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Abstract: 

In UAV-assisted Internet of Things (IoT) applications, reliable and consistent 

functioning is an essential need. Specifically, using unmanned aerial vehicles (UAVs) 

and IoT deployed surfaces to assist in error-free data collection and collision-free 

transmissions in challenging areas seems to be an increasingly prevalent approach. 

Accurate data ensures reliability in decision-making, while consistent data optimizes 

network performance. Mainly to improve collision-free transmissions and data collection 

consistency, in this article, collision-free and consistent data collection using SOA based 

LDPC approach (CFCDC-SLA) is developed in the UAV-assisted LoRaWAN based 

network. The proposed method operated in two distinct operational phases. Firstly, the 

Seagull optimization algorithm was applied as the collision free scheduling algorithm. 

Secondly, we applied a low-density parity-check (LDPC) scheme to ensure consistent 

data collection, error detection, and data correction. The NS2 software is used to build 

the proposed UAV aided LoRaWAN implementation. The parameters that are calculated 

for the performance analysis of the proposed approach are communication delay, Energy 

Efficiency, Data Success Rate, Network Throughput and Routing Overhead. 

Keywords: LoRaWAN,Collision free scheduling, Error Detection and Correction, 

Seagull Optimization Algorithm and Low-Density Parity-Check(LDPC). 

 

1. Introduction 

In recent years, UAVs have exploded in popularity among scientists and researchers thanks to 

their many useful features. In most cases, the kind, weight, range, application, endurance, etc. of a 

UAV determine its classification. Numerous uses call for specific varieties of unmanned aerial 

vehicles (UAVs)[1]. There are two main types of unmanned aerial vehicles (UAVs): those with fixed 

wings for long-duration surveillance and those with rotor wings for shorter-duration observation. A 

rotary-wing UAV's hovering capabilities and the fact that it can take off and land without a runway 

are two of its main advantages. Multiple subtypes of rotary-winged UAVs exist, including bicopters, 

hexacopters, octocopters, quadrotor tricopters, etc. The benefits and drawbacks of each platform are 

unique.  

Unmanned aerial vehicles (UAVs) are ubiquitous aerial aircraft that offer crucial connectivity and 

concordance coverage in an efficient, low-complex manner[2]. A network of independent, 

interconnected UAVs has transformed both military and commercial aviation and opened the door for 

previously unheard-of advancements in infrastructure-less networking.  

LoRaWAN can handle mobile nodes without requiring handovers between gateways, which 

makes it appropriate for IoT applications that are focused on asset tracking[24].UAV data gathering is 

the process of using drones that have sensors and cameras installed to collect data from the air. The 

effectiveness of UAV assisted data gathering will be significantly impacted by the placement and 

arrangement of sensors as well as the choice of data collection mode. 
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People sometimes equate UAVs with mobile connected devices; however, UAVs necessitate 

additional features and advanced planning for network groups, including transmission scheduling, 

data dissemination, direction and acceleration planning, and meeting Quality of Service (QoS) 

demands[3]. Through simulations, real-time research, and industry modeling, it is widely known and 

demonstrated that aerial and ground networks can collaborate to execute complicated tasks, 

overcoming obstacles of energy, environment, location, and trajectory. This paper centers on the 

dissemination of data through multi-UAV ad hoc networks. We describe aspects of data dissemination 

that pertain to both transmission scheduling and aerial mobility. First provided is an effective data 

distribution plan for multi-UAV assisted IOT.  

However, a great number of collisions may occur given the existing LoRaWAN MAC layer 

communication strategy[24]. We suggest a collision-free scheduling approach to address this issue 

and permit transmissions at specific timeslots. 

In UAV-assisted IoT networks, data reliability and precision are critical. Reliable information 

guarantees the network's optimal performance, and accurate data is essential for making trustworthy 

decisions. Techniques for error detection and repair are used to guarantee consistent data collecting. 

 
Figure 1- Network Model of UAV assisted IOT 

Custer has been formed based on optimization algorithm, and based on cluster policy, cluster 

head (CH) and cluster Agent (UAV/Drone) were categorized. Normally, CH will be a decision-

making process like choosing the optimal path, making a making a decision on transmission, which 

UAV has to communicate on time, etc. Based on the CH direction, the other UAV/Drone present in 

the cluster will function. Overall, the cluster will be communicated through Base station, which act as 

a transceiver. The network model of UAV assisted IOT is represented in Figure 1. In each cluster, the 

cluster members (UAV) send their collected data to the cluster head (CH), who aggregates the data. 

