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Abstract: The decomposition theorem using alpha cuts allows the same extension that 

can be performed in a set-valued manner. The decomposition theorem helps to travel in 

both theory and practical applications with regard to stage-by-stage decision making 

under uncertainty through alpha cuts. Through union of special fuzzy sets, we get back 

the original fuzzy set. Through these, decomposition theorems are developed in fuzzy 

sets. In this article, we developed decomposition theorems on Multi fuzzy sets (MFS) 

and Fuzzy Multi sets (FMS) in the same way. Numerical examples with suitable 

scenarios for decomposition theorem of MFS and FMS are provided. We proposed new 

algorithms named as KMFS algorithm in MFS and FKMS algorithm in FMS after 

defining Hamacher product of Tr-MFN and normalized hamming distance between two 

triangular multi fuzzy numbers A and B for approaching MCDM applications. Further 

interpretation for the above proposed algorithms is conferred using suitable real-life 

applications.  
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1.INTRODUCTION 

The fuzzy set theory, developed by Lotfi A. Zadeh [2], extends classical set theory by accommodating 

uncertainty through degrees of membership ranging from 0 to 1, in contrast to binary membership. 

This framework finds applications in various domains, including artificial intelligence, control 

systems, and decision making, where uncertainty is a critical factor. Multi fuzzy sets [4], introduced 

by Yager, handle multiple criteria simultaneously, allowing for a more nuanced representation of 

complex uncertainties across different dimensions. These sets are particularly useful in decision 

support systems, pattern recognition, and modeling systems with diverse sources of imprecision. 

Fuzzy multisets [5], on the other hand, combine fuzzy sets and multisets, enabling elements to have 

varying degrees of membership and multiple occurrences with different memberships. The emphasis 

is on handling both imprecision and repetition in data, making it useful for scenarios where elements 

may exist in multiple instances with different strengths of belonging. A multi fuzzy set and fuzzy 

multiset are not the same. While they both involve the concept of fuzzy sets, they address different 

aspects of uncertainty. They are well-suited for representing imprecise and repetitive information in 

scenarios involving uncertain data. Additionally, the decomposition theorem in fuzzy set theory[1] 

provides a method for representing a fuzzy relation as a combination of simpler fuzzy relations, aiding 

in the modular representation and understanding of relationships between elements. This theorem is 

particularly valuable in applications such as fuzzy logic, decision making, and pattern recognition, 

where it helps in dissecting complex relationships into more manageable components.  We gathered 

some details for literature survey from some papers. Sabu Sabastian[4], proposed the concept of multi 

fuzzy mapping and Atanssov intuitionistic fuzzy sets generating maps in multi fuzzy set theory. In [8], 
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authors introduced the concept of multi fuzzy set over type-2 fuzzy set and they defined some 

operations and algebraic properties about T2MFS. Then they defined two measures over the sets. In 

[9], authors developed the notion of strong (𝛼, 𝛽) cut on IFS and their produced decomposition 

theorem of an IFS. In [10], authors developed decomposition theorems on vague sets and they are 

established the relationship among vague sets. They are divided into two fuzzy set AT, AR. Because 

AT and AR can be converted into classic sets by using the decomposition theorems on fuzzy sets. In 

this paper, we defined decomposition theorems and multi criteria decision making on multi fuzzy set 

and fuzzy multi set.  Then we proposed Hamacher’s product and hamming distance in algorithms on 

multi fuzzy sets and fuzzy multi set and we developed application of best smartphone selection using 

MCDM methods on multi fuzzy set and fuzzy multiset. 

 

2.PRELIMINARIES 

Definition 2.1[2]:Assuming that V is a number of objects declared generally by v, next a fuzzy set B 

in V is a set of ordered pairs B = {(v, μB(x))|v ∈ V}.μB(v)ismustered the membership function which 

maps V to the membership space M. The range of the membership function is a subset of the non-

negative real numbers whose supremum is finite. 

Definition 2.2[1]:Assume B beeach fuzzy set in V. Next for eachα ∈ [0,1], α cut of B, declared by 

αB, is correct as αB, = {v: v ∈ V such that μB(v) ≥ α} and the strong α cut of B, denoted by α+B, is 

correct as α+B,= {v: v ∈ V such that μB(v) > 𝛼}. 
Definition 2.3[1]:(Special fuzzy set)Assume B be each fuzzy set in V, next claimαB by αB(v) =
α.α B(v). Also α+B (v) = α.α+ B(v); where αB and α +B are fuzzy sets. 

Definition 2.4[1]:Assume B beeach fuzzy set in V. Next the level set of B declared by Λ(B), is 

described as  

Λ(B) = {α|B(v) =  α: v ∈ V}. 
Theorem 2.1[1]: (First Decomposition Theorem of fuzzy sets) 

For each fuzzy set B, B = ⋃ BA .Α∈[0,1]  

Theorem 2.2[1]: (Second Decomposition Theorem of fuzzy sets) 

For each fuzzy set B, B = ⋃ BA+ .Α∈[0,1]  

Theorem 2.3[1]: (Third Decomposition Theorem of fuzzy sets) 

For each fuzzy set B, B = ⋃ Bα .α∈∧(B)  Where Λ(𝐁)is the level set ofB. 

Definition 2.5[4]:A Multiset(MS)Dhauled from the set V is expressed by a count function CD: V → N, 
where N expressed the set of non-negative integers.  CD(v)is the count of presence of the element x in 

the multiset D. The multiset(MS)Dhauled from V = {v1, v2, … vn} will be expressed by D ={v1d1 , v2d2 , … , vndn} where di is the count of presence of the element vi, (i=1,2,..n) in the multisetD. 

