Future

work will focus on increasing the dataset for training so that more domains can be covered,

the accuracy enhancement of the model through ensemble approaches and exploring more

effective language models for Sindhi Devanagari OCR error correction.

Declarations

Ethical Approval: This declaration is not applicable. Funding: No funding was received to

assist with the preparation of this manuscript.

Financial Interests: The authors, Arvind Kaur and Gurpreet Singh Lehal declare that there are

no financial interests for this research work.

Conflicts of Interest: The authors declare that they have no conflicts of Interest to report

regarding the present study.

Data Availability Statement

The Authors have created their own dataset for the experimental study.

References

1. Vikas O. 2005. Issues in Representation of Indic Scripts in Unicode. L2/05-063). http://www.

unicode.org.

2. Vinitha V S, Mathew M and Jawahar C. 2017. An Empirical study of Effectiveness of Post-

processing in Indic Scripts. IAPR International Conference on Document Analysis and

Recognition (ICDAR). 7: 32–36

3. Das D, Philip J, Mathew M and Jawahar C. 2019. A Cost Efficient Approach to Correct OCR

errors in Large Document Collections. International Conference on Document Analysis and

Recognition (ICDAR). 655–662

4. Saluja R, Adiga D, Chaudhuri P, Ramakrishnan G and Carman M. 2017. Error Detection and

Corrections in Indic OCR using LSTMs. IAPR International Conference on Document Analysis

and Recognition (ICDAR). 1: 17–22

5. Srigiri S and Saha K S. 2020. Spelling Correction of OCR-generated Hindi Text using Word

Embedding and Levenshtein Distance. International Conference on Nanoelectronics, Circuits

and Communication Systems: Proceeding of NCCS, Springer. 415–424

6. Saluja R, Punjabi M, Carman M, Ramakrishnan G and Chaudhuri P. 2019. Sub-word

Embeddings for OCR Corrections in Highly Fusional Indic Languages. IEEE International

Conference on Document Analysis and Recognition (ICDAR). 160–165

7. Virk M S, Dannélls D and Muhammad S A. 2021. A Novel Machine Learning Based Approach

for Post-ocr Error Detection. Proceedings of the International Conference on Recent Advances

in Natural Language Processing (RANLP). 1463–1470

8. Nguyen H T T, Jatowt A, Coustaty M and Doucet A. 2021. Survey of post-OCR Processing

Approaches. ACM Computing Surveys (CSUR). 54: 1–37

9. Bansal V and Sinha K M. 2001. A Complete OCR for Printed Hindi Text in Devanagari Script.

http://www/

Nanotechnology Perceptions Vol. 20 No.6 (2024)

4459 Arvind Kaur et al. Enhancing Sindhi (Devanagari) OCR Performance....

Proceedings of Sixth International Conference on Document Analysis and Recognition. 800–

804

10. Pal U, Kundu KP and Chaudhuri BB. 2000. OCR Error Correction of an Inflectional Indian

Language using Morphological Parsing. Journal of Information Science and Engineering 16:

903–922

11. Lehal S G, Singh C and Lehal R. 2001. A Shape Based Post Processor for Gurmukhi OCR.

Proceedings of Sixth International Conference on Document Analysis and Recognition. 1105–

1109

12. Rasagna V, Kumar A, Jawahar V C and Manmatha R. 2009. Robust Recognition of

Documents by Fusing Results of Word Clusters. 10th International Conference on Document

Analysis and Recognition. 566–570

13. Mohan K, Jawahar V C. 2010. A Post-processing Scheme for Malayalam using Statistical Sub-

character Language Models. Proceedings of the 9th IAPR International Workshop on

Document Analysis Systems. 493–500

14. Bojanowski P, Grave E, Joulin A and Mikolov T. 2017. Enriching Word Vectors with

Subword Information. Transactions of the association for computational linguistics. 5: 135–

146

15. Nguyen D Q, Le A D, Phan M N and Zelinka I. 2021. OCR Error Correction using Correction

Patterns and Self-organizing Migrating Algorithm. Pattern Analysis and Applications,

Springer. 24: 701–721

16. Chen S and Liao H. 2022. Bert-log: Anomaly Detection for System Logs Based on Pre-

trained Language Model. Applied Artificial Intelligence. 36(1)

17. Saleh H, Alhothali A and Moria K. 2023. Detection of Hate Speech using Bert and Hate

Speech Word Embedding with Deep Model. Applied Artificial Intelligence. 37(1)

18. Ni P and Wang Q. 2022. Internet and Telecommunication Fraud Prevention Analysis based on

Deep Learning. Applied Artificial Intelligence. 36(1)

19. Xie G, Liu N, Hu X and Shen Y. 2023. Toward Prompt-enhanced Sentiment Analysis with

Mutual Describable Information Between Aspects. Applied Artificial Intelligence. 37(1)

20. Riyadh M and Shafiq O M. 2022. GAN-BElectra: Enhanced Multi-class Sentiment Analysis

with Limited Labeled Data. Applied Artificial Intelligence. 36(1)

21. Kundaikar T, Fadte S, Karmali R and Pawar D J. 2024. Automatic Hindi OCR error correction

using MLM-BERT. International Information and Engineering Technology Association

(IIETA). 619–626

22. Suseela J V and Uma V. 2014. Unicode Applications in the Digital Libraries of India.

Current Practices in Academic Librarianship. 1:40

23. Yalniz Z I and Manmatha R. 2011. A Fast Alignment Scheme for Automatic OCR

Evaluation of Books. International Conference on Document Analysis and Recognition, IEEE.

754–758

24. Devlin J, Chang WM, Lee K and Toutanova K. 2018. Bert: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Proceedings of NAACL-HLT. 4171-

4186

25. Kokonos L K. 2022. Creation of A New BERT Model Using Greek Legal Data. Thesis:

National and Kapodistrian University of Athens. 1–41