The CHs indicate the possible data collection points for the UAV. From the takeoff-point, the UAV 

visits each data collection point and communicates only with the CHs to complete the data gathering 

process. The blue dotted line denotes the initial trajectory of the UAV. 

We continuously observe the topology and adjust it as needed. We also suggest an efficient 

and successful sleep timer and a back-off counter in light of energy depletion. Two UAV mobility and 

trajectory frameworks are described for improved coverage and data dissemination in multi-UAV ad 

hoc networks, building upon the transmission scheduling framework. 

UAV support Vehicular ad hoc network architecture supports U2V/V2U communication, 

which finds application in various contexts, particularly in post-disaster operations[27,28,29]. These 

UAVs can operate remotely without an operator or hover silently in the air. By assembling a number 

of tiny UAVs and connecting them in an ad hoc manner, researchers created an expanding topic of 

study known as UAV ad-hoc networks. High mobility and frequent topological fluctuations 

characterize these types of networks, which create networking issues. 

In this paper, we propose CFCDC-SLA, an optimization-based clustering and routing 

technique for UAV-assisted IOT that extends network lifetime. The CFCDC-SLA is one of the 

metaheuristic algorithms that mimic seagulls' natural behaviour. 
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The major contribution of this research is as follows: 

1. A cluster head (CH) with an effective fitness function based on CFCDC-SLA is created. The 

primary reason for choosing this particular seagull optimization algorithm (SOA) is its inherent 

collision avoidance capability, which makes it useful for creating collision-aware data transfers in 

networks.  

2. A routing method based on CFCDC-SLA is created using IoT networks aided by UAVs must 

prioritize data consistency and accuracy. 

3. The superiority over other current techniques is illustrated through an analysis of a simulation of 

the CFCDC-SLA. 

  The remaining portions of this paper are arranged as follows:The prior study on collision-free 

transmissions and consistency data collection without error approach in UAVs is provided in Section 

2. Section 3 provides the proposed algorithm. In Section 4, we discuss our proposed work simulation 

results and analysis, along with a comparison with the current routing protocols. The conclusion and 

recommended subsequent paths are provided in Section 5. 

2. Exiting System 

One of the challenges faced by UAVs during flight missions is Collision Free Scheduling and 

Consistent Data Collection [11]. The key to addressing this is collision free scheduling algorithm to 

allow transmissions at selective slots.Accurate data is crucial formaking reliable decisions and 

Consistent data ensures optimal performance of the network. 

In [1], the authors S Parween and SZ Hussain.,recommended a work that implements suitable 

collision control and efficiently distributes resources in the LoRaWAN network using TCP. A method 

called Mini Batch K Means Clustering (MBKMC) multi-hop clusters LoRaWAN nodes and gateways 

to lessen the strain of computational complexity and network imbalance. The Osprey Optimization 

Algorithm (OOA) technique detect and prevent collisions.  

In [2], the authors Canello G et. al.,contributed to a study that included: (i) the conception and field 

evaluation of a mobile LoRaWAN GW prototype built on packet sniffers, enabling the collection of 

information from LoRaWAN networks, that include those which have already been deployed; (ii) the 

preliminary performance evaluation of the system, exposing some intriguing trends, setting objectives 

for additional research, and identifying lessons to be learned over the experimental campaign. 

According to our empirical results, the optimal moving route for both the average energy required per 

collected packet and the number of packets collected is the Travelling Salesman Problem (TSP) 

scenario. 

In [3], the authors Chia-an Hsu et. al., proposed two unique hashing-based techniques to accomplish 

data transmissions without collisions for receiver-initiated data collection. The author begins with an 

examination of a straightforward situation in which a data collector covers every device within a 

region of interest. The author then suggests a plan that enables each device to upload data at a 

predetermined time. Next, we expand our plan to accommodate a more practical situation in which 

Internet of Things devices are dispersed throughout a wider area that is too big for a single data 

collector to cover. 