Definition 2.6[4]:Assume V ≠ ∅, N the set of all natural numbers and {Pi: i ∈ N}a family of complete 

lattices. A multi fuzzy set(MFS)B in V is a set of ordered sequences:B = {{<𝑣, (μ1(v),μ2(v), … , μn(v), . . >}; v ∈ V}Whereμi ∈ Piv, for i∈N. 

Example 2.1[4]:Provide us examine fuzzy set(FS) A as pursue R= {0.6/ p, 0.7/ p, 0.3/ p, 0.9/q, 0.5/q, 

0.4/q, 1.0/q, 0.4/s} of the universal setV={p,q,s}. From this fuzzy set(FS), we see that the element 

pensue three times with membership values 0.6, 0.7, 0.3 respectively; the element qensue four times 

with membership values 0.9, 0.5, 0.4 and 1.0 respectively and the element sensue once with a 

membership value 0.4. thus, the set can be altered in the form as R= {(0.6,0.7,0.3)/p, 

(0.9,0.5,0.4,1.0)/q, 0.4/s} which is essentially is a multi- fuzzy set. 

Definition 2.7[5]:Let s be a positive integer and U be a universal set. A fuzzy multi set B over U is a 

set of ordered sequencesB = {v/(μB1 ,μB2 , … , μBi )): v ∈ U} whereμBi ∈ P(U), i = 1,2, . . s. The function 

μB = (μB1 ,μB2 , … , μBi ) called a multi-membership function of fuzzy multi set B, and s is mustered the 

dimension of fuzzy multi set B. 

Example 2.2[5]:Assume a fuzzy multisetsB={(p,0.3), (p,0.4), (q,0.9), (q,0.6), (q,0.6)} of V= 

{p,q,r,s}, which means that p with the membership 0.3, p with 0.4, q with the membership 0.9, and 

two y’s with 0.6 are contained in B. We may write B={{0.3,0.4}/p,{0.9,0.6,0.6}/q} in which the 

multisets of membership {0.3,0.4} and {0.9,0.6,0.6} corresponds to p and q, respectively.  
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Definition 2.8[5]: (Operations on fuzzy multi sets) 

Let  M,N ∈ FM(V),  where FM(V) refers to the set of all fuzzy multisets(FS) overV ≠ ∅. The 

succeeding are primitive relations and operations for fuzzy multisets(FMS): 

(1) Inclusion: M ⊆ N ⇔ μMj (v) ≤ μNj (v), j = 1, . . P(v)∀ v ∈ V. 
(2) Equality: M = N ⇔ μMj (v) = μNj (v), j = 1, . . P(v) ∀  v ∈ V. 
(3) Union: μM∪Nj (v) ⇔ μMj (v) ∨ μNj (v), j = 1, . . P(v) ∀  v ∈ V,  where ∨ is the maximum 

operation. 

(4) Intersection: μM∩Nj (v) ⇔ μMj (v) ∧ μNj (v), j = 1, . . P(v) ∀ v ∈ V,  where ∧ is the minimum 

operation. 

Definition 2.9[12]:T-norms are associative, monotonic and commutative two valued functions t that 

map from [0,1] × [0,1]into [0,1]. These properties are formulated with the following conditions:  

1. t(0,0) = 0 and t(μX1(x), 1)=t(1, μX1(x))=μX1(x), 
2. if μX1(x) ≤ μX3(x) and μX2(x) ≤ μX4(x), then t(μX1(x), μX2(x)) ≤ t(μX3(x), μX4(x)), 
3. t(μX1(x), μX2(x))= t(μX2(x), μX1(x)), 
4. t(μX1(x), t(μX2(x), μX3(x)))= t(t(μX1(x), μX2(x)), μX3(x)) 
the T-norm which are rational functions are the Hamacher T-norm is defined by  t2.5(μX1(x), μX2(x)) = μX1(x).μX2(x)

μX1(x)+μX2(x)−μX1(x).μX2(x) 
Definition 2.10[12]: S-norms are associative, monotonic and commutative two valued functions s that 

map from [0,1] × [0,1]into [0,1]. These properties are formulated with the following conditions: 

1. s(1,1) = 0 and t(μX1(x), 0)=t(0,μX1(x))=μX1(x), 
2. if μX1(x) ≤ μX3(x) and μX2(x) ≤ μX4(x), then s(μX1(x), μX2(x)) ≤ s(μX3(x), μX4(x)), 
3. s(μX1(x), μX2(x))= s(μX2(x), μX1(x)), 
4. s(μX1(x), s(μX2(x),μX3(x)))= s(s(μX1(x), μX2(x)), μX3(x)) 
the S-norm which are rational functions are the Hamacher S-norm is defined by s2.5(μX1(x), μX2(x)) = μX1(x)+μX2(x)−2.μX1(x).μX2(x)1−μX1(x).μX2(x)  

Definition 2.11[12]: Let wĩ ∈ [0,1] and a, b, c∈ R such that a ≤ b ≤ c . Then, a generalized triangular 

fuzzy number ã = 〈(a, b, c);wã〉 is a special fuzzy set on the real number set R, whose membership 

function is defined as;  

μã(x) =
{  
  
  (x − a)μαib − a                                               (a ≤ x < 𝑏)

μαi                                                         x = b(c − x)wã(c − b)                                            (b < 𝑥 ≤ 𝑐)0                                                            otherwise
 