In [4], the authors, Hengshuo Liang et. al., accessed the problem space into a three-dimensional model 

that takes the approach, task, and resource into account. The authors present an innovative approach 

based on the identified issue space that uses an unmanned aerial vehicle (UAV) as a vital component 

of the forthcoming mobile network in order to accomplish sporadic connections between IoT devices 

and permit data gathering using the delay tolerant network (DTN) protocol. A technique for path 

planning based on the Hilbert Curve is used to determine the UAV flight path. Through a series of 

quantitative studies, the authors confirm the advantages of our technique over other baseline 

alternatives and test its effectiveness in a network emulation environment. 

In [5], the authors Hexian Kuang et. al., proposed a multi-event data collection architecture for smart 

agriculture using unmanned aerial vehicles and the internet of things that is time-limited. The authors 

first illustrate the construction of the agricultural IoT framework, utilizing UAV assistance for data 

collection. Secondly, they show how the system functions and processes based on the event priority. 

Finally, they provide a flight path planning approach based on the event's priority. 

In [6], the authors Shihab Jimaa et. al., recommended the implementation of the collision aware 

transmission priority scheduling (CA-PST) deep learning-based technique to reduce the high rate of 

packet collisions in extremely crowded wireless networks. The proposed CA-PST is used on the low-
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range wide area network (LoRaWAN) architecture. The LoRa gateway sets the nodes to certain 

transmission protocol classes based on the expected number of packet collisions. Unsupervised 

learning clustering assists in allowing nodes at higher transmission priority clusters to communicate 

with the gateway using class C, thereby preventing packet collisions. 

The authors of [7], Dimitrios Zorbas and Brendan O'Flynn et al., have proposed a successful and 

energy-efficient method that makes use of drones as mobile gateways that routinely fly over the 

network to collect data. The author considers both a point-to-point LoRaWAN communication 

protocol and a node-to-drone communication model. 

The objective of [8] the authors, Natalia Chinchilla-Romero et al., introduced the Collision Avoidance 

Resource Allocation (CARA) algorithm that control collusion into resource provisionsystem. CARA 

uses the orthogonality of spreading factors and the multichannel nature of LoRaWAN networks to 

prevent device collisions. 

In [9], the author Guillaume Ferre.,proposedon examine packet loss and collisions when taking 

LoRaWAN into account. We derive closed-form formulas for the probability of collision and packet 

loss based on the LoRaWAN features. Simulation findings confirm our theoretical developments. 

They also demonstrate that their theoretical equations for the collisions characterize them more 

accurately than the Poisson distributed process. 

Dimitrios Zorbas, Brendan O'Flynn, et al. presented a collision-free time-slotted scheduling approach 

in [10]. Every node unconventionallychooses when to carry a packet built on its exclusiveuniqueness, 

which is then modulo-operated to generate a slot number. Real-world trials and simulations indicate 

that this system can achieve very high dependability when the nodes synchronize. It also only requires 

the broadcast packet from the gateway, with no additional communication overhead. 

The authors Anna Triantafyllou et al. [11] created a new Medium Access Control (MAC) protocol 

named FCA-LoRa with the aim of enhancing collision evasion in LoRa wide-area networks through 

the use of fairness. The network gateway transmits beacon frames, laying the groundwork for the 

unique scheduling method that establishes connections with end devices. 

 In [12], the authors Martin Heusseet. al., proposed an improved packet delivery ratio (PDR) model 

that outperforms the models found in the literature in two ways: firstly, it considers the sum of 

disruption authorities when multiple colliding frames occur, even if the interference preexists; and 

secondly, it examines the dependency between overcoming ambient noise and dominating colliding 

frames. Additionally, the framework includes the scenario of a gateway with multiple receivers. 

In [13], the authors HyunbumKimet. al.,presented a framework for building a UAV augmented 

boundary that is collision-free and ensures detection of several forms of intruder infiltration. 

Formally, they formulate a problem that aims to reduce the overall movement distance of UAVs, 

enabling the construction of a reinforced barrier that is collision-free, starting from the UAVs' initial 

positions. To tackle the challenge, researchers develop possible positions that can accommodate the 

UAVs' flexible motions. Next, they suggest a novel zone-based strategy. 

In [14], the authors Ziji Shi and Wee Keong Ng.,developed an A* algorithm-based collision-free path 

planning algorithm. The primary innovation is the creation of a heuristic function that takes waiting 

time into account. Researchers further demonstrate that the suggested approach is optimal, with an 

additional waiting penalty because the heuristic is admissible. 

In [15], the authors Elmokadem T and Savkin, A.V.,specifically designed to facilitate secure 

independent activities in dynamic, partially-known, three-dimensional (3D) settings. In order to offer 

fast, reflex-like responses to recently discovered impediments, this system cartels a global 

trackpreparation algorithm called RRT-Connect, with a responsivegovernor rule based on sliding 

mode control.  

In [16], the authors Peiwang Zhang et. al.,approached a problem as a non-convex optimization 

problem and repeatedly tackled it using a sequential convex programming algorithm, which 

convexifies non-convex constraints. The author linearizes the UAV's dynamical equations and 

penalize collision-free constraints using a hinge loss. 

In [17], the authors Aya Abdelhady and Ahmad Hosny Awad Eid.,suggested a simplified, static 

habitat with established borders and obstacles for UAVs to fly in, along with optimal 2D pathways 

and trajectories. They generate the trajectories for UAVs using quintic Pythagorean Hodograph 

curves, also known as PH curves, to ensure they are viable, smooth, and flyable. Two kinematic and 

dynamic limits on the UAV are curvature boundaries and minimal bending energy. The generated 
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pathways meet both of these requirements.In [18], the authors Chao Dong et. al.,suggested two 

algorithms for UAV coursedevelopment in law-altitude airspace: the particle swarm optimization 

rapidly-exploring random trees (PSO-RRT) algorithm and the protected sub-airspaces planning (SSP) 

algorithm. 

In [19], the authors Verma SC et. al.,discussed a useful navigation method for nonholonomic 

Unmanned Aerial Vehicles (UAVs) in environments with a lot of moving and immovable objects in 

3D. Dynamic programming (DP) couples with a reactive control method to achieve the desired result. 

Utilizing the DP, the UAVs can maneuver over established immovable hurdles and obstructions. 

In [20], the authors Kefan Wu et. al.,Addressed the issue of dispersed formation tracking in 

heterogeneous nonlinear multi-UAV networks by bearing measurements. Initially, to accomplish the 

intended formation, a unique bearing-only protocol is created for the following agents: In particular, 

the author takes bearing data to create a compensation function that addresses the non-linearity and 

actuator defects in the agent dynamics. Under specific time delays, the Lyapunov approach can 

guarantee the stability of the suggested strategy. 

In [21], the authors XinglingShaoet. al.,proposed an approach for UAVs to approximate a cooperative 

target using model-guided reinforcement learning (RL) in a predetermined amount of time, ensuring 

collision-free behaviors and the achievement of reinforced tracking capability. First, we develop a 

polar frame-based fixed-time enclosing controller to force UAVs to reach the target circles within a 

predetermined timeframe. Moreover, we build the supplement component using the deep 

deterministic policy gradient (DDPG), which interprets disturbance rejection and collision avoidance 

limits as two skilled reward functions, thereby enhancing tracking performance and imparting 

collision avoidance skills. 

In [22], the authors Aliasgar S. Malik et. al.,conducted a thorough analysis of the A* algorithm's use 

in UAV route planning. This inquiry aims to analyze A*'s performance in terms of path optimality 

and adaptability across a range of test cases. The publication provides a thorough description of the 

method, including its guiding ideas and heuristic search approach. 

In [23], the authors Seo D and Kang J.,proposed a unique velocity-adaptive 3D local path planning 

method (3DLPP) for a single unmanned aerial vehicle (UAV) that operates in real-time obstacle 

collision avoidance (CA) while following an established itinerary. Localized path candidates are 

generated by applying cost functions in three-dimensional space during local path planning in order to 

eliminate obstacles in real time. Using a well-defined cost function that minimizes centripetal 

acceleration, the model predictive control law (MPC) is used to estimate velocity and acceleration 

profiles in real-time. 