Definition 2.12[12]: Let ã = 〈(a1, b1, c1);wã〉 , ã = 〈(a2, b2, c2);wb̃〉 be two generalized triangular 

fuzzy numbers and γ ≠ 0 be any real number. Then,  

1. ã + b̃ = 〈(a1 + a2, b1 + b2, c1 + c2);w1⋀w2〉 
2. ã − b̃ = 〈(a1 − a2, b1 − b2, c1 − c2, ); w1⋀w2〉 
3. ãb̃ = 〈(a1a2, b1b2, c1c2);w1⋀w2〉 
4. ã/b̃ = 〈(a1/a2, b1/b2, c1/c2);w1⋀w2〉 
5. γã = {〈(γa1, γb1, γc1);w1〉 (γ > 0)〈(γc1, γb1, γa1);w1〉  (γ < 0) 

Definition 2.13[12]: Let A = 〈(a1, b1, c1); ηA1,ηA2, … . . , ηAp〉,  
B= 〈(a2, b2, c2); ηB1,ηB2, … . . , ηBp〉 ∈ Λ and γ ≠ 0 be any real number. Then 

 

1. A+B= 〈(a1 + a2, b1 + b2, c1 + c2); s(ηA1, ηB1), s(ηA2,ηB2), …… , s(ηAp,ηBp)〉 
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2. A-B= 〈(a1 − a2, b1 − b2, c1 − c2); s(ηA1,ηB1), s(ηA2,ηB2),…… , s(ηAp,ηBp)〉 
3. A.B= {〈(a1a2, b1b2, c1c2); t(ηA1,ηB1), t(ηA2,ηB2), …… , t(ηAp,ηBp)〉; (c1 > 0, c2 > 0)〈(a1d2, b1c2, c1b2); t(ηA1,ηB1), t(ηA2,ηB2),…… , t(ηAp, ηBp)〉; (c1 < 0, c2 > 0)〈(c1c2, b1b2, a1a2); t(ηA1,ηB1), t(ηA2,ηB2), …… , t(ηAp,ηBp)〉; (c1 < 0, c2 < 0) 
4. A.B= {〈(a1/c2, b1/c1, b2/a2); t(ηA1,ηB1), t(ηA2, ηB2),…… , t(ηAp,ηBp)〉; (c1 > 0, c2 > 0)〈(c1/c2, b1/b2, a1/a2); t(ηA1,ηB1), t(ηA2,ηB2),…… , t(ηAp,ηBp)〉; (c1 < 0, c2 > 0)〈(c1/a2, c1/b1, b2/a2); t(ηA1,ηB1), t(ηA2,ηB2),…… , t(ηAp,ηBp)〉; (c1 < 0, c2 < 0)  

5. γA = 〈(γa1, γb1, γc1); 1 − (1 − ηA1)γ, 1 − (1 − ηA2)γ, …… . . ,1 − (1 − ηAp)γ〉 (γ ≤ 0) 
6. Aγ = 〈(a1γ, b1γ, c1γ); (ηA1)γ, (ηA2)γ, (ηA3)γ, …… , (ηAp)γ〉(γ ≤ 0) 

 

Definition 2.14[12]: Let A= 〈(a1, b1, c1);ηA1,ηA2, … . . , ηAp〉 ∈ Λ. Then the normalized TFM-number 

of A is given by A̅ = 〈( a1a1 + b1 + c1 , b1a1 + b1 + c1 , c1a1 + b1 + c1) ; ηA1,ηA2, … . . , ηAp〉 
 

Definition 2.15(12):  

Let A̅ = 〈(a1, b1, c1);ηA1 , ηA2 , … . . , ηAp〉 , B̅ = 〈(a2, b2, c2);ηA1 ,ηA2 , … . . , ηAp〉 ∈ Λ. Then to compare A̅and B̅ the TFM-number positive ideal solution and negative ideal solution are defined as  fA+ = 〈(a+, b+. c+); (ηA1)+, (ηA2)+, …… , (ηAp)+〉 = 〈(1,1,1); 1,1,1,… . ,1〉, fA−  = 〈(a−, b−. c−); (ηA1)−, (ηA2)−, …… , (ηAp)−〉 = 〈(0,0,0); 0,0,0,0,… ,0〉. respectively. 

 

 

3. DECOMPOSITION THEOREMS AND KMFS ALGORITHM IN MULTI FUZZY SET 

 

3.1First Decomposition Theorem on MFS: 

Assume V be a non-empty set and B be a Multi fuzzy subset in V. If B = (μB1 ,μB2 , … , μBk) ∈ V, 

Then B = (⋃ (μB1 ,μB2 , … , μBkααϵ[0,1] ), where U is the standard fuzzy union. 

Proof: 

Assume v be an any element in V and let (μB1 , μB2 , … , μBk) (v) = a 
Then (⋃ (μB1 ,μB2 , … , μBkααϵ[0,1] ) = α(μB1 ,μB2 ,…,μBk)(v)αϵ[0,1]sup

 = (max [ α(μB1 ,μB2 ,…,μBk)(v)αϵ[0,b]sup , α(μB1 ,μB2 ,…,μBk)(v)αϵ(b,1]sup ]) 

For each αϵ(b, 1] we have α > 𝑏, So, (μB1 ,μB2 , … , μBk) (v) = b <  α, (μB1 ,μB2 , … , μBk) (v) < αand, therefore, 

α(μB1 ,μB2 ,…,μBk)(v)= 0. 