3. Proposed System 

3.1 Proposed CFCDC-SLA Model 

The proposed CFCDC-SLA system has been classified into seven step procedure to carry full 

set of operation. Basically, this CFCDC-SLA was classified into two working operation, based on 

Collision Free Scheduling and Consistent Data Collection. Figure 2 represents the Proposed CFCDC-

SLA Model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Proposed CFCDC-SLA Model 

 

 

 

UAV 

Network 

Construction 

Efficient 

Sensor 

Deployme

nt in UAV 

Fitness 

Function 

Derivation 

CH selection 

and 

LoRaWAN 

Collision 

Free 

Transmission 

Consistent 

Data 

Collection 

Performance 

Analysis 



Collision Free Scheduling with Consistent Data J.Vijaya Barathy 4482 

 

    Nanotechnology Perceptions 20 No.6 (2024) 4477-4489                                                                                                                                                                 

 

 

3.2Seagull Optimization Algorithm(SOA) based Dynamic Clustering Approach 

Choosing the proper cluster head is of utmost significance for developing a more effective 

dynamic clustering strategy. This section employs the SOA to choose the cluster and routing leader. 

This section will elucidate numerous applications of SOA. Seagulls belong to the Laridae family, 

which spans a broad variety of parts of the biosphere. Even though there are many kinds of seabirds, 

seagulls are particularly appealing since they are tenacious and have a powerful desire to hunt their 

prey. As a result, seagulls are intelligent birds since they exhibit migrating and hunting behaviours. 

People prefer seagulls over other birds that live in both saltwater and freshwater environments due to 

their unique characteristics and ability to make snap decisions. We will discuss two significant 

activities, namely migration and attacking, in more detail in the following paragraphs. 

3.2.1 Seagull Migration  

During the process of migrating, the seagull is required to compensate for the potential outcomes of 

the following numerous scenarios. 

a. Preventing collisions: 

In order to prevent collisions between Seagull, additional limits have been imposed on the 

determination of the optimal location of the exploring agent, as shown in Equation (1). 

ASA = SA × Pl(x)                           (1) 

Whereas the drive attributes of the search agent are denoted by the letter ‘SA’, the current iteration is 

denoted by the letter ‘x’, the search agent's current location is denoted by the letter ‘Pl’, and the 

‘ASA’ is not affected by the agents that are continuing to operate. It is possible to obtain the motion 

patterns for the search agent by using Equation (2). 

SA = Fc − (x×( Fc /n)) (2) 

Where x=0,1,2….n Iteration. And ‘n’ represents as maximum iteration. ‘Fc’ denotes Frequency 

Constraint, is starts as 2, since FA is denoted linearly and condensed from Fc to 0. 

b. Movement in the direction of optimal neighbours: 

Once neighbour collisions are eliminated, exploration agents are identified in the direction of optimal 

neighbour motions by equation (3). 

Ms = RA × (EA(x) − Pl(x))  (3) 

where ‘Pl(x)’ and ‘Ms’ denote the search agent and its position; ‘RA’ is designated as a random agent 

responsible for the effective evaluation between inspection and manipulation; ‘EA(x)’ denotes the 

exploration agent with maximum fitness; and Equation (4) expresses the random value computation. 

RA = 2 × S = SA 2 × RQ                 (4) 

We define 'RQ' as a diverse random quantity accessible within the range [0, 1]. 

c. Remain close to the finest search agent: 

Finally, Equation (5) relatives the improved search agent's position to the optimal search agent. 

dist = |ASA + BFA|   (5) 

The distance between the Best-Fit Search Agent (BFA) and the Actual Search Agent (ASA) is 

represented by "dist". 

 3.2.2 The seagull invades its prey 

The reduced computing requirements for the exploratory phase justify the implementation of this 

method. During the attacking phase, seagulls change their migrating conditions as they focus on 

maintaining their altitude in reaction to weight and air currents. The ability to rotate in mid-air 

allowed them to hit their target. Equations (6–9) can be used to characterize the performance of the 

twisting drive. 

X = Rad × cos t          (6) 

Y = Rad × sin t           (7) 

Z = Rad × t                  (8) 

Rad = U × e tV              (9) 

where "e" is the actual logarithm base; "u" and "v" are the spiral shape quantities; "t" is designated as 

an indiscriminate amount by the range [0 ≤ t ≤ 2π]; and "Rad" is the spiral's extent on each chance. 
The search agent updates its advancement using Equation (10). 

Pl(X) = (dist × X × Y × Z) + OR_Loc(X)   (10) 

OR_Loc (X) marks the location of the remaining search agents as an optimal response. 
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3.3 LDPC Approach 

LDPC[25,26] codes are a dynamic error correction coding technology that has acquired a lot 

of attention in the past 10 years because they can parallelize computations. This has allowed for the 

development of hardware codecs, typically for high-speed industrial communication standards, with 

extremely efficient algorithms and high throughput. 

The parity check matrix (PCM) H, which details the precise parity checks involving the transmitted 

message bits, determines the particular LDPC code[25]. Sparseness, a crucial feature of PCM, allows 

low-complexity message delivery systems to iteratively decode LDPC codes. Low-complexity 

encoding methods are becoming more and more popular. Code architecture and execution are 

examples of nonbinary coding strategies. 

 Forward Error Correction (FEC) codes add extra parity bits before each transmission. LoRa uses 

Hamming codes, recognized for their significantly suboptimal error-correcting capability yet 

relatively easy to implement. 

The term "coding gain" describes the degree to which FEC codes can reduce the signal-to-noise ratio 

(SNR) required for effective data retrieval.  

 
Figure 3parity-checkmatrixand itsassociated Tannergraph [25]. 

Figure 3 displays a graph where each row represents a check node (square) and each column 

represents a bit node (circle) in the equivalent graph on the right. An illustration of the calculated six-

bit Log-Likelihood Ratio (LLR) using our LLR extractor is shown below.LDPC codes transform a 

data packet consisting of ‘K’ bits into a frame of ‘N’ bits by adding ‘M’ parity check bits to the 

original ‘K’ bits, where ‘M’ is equal to N- K[25].  

Low-Density Parity-Check (LDPC) decoder[25,26]:Bit-flipping and SBP are the two primary LDPC 

decoding techniques. Bit-flipping is a hard-decision decoding method where the data is decoded using 

a binary bit stream as the input. Conversely, SBP functions as a decoding method that takes received 

bit dependability into account. To provide improved estimates, it takes LLR as input.  

Thus, this paper mostly concentrates on SBP. Here is a summary of the SBP decoding algorithm: 

 

Step0: Bit Nodes' first contact with Check Nodes. Demodulation enables the log-likelihood Ratio 

(LLR) of every bit to be obtained upon packet reception. Each bit node starts the decoding process by 

sending its Log-Likelihood Ratio (LLR) to the linked check nodes.  

Step 1: involves upgrading messages sent from check nodes to bit nodes. A check node fi uses the 

following formula to determine the message it will send back to bit node "bj" after receiving messages 

from all of the bit nodes it is associated with: 

 

(11) 

Step 2: Upgrading information transmitted from Bit Nodes to Verify Nodes. After receiving 

information from all associated check nodes, node 'bj' constructs a notification, which it then delivers 

back to check node 'fi'. 
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     (12) 

Step 3: Validating the Closure Condition. Prior to transmitting the modified information to their 

respective associated check nodes, all bit nodes initially verify if their closure requirements have been 

satisfied. In order to accomplish this, each bit node 'bj' updates its Log-Likelihood Ratio (LLR) value 

'λbj' based on the messages ηf `j→bj received from all of its associated check nodes. Let λbj represent 
the output of the Sum-Product Belief Propagation (SBP) method. 

              (13) 

3.4Apply SOA and LDPC into Proposed Model 

Step 1: We initially construct the UAV network. 

Step 2: After that, the sensor nodes and the multi-tiered clustering model are developed. Next, we use 

the proposed SOA to determine the fitness function. 

Step 4: Next, based on SOA, the CH selection process takes place, advancing the routing over IoT 

networks helped by UAVs. 

Step 5: After the clustering and routing procedures, we examine the sent data to determine if it is 

collision-free. 

Step 6: Once it is known that there are no collisions in the transmission, the LDPC method is used on 

LORAWAN[24] to make sure that data collection is always the same by finding and fixing errors. 