On the other hand, for eachαϵ[0,b],wehave B(v)=b ≥ α, therefore, 

α(μB1 ,μB2 ,…,μBk)(v) = b. 
 Hence,  (⋃ α(μB1 ,μB2 ,…,μBk)αϵ[0,1] ) (v) = α = b = B(v)αϵ[0,b]sup

. 

 



388 M. Maheshpraba Decomposition Theorems and KMFS  

               Nanotechnology Perceptions 20 No.S16 (2024) 384-394                                                                                                                                                                 

 

3.2 Second Decomposition Theorem on MFS: 

Assume V be a non-empty set and B be a Multi fuzzy subset in V. If B = (μB1 ,μB, … , μBk) ∈ V,then  B = (⋃ (μB1 , μB2 , … , μBk𝛼+αϵ[0,1] )where U is the standard fuzzy union. 

 

Proof: 

Assume x be an any element in V and let (μB1 , μB2 , … , μBk) (v) = b 

Then  (⋃ (μB1 , μB2 , … , μBkα+αϵ[0,1] ) = α+(μB1 ,μB2 ,…,μBk)(v)αϵ[0,1]sup
 = (max [ α+(μB1 ,μB2 ,…,μBk)(v)αϵ[0,b]sup , α+(μB1 ,μB2 ,…,μBk)(v)αϵ(b,1]sup ]) 

For each αϵ(b, 1] we have α > 𝑏, So,  (μB1 ,μB2 , … , μBk) (v) = b <  α, (μB1 ,μB2 , … , μBk) (v) <  α 

and, therefore,  (μB1 ,μB2 , … , μBkα+ ) (v) = 0. 

On the other hand, for each αϵ [0, b], we have A(v) = a ≥ α, therefore,  (μB1 ,μB2 , … , μBkα+ )(v) = b. 

Hence,  (( ⋃ (𝜇𝐵1 , 𝜇𝐵2 , … , 𝜇𝐵𝑘𝛼+𝛼𝜖[0,1] )) (v) = α = b = B(v)αϵ[0,b]sup
 

 

 

3.3 Third Decomposition Theorem on MFS: 

Assume V be a non-empty set and B be a Multi fuzzy subset in V. If B = (μB1 ,μB, … , μBk) ∈ V, then  B = (⋃ (𝜇𝐵1 , 𝜇𝐵2 , … , 𝜇𝐵𝑘𝛼αϵLμB ), where U is the standard fuzzy union. 

Proof: 

The verificationregarding this theorem is akin to the second decomposition theorem based on an MFS. 

 

3.4. Numerical example for Decomposition theoremon MFS: 

In this scenario, let's Assume V be a non-empty set and B be a Multi fuzzy subset in V. If B =(μB1 ,μB2 , … , μBk) ∈ V. hereB representing four babies are b1, b2, b3, and b4, each with four 

membership values are (μB1 ,μB2 ,μB3 ,μB4). These values correspond to different factors influencing 

the growth of each baby.For a baby growth, sleep pattern is first important factor, next nutrition is 

second important factor,  genetic factor is third tool for baby growth, final tool is health check-up 

(sleep pattern > nutrition > genetic factor> health check-up). The membership value μB1 represents 

the importance of health checkups for a baby's growth, indicating how regularly they are monitored 

by healthcare professionals. The membership value μB2signifies the role of genetic factors in the 

baby's growth and development, considering traits inherited from their parents. Membership value μB3 

reflects the significance of nutrition in the baby's diet for growth. Finally, membership value 

μB4indicates the impact of sleep patterns on the baby's growth, highlighting the importance of 

sufficient and regular sleep for their development. By assigning these membership values to the 

babies in set B, here we are listed in increasing order about each baby growth. 

B=[(b1, (0.25,0.32,0.56,0.61)), (b2, (0.31,0.43,0.65,0.77)), (b3, (0.48,0.52,0.76,0.82)), (b4, (0.58,0.62,0.81,0.98))] 
Provide us denote B for convenience as  
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B = ( (0.25,0.32,0.56,0.61)b1 + (0.31,0.43,0.65,0.77)b2+ (0.48,0.52,0.76,0.82)b3 + (0.58,0.62,0.81,0.98)b4 ) 

(0.25,0.32,0.56,0.61)μB = 1b1 + 1b2 + 1b3 + 1b4 (0.31,0.43,0.65,0.77)μB = 0b1 + 1b2 + 1b3 + 1b4 (0.48,0.52,0.76,0.82)μB = 0b1 + 0b2 + 1b3 + 1b4 (0.58,0.62,0.81,0.98)μB = 0b1 + 0b2 + 0b3 + 1b4 

αB(v) = ααB(v) (0.25,0.32,0.56,0.61)αB(v) = ((0.25,0.32,0.56,0.61)b1 + (0.25,0.32,0.56,0.61)b2 + (0.25,0.32,0.56,0.61)b3 +(0.25,0.32,0.56,0.61)b4 ) (0.31,0.43,0.65,0.77)αB(v) =( 
0b1 + (0.31,0.43,0.65,0.77)b2 + (0.31,0.43,0.65,0.77)b3 + (0.31,0.43,0.65,0.77)b4 )  

 (0.48,0.52,0.76,0.82)αB(v) =( 
0b1 + 0b2 + (0.48,0.52,0.76,0.82)b3 + (0.48,0.52,0.76,0.82)b4 )  

 (0.58,0.62,0.81,0.98)αB(v) =( 
0b1 + 0b2 + 0b3 + (0.58,0.62,0.81,0.98)b4 )  

(μB1 ,μB2 ,μB3 ,μB4) =⋃ (α∈[0,1] (0.25,0.32,0.56,0.61), (0.31,0.43,0.65,0.77), (0.48,0.52,0.76,0.82), (0.58,0.62,0.81,0.98)) 
( μB1 ,μB2 ,μB3 , μB4) = B.Hence proved. 