3.5 Cluster Head selection in CFCDC-SLA 

We applied the SOA for CH selection and routing. Since the suggested CFCDC-SLA includes 

a collision-avoidance characteristic by design, it is mostly useful for producing congestion-aware 

routing with reliable data collection. The proper fitness function can be determined to determine the 

correct fitness value. Several features, including network coverage, communication cost, residual 

energy, and node degree, were considered. 

To find the network coverage, the below equation (14) was applied. 

Min f1 =  
1𝑛𝑇 ∑ 𝑁𝑐(𝑛𝑖)𝑛𝑖=1           (14) 

To find the communication/ transmission cost to the neighbour hub/host, the below equation (15) was 

described, 

Min f2 =  
1𝑛𝑇 ∑ 𝑁𝑝(𝑛𝑖)𝑛𝑖=1   (15) 

To find the residual energy, which was represented as equation (16), 

Min f3 = ∑ 1𝐸𝑖𝑐ℎ𝑖
𝑚
𝑖=1              (16) 

To find the degree of the node/host, equation (17) was represented, 

Min f4 =∑ Ii𝑚𝑖=1   (17) 

In equation (14,15), ‘n’ represents number of nodes. In equation (14,15,16,17) where applied into 

normalization process ‘f(x)’ and finally equation (18) were drawn to obtain minimum fitness value. 

Min fitness = α1 f1 + α2 f2 + α3 f3 + α4 f4    (18) 
3.6 SOA based routing 

During this phase, the SOA finds the best transmission path from the source node to the destination 

that avoids collisions.The following fitness metrics—queue length, link quality, communication cost, 

and residual energy—are used to optimize the routing path creation. There are several stages involved 

in this path creation process, including initialization, fitness function derivation, representation, and 

iterative procedure. 

Equation (19) were applied to find the Queue Length for fitness function used in routing purpose, 

Q = 
𝑅𝑃(𝑛𝑘)𝑇𝑜𝑡𝑎𝑙             (19) 

In equation (19), ‘Q’ represents the Queue length and ‘RP’ represent received packet and ‘total’ as 

Total Buffer. 

Equation (20) is used to represents Link Quality for fitness function used in routing purpose, 

L=
1𝑓𝑟𝑑 𝑋 𝑏𝑐𝑘      (20) 
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In equation (20), ‘L’ represents the Link Quality and ‘frd’ for forward data transmission and ‘bck’ for 

Backward data transmission. Based on all fitness features, single fitness function was derived as 

equation (21), 

RF = δ1 × Q + δ2 × L + δ3 × CC + δ4 × RE       (21) 

Where, ‘RF’-> Routing Fitness, ‘Q’->Queue length, ‘L’-> Link Quality, ‘CC’-> Communication 

Cost, ‘δ’->weighted parameters and ‘RE’-> Residual Energy. 

3.7 Working progress of Proposed Algorithm 

Initially, the seagulls get acquainted with route data and are equipped with the x1 and y1 coordinates 

of the CHs that will host the following hop.We use the fitness metric in Equation (21) to identify the 

best overall population of seagulls. 

To prevent collisions during the migration procedure, equation (21) is applied. Following the 

completion of the collision avoidance, the best population—that is, the optimal navigation path—is 

used to update the remaining communities. 

In addition, the seagulls' locations are altered based on the stage of excavation. Using the most 

suitable solution from the CFCDC-SLA, the locations are updated in this phase.Lastly, the best 

transportation path from the source CH to the point of destination is provided by the established 

CFCDC-SLA.After it is established that there are no transmission collisions, the LDPC technique is 

applied on LORAWAN[24] to ensure that data gathering is consistent by identifying and resolving 

faults. 

 4.Result and Discussion 

This part covers the results of the CFCDC-SLA algorithm, which was created as a collision-free 

scheduling technique to enable transmissions in UAV-based IoT using LORAWAN. The following 

section provides a comprehensive description of the findings and discussion of the suggested CFCDC-

SLA approach. We implemented the CFCDC-SLA using the Network Simulator-2.34 (NS-2.34).The 

simulation settings are shown in Table 1. 