We require the following new definitions to  propose  KMFS algorithm in MFS. 

Definition 3.5: Consider A=〈[a1a2a3]; (μA1 , μA2 , … , μAp)〉 , 

B=〈[b1b2b3]; (μB1 ,μB2 , … , μBp)〉and  C = 〈[c1c2 c3]; (μC1 , μC2 , … , μCp)〉in V then Hamacher product of Tr-MFN is, 

t =([a1a2a3, b1b2b3, c1c2c3]; { μa1μa2μa3(μa1+μa2+μa3)−(μa1μa2μa3) , μb1μb2μb3(μb1+μb2+μb3)−(μb1μb2μb3) , μc1μc2μc3(μc1+μc2+μc3)−(μc1μc2μc3)}) 

Definition 3.6: Let A=〈[a1a2a3]; (μA1 , μA2 , … , μAp)〉 and B=〈[b1b2b3]; (μB1 ,μB2 , … , μBp)〉 be 

two triangular multi fuzzy numbers, then the  normalized hamming distance between A and B is 

defined as 

D(fi,fi+) = 
18P[|(1 + μa1) a1 − (1 + μb1) b1| + |(1 + μa1) a2 − (1 + μb1) b2| + |(1 + μa1) a3 −(1 + μb1) b3| + |(1 + μa2) a1 − (1 + μb2) b1| + |(1 + μa2) a2 − (1 + μb2) b2| + |(1 + μa2) a3 −(1 + μb2) b3| + |(1 + μa3) a1 − (1 + μb3) b1| + |(1 + μa3) a2 − (1 + μb3) b2| + |(1 + μa3) a3 −(1 + μb3) b3|]. 

 

3.7. KMFS Algorithm in MFS: 

Step 1: Construct the Tr-MF numbers multi-criteria decision matrix A=[𝑎11 𝑎12 … 𝑎1𝑛𝑎21 𝑎22 ⋯ 𝑎2𝑛⋮ ⋮ ⋮ ⋮𝑎𝑚1 𝑎𝑚1 … 𝑎𝑚𝑛] for 

decision. 
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Step 2: Compute overall values fi= Tr-MFG(ai1, ai2, ai3); note that iffi for all i ∈ Im is not 

normalized Tr-MF numbers, then we define the normalized Tr-MF numbers using Hamacher’s 
product. 

Step 3: Calculate the distance between collective overall valuesfi =〈[ai, bi, ci]; (μi1 , μi2 , … , μip)〉 and positive ideal solution fi+( fi+ = 〈(1,1,1); 1,1,… 1〉) 
Step 4: Rank all the attributes Ai(i = 1,2,3,… ,m) 
Step 5: Select the best in accordance with D(fi, fi+), the better are the alternatives, Ai. 

 

3.8. Applicationto address KMFS algorithm: 

Consider collection of five smartphones S = {SP1, SP2, SP3, SP4, SP5} analysis of trending 

smartphone list. we selected three key features of the smartphone is denoted as linguistic variables are 

price(ft1), internal storage(ft2), and processor speed(ft3) for each smartphone. These variables serve 

as the foundation for categorizing and evaluating different aspects of smartphones. For each linguistic 

variable, we have established three linguistic values to represent varying degrees or levels. For 

instance, in considering price, we have delineated high price(pr1), average price(pr2), and low-

price(pr3) categories. Then considering internal storage, we have delineated low capacity(in1), 

medium capacity(in2) and high capacity(in3). Then considering processor speed, we have delineated 

high speed(ps1), medium speed(ps2) and low speed(ps3) are three distinct linguistic values each to 

capture the range of options available in the smartphone market. To quantify and manage the inherent 

uncertainty or fuzziness in the data, we have opted for triangular multi-fuzzy numbers as a 

mathematical framework. These numbers comprise three values [𝑎1, 𝑎2, 𝑎3] representing the expected 

outcomes for linguistic variable of price for SP1 and consider for each linguistic variable. In applying 

this method to analyze smartphone sales outcomes, we compare the expected outcomes represented 

by the triangular multi-fuzzy numbers with the actual sales data. The membership values for 𝑎1, 𝑎2, 𝑎3serve as indicators of the degree to which the expected outcomes align with the observed 

sales patterns. By assessing the correspondence between expected and actual outcomes across 

different linguistic values for price, internal storage, and processor speed, we gain insights into 

consumer preferences and market dynamics within the smartphone industry. This approach enables a 

comprehensive examination of the relationship between linguistic variables and sales outcomes, 

facilitating informed decision-making and strategic planning in the competitive smartphone 

market landscape. 

Now, manipulating the KMFS algorithm to the above stated scenario. 

Step 1:Consider the input data of the Tr-MF numbers multi-criteria decision matrix 

A=[𝑎11 𝑎12 … 𝑎1𝑛𝑎21 𝑎22 ⋯ 𝑎2𝑛⋮ ⋮ ⋮ ⋮𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛] for decision. 

 

 sp1 sp2 sp3 sp4 sp5 

ft1 [0.6,0.6,0.8]; 

(0.84,0.05,0.05) 

[0.1,0.5,0.8]; 

(0.22,0.76,0.72) 

[0.5,0.6,0.3]; 

(0.88,0.89,0.75) 

[0.5,0.4,0.6]; 

(0.89,0.80,0.12) 

[0.2,0.8,0.9]; 

(0.12,0.85,0.79) 

ft2 [0.8,0.5,0.6]; 

(0.34,0.73,0.77) 

[0.2,0.5,0.5]; 

(0.15,0.75,0.63) 

[0.1, 0.5,0.8]; 

(0.20,0.41,0.68) 

[0.4,0.5,0.6]; 

(0.80,0.60,0.22) 

[0.5,0.6,0.3]; 

(0.23,0.72,0.81) 

ft3 [0.5,0.6,0.3]; 

(0.28,0.52,0.90) 

[0.8,0.5,0.1]; 

(0.62,0.41,0.08) 

[0.5,0.2,0.4]; 

(0.12,0.54,0.68) 

[0.2,0.8,0.3]; 

(0.40,0.62,0.53) 

[0.3,0.6,0.8]; 

(0.35,0.25,0.11) 

 

Step 2: Applying the Tr-MFG operator to derive the collective overall preference triangular multi 

fuzzy set fi: SP1 = [0.288,0.192,0.090]; (0.0022,0.1313,0.0835) SP2 = [0.04,0.035,0.12]; (0.0762,0.0200,0.0186) SP3 = [0.09,0.03,0.048]; (0.3039,0.1987,0.0340) SP4 = [0.04,0.03,0.048]; (0.0495,0.0867,0.0926) SP5 = [0.048,0.0305,0.0137]; (0.0480,0.0305,0.0137) 
Step 3:Calculate the distances between collective overallfiand Tr-MF positive ideal solution f+: 
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D(SP1, f+) = 0.5665 

D(SP2, f+) = 0.7112 

D(SP3, f+) = 0.7264 

D(SP4, f+) = 0.7322 

D(SP5, f+) = 0.6923 

Step 4:Rank all the alternatives Ai in accordance with descending order  SP4 > SP3 > SP2 > SP5 > SP1 

Step 5:The most desirable alternative is SP4. 
 

4. DECOMPOSITION THEOREMS AND FKMS ALGORITHM IN FUZZY-MULTI SET 

4.1.First Decomposition Theorem on FMS: 

Assume V be a non-empty set and B be a fuzzy multi subset in V. If B= (μB1 ,μB2 , … , μBk) ∈ V, then  B = (⋃ α(μB1 ,μB2 ,…,μBk )αϵ[0,1] ),where U is the standard fuzzy union. 

 

Proof: 

Assume v be anany element in V and assume (μB1 ,μB2 , … , μBk)(v) = a 

Then (⋃ α(μB1 ,μB2 ,…,μBk)(v)αϵ[0,1] ) = α(μB1 ,μB2 ,…,μBk)(v)αϵ[0,1]sup
 = (max [ α(μB1 ,μB2 ,…,μBk)(v)αϵ[0,b]sup , α(μB1 ,μB2 ,…,μBk)(v)αϵ(b,1]sup ]) 

For each αϵ(b, 1] we have α > 𝑏, So,  (μB1 , μB2 , … , μBk)(v) = b <  α, (μB1 ,μB2 , … , μBk)(v) <  α 

and therefore, α(μB1 ,μB2 ,…,μBk)(v)= 0.  

On the other hand, for each αϵ [0, b], we have B(v) = b ≥ α,  

therefore,                            α(μB1 ,μB2 ,…,μBk )(v) = b. 

Hence,            (⋃ α(μB1 ,μB2 ,…,μBk )αϵ[0,1] ) (v) = α = b = B(v)αϵ[0,a]sup
. 

 

4.2.Second Decomposition Theorem on FMS: 

Assume V be a non-empty set and B be a fuzzy multi subset in V.  If B= (μB1 ,μB2 , … , μBk ) ∈ V, then  

B = (⋃ α +(μB1 ,μB2 ,…,μBk )αϵ[0,1] ), where U is the standard fuzzy union. 

 

Proof: 

Assume v bean any element in V and assume (μB1 ,μB2 , … , μVk )(v) = b 

Then(⋃ α+(μB1 ,μB2 ,…,μBk )(v)αϵ[0,1] ) = α+(μB1 ,μB2 ,…,μBk )(v)αϵ[0,1]sup
 = (max [ α+(μB1 ,μB2 ,…,μBk )(v)αϵ[0,a]sup , α+(μB1 ,μB2 ,…,μBk )(v)αϵ(a,1]sup ]) 

For each αϵ(b, 1] we have α > 𝑏,So, (μB1 , μB2 , … , μBk )(v) = b <  α, (μB1 , μB2 , … , μBk )(v) <  α 

and, therefore,  

α+(μB1 ,μB2 ,…,μBk ) (v) = 0. 

On the other hand, for each αϵ [0, b], we have B(v) = b ≥ α, therefore,  

α+(μB1 ,μB2 ,…,μBk )(v) = b. 

Hence,(⋃ α+(μB1 ,μB2 ,…,μBk )αϵ[0,1] ) (v) = α = b = B(v)αϵ[0,b]sup
. 

 

4.3Third Decomposition Theorem on FMS: 

Assume V be a non-empty set and B be a fuzzy multi subset in V.  If B= (μB1 ,μB2 , … , μBk ) ∈ V, then  

B = (⋃ α(μB1 ,μB2 ,…,μBk )αϵLμB
), where U is the standard fuzzy union. 