Number of Nodes 10,20,30,40,50,60,70,80,90,100 

Topology size 150 m * 150 m 

MAC protocol LoRaWAN 

Source of Traffic  CBR 

Traffic Flows 6 

Traffic Rate 50 KB/s 

Input Energy 25 Joules 

Transmitting power 0.8 Watts 

Receiving power 0.3 Watts 

Speed of UAV 20-60 m/s 

Table 1 Simulation settings 

a) Communication Delay: 

Communication delay refers to the duration it takes for a message or signal to travel from its sender to 

its receiver. This encompasses delays in delivery, routing, processing, and queuing. Networks and 

distributed systems may encounter latency that impedes data transmission. In Fig. 4 Communication 

Delay of CFCDC-SLA with CPP-WSO, ESRD-PDCA, and EEDP-UAV is shown. Figure 4 shows 

that CFCDC-SLA outperformed CPP-WSO, ESRD-PDCA, and EEDP-UAV by 23.13%, 30.17% and 

6.56% respectively. 

 
Figure 4: Effect of Node Density on Communication Delay in CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV Algorithms. 
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b) Energy Efficiency: 

Energy efficiency entails using a smaller amount of energy to achieve the same output or result. This 

is the optimization of processes, equipment, and systems to reduce energy consumption while 

maintaining performance levels. In Fig. 5 Energy Efficiency of CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV is shown. Figure 5 shows that CFCDC-SLA outperformed CPP-WSO, 

ESRD-PDCA, and EEDP-UAV by 12%, 16.84% and 10.27% respectively. 

 
Figure 5: Effect of Node Density on Energy Efficiency in CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV Algorithms 

c) Data Success Rate: 

The percentage of accurately transmitted and received data packets within a communication network 

is known as the data success rate. It assesses the reliability and efficiency of data transfer while 

considering any errors or losses. In Fig. 6 Data Success Rate of CFCDC-SLA with CPP-WSO, 

ESRD-PDCA, and EEDP-UAV is shown. Figure 6 shows that CFCDC-SLA outperformed CPP-

WSO, ESRD-PDCA, and EEDP-UAV by 2.96%, 0.60% and 1.29% respectively. 

 
Figure 6: Effect of Node Density on Data Success Rate in CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV Algorithm 

d) Network Throughput: 

The metric known as throughput measures the speed at which data moves between various locations 

on a network. We typically quantify it in terms of bits per second or data packets per second. In Fig. 7 

Network Throughput of CFCDC-SLA with CPP-WSO, ESRD-PDCA, and EEDP-UAV is shown. 

Figure 7 shows that CFCDC-SLA outperformed CPP-WSO, ESRD-PDCA, and EEDP-UAV by 

2.95%, 2.73% and 0.52% respectively. 
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Figure 7: Effect of Node Density on Network Throughputin CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV Algorithm 

e) Routing Overhead: 

Routing redundancy is the additional network traffic that arises from the transfer of routing data 

between network nodes. The content includes control messages, updates, and additional protocol-

specific data that is critical for maintaining precise routing tables. In Fig. 8 Routing Overhead of 

CFCDC-SLA with CPP-WSO, ESRD-PDCA, and EEDP-UAV is shown. Figure 8 shows that 

CFCDC-SLA outperformed CPP-WSO, ESRD-PDCA, and EEDP-UAV by 41.65%, 45.34% and 

7.84% respectively. 

 
Figure 8: Effect of Node Density on Routing Overhead in CFCDC-SLA with CPP-WSO, ESRD-

PDCA, and EEDP-UAV Algorithm 

 

5. Conclusion 

In this paper, collision-free and consistent data collection using SOA based LDPC approach (CFCDC-

SLA) was developed for the UAV-assisted LoRaWAN based network.There were two stages to the 

proposed CFCDC-SLA algorithm's operation. First, we used the Seagull optimization algorithm as a 

collision-free scheduling algorithm. Secondly, we implemented a low-density parity-check (LDPC) 

system to ensure error-free and consistent data gathering. The CPP-WSO, ESRD-PDCA, and EEDP-

UAV algorithms have all been compared against the performance of the proposed CFCDC-SLA 

algorithm, which was implemented using NS2 software. According to simulation studies, CFCDC-

SLA achieves a higher data success rate and network throughput, while also achieving lower 

communication delays, energy efficiency, and routing overhead. 
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