Proof: 
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The verification regarding this theorem is akin to the second decomposition theorem based on an 

FMS. 

4.4. Numerical example for Decomposition theorem on FMS: 

In this scenario, let's Assume V be a non-empty set and B be a fuzzy multi subset in V.  If B=(μB1 , μB2 , … , μBk ) ∈ V.  Here  B representing four babies are b1, b2, b3, and b4, each baby with four 

membership valuesare(μB1 , μB2 ,μB3 , μB4 ). These values correspond to different months influencing the 

growth of each baby. The membership value μB
1  represents the third month baby's growth. The 

membership value μB
2  represents the  sixth month baby′s growth. Membership value μB

3  represents the 

nineth month baby's growth. Finally, membership value μB
4  represents the one year baby′s growth for 

each baby. By assigning these membership values to the babies in set B, here we are listed in 

increasing order about each baby growth. 

B=[(b1, (0.15,0.26,0.37,0.42)), (b2, (0.24,0.37,0.48,0.59)), (b3, (0.32,0.41,0.51,0.65)), (b4, (0.43,0.56,0.62,0.77))] 
Provide us denote B for convenience as  

B = ((0.15,0.26,0.37,0.42)
b1

+ (0.24,0.37,0.48,0.59)
b2

+ (0.32,0.41,0.51,0.65)
b3

+ (0.4,0.5,0.6,0.7)
b4

) (0.15,0.26,0.37,0.42)μB = 1
b1
+ 1
b2
+ 1
b3
+ 1
b4

 (0.24,0.37,0.48,0.59)μB = 0
b1
+ 1
b2
+ 1
b3
+ 1
b4

 (0.32,0.41,0.51,0.65)μB = 0
b1
+ 0
b2
+ 1
b3
+ 1
b4

 (0.43,0.56,0.62,0.77)μB = 0
b1
+ 0
b2
+ 0
b3
+ 1
b4

 

αB(v) = ααB(v) (0.15,0.26,0.37,0.42)αB(v) =(
(0.15,0.26,0.37,0.42)

b1
+ (0.15,0.26,0.37,0.42)

b2
+ (0.15,0.26,0.37,0.42)

b3
+(0.15,0.26,0.37,0.42)

b4
)  (0.24,0.37,0.48,0.59)αB(v) =( 

0
b1
+ (0.24,0.37,0.48,0.59)

b2
+ (0.24,0.37,0.48,0.59)

b3
+ (0.24,0.37,0.48,0.59)

b4
)  

 (0.32,0.41,0.51,0.65)αB(v) =( 
0
b1
+ 0

b2
+ (0.32,0.41,0.51,0.65)

b3
+ (0.32,0.41,0.51,0.65)

b4
)  

 (0.43,0.56,0.62,0.77)αB(v) =( 
0
b1
+ 0

b2
+ 0

b3
+ (0.43,0.56,0.62,0.77)

b4
)  (μB1 , μB2 ,μB3 , μB4 ) = ⋃ (

α∈[0,1] (0.15,0.26,0.37,0.42), (0.24,0.37,0.48,0.59),  (0.32,0.41,0.51,0.65), (0.43,0.56,0.62,0.77))  (μB1 , μB2 ,μB3 , μB4 ) = B.Hence proved. 

We require the following new definitions to propose FKMS algorithm in FMS. 

 

Definition 4.5:Let A=〈[a1b1c1]; (μA1 , μA2 , … . . , μAP)〉 , B=〈[a2b2c2]; (μB1 , μB2 , … . . , μBP)〉 and  
C = 〈[a3b3c3]; (μC1 ,μC2 , … . . , μCP)〉in V then Hamacher product of Tr-FMN is, 

 t = ([(a1b1c1), (a2b2c2), (a3b3c3)]; { μa1μb1μc1(μa1 + μb1 + μc1) − (μa1μb1μc1) , μa2μb2μc2(μa2 + μb2 + μc2) − (μa2μb2μc2) , μa3μb3μc3(μa3 + μb3 + μc3) − (μa3μb3μc3)}) 
 

Definition 4.6:Let A=〈[a1b1c1]; (μA1 , μA2 , … . . , μAP)〉 and B=〈[a2b2c2]; (μB1 ,μB2 , … . . , μBP)〉 be 

two triangular fuzzy multi numbers, then the normalized hamming distance between A and B is 

defined as 
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D(fi, fi+)= 
1
8P

 [|(1+ μa1)a1 − (1+ μb1)a2| + |(1 + μa1)b1 − (1 + μb1)b2| + |(1 + μa1)c1 −(1+ μb1)c2| + |(1+ μa2)a1 − (1 + μb2)a2| + |(1+ μa2)b1 − (1+ μb2)b2| + |(1+ μa2)c1 −(1+ μb2)c2| + |(1+ μa3)a1 − (1 + μb3)a2| + |(1+ μa3)b1 − (1+ μb3)b2| + |(1+ μa3)c1 −(1+ μb3)c2|] 
 

4.7. FKMS Algorithm in Fuzzy Multi Set: 

Step 1:Construct the Tr-FM numbers multi-criteria decision matrix A=[ 𝑎11 𝑎12 … 𝑎1𝑛𝑎21 𝑎22 ⋯ 𝑎2𝑛⋮ ⋮ ⋮ ⋮𝑎𝑚1 𝑎𝑚1 … 𝑎𝑚𝑛] for 

decision. 

Step 2:Compute overall values fi= Tr-FMG(ai1, ai2, ai3); note that iffi for all i ∈ Im is not 

normalized Tr-FM numbers, then we define the normalized Tr-FM numbers using Hamacher’s 
product on Tr-FM numbers 

Step 3: Calculate the distance between collective overall values fi = 〈[ai, bi, ci]; ( μi1,μi2, … , μip)〉  
and positive ideal solution fi+ (fi

+ = 〈(1,1,1);1,1, … 1〉) 
Step 4: Rank all the attributes Ai(i = 1,2,3, … ,m) 
Step 5: Select the best in accordance with D (fi, fi

+
), the better are the alternatives,Ai 

 

4.8. Application to address FKMS algorithm: 

Consider in our methodology for analyzing smartphone data, we have identified three linguistic 

variables are price range, internal storage capacity, and processor speed. Each variable is categorized 

using three linguistic values corresponding to different years are 2018, 2020, and 2022. This 

categorization likely reflects the evolution of smartphone technology and features over time. 

Employing triangular fuzzy multi-numbers, we represent the data with three values (a, b, c), where a, 

b and c denote the range of the expected outcomes, and each is associated with membership values 

reflecting the degree of correspondence with the linguistic value it represents. These values provide 

insights into the expected trends and characteristics of smartphones from each year. By comparing 

these expected outcomes with the actual sales data represented by the membership values for a, b and 

c, you gain a comprehensive understanding of how well the expected trends align with real-world 

market dynamics. This approach enables a nuanced analysis of the relationships between linguistic 

variables and sales outcomes, offering valuable insights for decision-making in the competitive 

smartphone industry. 

Now, manipulating the FKMS algorithm to the above stated scenario. 

Step 1: Input data of the Tr-FM numbers multi-criteria decision matrix 

A=[ 𝑎11 𝑎12 … 𝑎1𝑛𝑎21 𝑎22 ⋯ 𝑎2𝑛⋮ ⋮ ⋮ ⋮𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛] for decision: 

 

 

 sp1 sp2 sp3 sp4 sp5 

ft1 [0.6,0.6,0.8]; 

(0.84,0.05,0.05) 

[0.1,0.5,0.8]; 

(0.22,0.76,0.72) 

[0.5,0.6,0.3]; 

(0.88,0.89,0.75) 

[0.5,0.4,0.6]; 

(0.89,0.80,0.12) 

[0.2,0.8,0.9]; 

(0.12,0.85,0.79) 

ft2 [0.8,0.5,0.6]; 

(0.34,0.73,0.77) 

[0.2,0.5,0.5]; 

(0.15,0.75,0.63) 

[0.1, 0.5,0.8]; 

(0.20,0.41,0.68) 

[0.4,0.5,0.6]; 

(0.80,0.60,0.22) 

[0.5,0.6,0.3]; 

(0.23,0.72,0.81) 

ft3 [0.5,0.6,0.3]; 

(0.28,0.52,0.90) 

[0.8,0.5,0.1]; 

(0.62,0.41,0.08) 

[0.5,0.2,0.4]; 

(0.12,0.54,0.68) 

[0.2,0.8,0.3]; 

(0.40,0.62,0.53) 

[0.3,0.6,0.8]; 

(0.35,0.25,0.11) 

 

Step 2: Applying the Tr-FMG operator to derive the collective overall preference triangular fuzzy 

multiset fi: 
SP1 = [0.18,0.288,0.096]; (0.0711,0.0154,0.0179) 
SP2 = [0.056,0.125,0.024]; (0.0564,0.0717,0.0070) 
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SP3 = [0.175,0.096,0.036]; (0.0526,0.1939,0.1650) 
SP4 = [0.06,0.16,0.006]; (0.072,0.1483,0.0385) 

SP5 = [0.03,0.192,0.576]; (0.0199,0.0732,0.0125) 
Step 3: Calculate the distances between collective overall fi and Tr-FM positive ideal solution f+: 

D(SP1, f+) = 0.6598 

D(SP2, f+) = 0.6863 

D(SP3, f+) = 0.7064 

D(SP4, f+) = 0.6782 

D(SP5, f+) = 0.6467 

Step 4: Rank all the alternatives Ai in accordance with descending order  

SP3 > SP2 > SP4 > SP1 > SP5 
Step 5: The most desirable alternative isSP3 . 

 

5.CONCLUSION 

In this paper, we defined decomposition theorems on multi fuzzy set and fuzzy multiset. A multi 

fuzzy set and fuzzy multiset are not the same. While they both involve the concept of fuzzy sets, they 

address different aspects of uncertainty. They are well-suited for representing imprecise and repetitive 

information in scenarios involving uncertain data.Then we developed Hamacher’s product for 

triangular multi fuzzy number and triangular fuzzy multi number through T-norm. Then we developed 

hamming distance formula for triangular multi fuzzy number and triangular fuzzy multi number. 

Next, we developed application of best smartphone using multi criteria decision making on MFS and 

FMS.  

 

6. FUTURE WORK 

Herein, we developed and entrenched decomposition theorems of “Intuitionistic multi-fuzzy sets and 

Intuitionistic fuzzy multi-set”. Next, we are interested in using T-norm and T-conorm and ranking 

method at “Intuitionistic multi-fuzzy set and Intuitionistic fuzzy multi-set”. In this paper, we took 

assumption data, in future, we will take real data may be extensively enforced in multi-criteria 

decision-making model (MCDM) and fuzzy system for microarray [11]. 
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