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Functional verification is essential in hardware design, ensuring systems meet their specifications 

before fabrication. As hardware complexity grows, traditional methods become increasingly 

resource-intensive, often leading to incomplete coverage and missed bugs. Machine learning (ML) 

presents a solution by automating test case generation, predicting outcomes, and improving 

coverage closure. This research explores the effectiveness of ML algorithms in enhancing 

functional verification, drawing on data from 120 respondents. Using statistical methods like 

ANOVA and Chi-square tests, the study demonstrates that ML-based verification significantly 

reduces verification time, increases coverage closure rates, improves bug detection, and lowers 

overall costs. The findings suggest that integrating ML into verification workflows can streamline 

the process, making it faster and more accurate while reducing resource expenditure. 

Keywords: Functional verification, machine learning, hardware design, test case generation, 

coverage closure, bug detection, verification efficiency, ANOVA, Chi-square tests, cost reduction  

 

 

1. Introduction 

Functional verification is a critical step in the hardware design cycle, ensuring that the 
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designed system operates as intended and aligns with its specifications before it undergoes 

fabrication. The importance of this process cannot be overstated because undetected design 

flaws can result in significant financial losses and delays, especially when hardware errors are 

discovered late in the development cycle or after deployment. Functional verification is not 

only about finding flaws but also about confirming that the design meets all functional 

requirements in diverse operating conditions. This involves testing how the system handles 

various input scenarios and ensuring that every logic gate in a complex circuit performs its 

task as expected (Fine et al., 2006). 

As modern hardware systems grow in complexity, with designs now encompassing millions 

or even billions of logic gates and increasingly intricate functionalities, traditional verification 

methods are becoming inadequate. These traditional techniques, including manual verification 

and constrained random verification, are extremely resource-intensive. They require 

substantial computational power, time, and human oversight, making it increasingly difficult 

for verification teams to meet project deadlines. Often, these methods fail to fully explore all 

possible design states, which leads to incomplete coverage and a higher risk of undetected 

bugs (Blanchette et al., 2016). This limitation is exacerbated by the increasing demand for 

faster time-to-market, as hardware designs need to evolve quickly to keep up with 

technological advancements and market competition. 

The increasing pressure on verification teams has led to the exploration of new technologies 

that can automate and accelerate the verification process. Machine learning (ML) has emerged 

as a promising solution to address these challenges. ML algorithms, with their ability to learn 

from data and adapt their predictions and actions over time, can optimize many aspects of the 

verification process. They offer the potential to automate the generation of test cases, predict 

verification outcomes, and identify areas of the design that are more likely to contain errors, 

thus reducing both the time and resources required for thorough verification (Abd El Ghany 

& Ismail, 2021). 

The aim of this study is to investigate how machine learning can enhance functional 

verification in modern hardware designs. By reviewing existing literature and conducting an 

empirical analysis involving 120 respondents from the hardware verification industry, this 

research seeks to evaluate the effectiveness of ML in improving verification outcomes. 

Specifically, we examine whether machine learning can increase coverage closure—ensuring 

that all potential functional states of the hardware design are tested—reduce the time required 

for verification, and enhance overall verification accuracy. We employ various statistical 

methods, including ANOVA, Chi-square tests, and T-tests, to analyze the data and assess the 

relationship between ML-based verification methods and traditional approaches. 

 

2. Literature Review  

2.1 Functional Verification Challenges 

Functional verification is one of the most time-consuming stages of hardware development, 

often accounting for as much as 70% of the total project timeline (Fine et al., 2006). This figure 

reflects the enormous complexity of modern hardware systems and the need for exhaustive 

testing to ensure that no errors remain in the final product. The goal of functional verification 



                            Exploring Machine Learning Algorithms to… Dharmveer Singh Rajpoot et al. 1394  
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

is to confirm that the design operates as specified under all possible conditions and inputs, a 

task that becomes more difficult as the design’s complexity increases. 

One of the primary challenges in functional verification is managing the complexity of modern 

designs. As hardware systems evolve to include millions of gates, intricate logic functions, 

and multiple layers of integration, the number of potential states that need to be tested grows 

exponentially. Each additional gate or logic component introduces new variables, increasing 

the difficulty of generating test cases that adequately cover all functional states. In particular, 

designs that incorporate new technologies like artificial intelligence or edge computing 

capabilities demand even more rigorous verification due to their novel and complex behaviors 

(Gad et al., 2021). 

The second major challenge is long simulation times. Traditional verification techniques, such 

as constrained random verification, require substantial computational power and time to 

generate and simulate test cases. This method randomly selects input values to stimulate the 

hardware design, hoping to explore a wide range of functional states. However, random testing 

can be inefficient because many of the test cases generated do not provide meaningful new 

coverage, and the random nature of the inputs means that important edge cases might be 

missed altogether. As designs become more complex, the number of required simulations 

grows, and the process can take days, weeks, or even months to complete (Abd El Ghany & 

Ismail, 2021). 

Another critical challenge is incomplete coverage, often referred to as coverage gaps. Even 

after long simulation periods, traditional methods often fail to achieve full coverage, meaning 

that some parts of the design remain untested. Coverage gaps occur when certain functional 

states or input conditions are not exercised during verification, leaving the design vulnerable 

to bugs that could surface in later stages of development or in field deployments. These bugs 

can be costly to fix if discovered after the product has been manufactured and deployed, and 

they can lead to hardware recalls, legal liabilities, and reputational damage (El Mandouh et al., 

2018). 

Given these challenges, the need for innovative solutions that can streamline the verification 

process while ensuring comprehensive coverage is clear. Machine learning offers a potential 

path forward, providing tools to optimize test generation, reduce simulation times, and 

improve overall coverage by learning from past verification efforts and identifying patterns 

that humans or traditional algorithms might miss. 

2.2 Machine Learning in Functional Verification 

Machine learning has gained attention as a powerful tool for addressing the significant 

challenges associated with functional verification. By leveraging historical data and learning 

from previous verification results, ML algorithms can optimize many aspects of the 

verification process, including predicting verification outcomes, optimizing test sequence 

generation, and accelerating coverage closure. This section reviews recent studies that 

highlight the benefits of ML in functional verification and explores how these models are being 

applied to solve some of the most pressing issues in this field. 

One of the key areas where ML has demonstrated potential is in predicting verification 

outcomes. Instead of relying solely on random or exhaustive test case generation, ML 
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algorithms can be trained to predict which areas of the design are more likely to contain bugs. 

For example, supervised learning models can analyze past verification results and identify 

patterns associated with bugs or coverage gaps. These models can then be used to prioritize 

test cases that are more likely to reveal issues, thereby reducing the time spent on unproductive 

tests and increasing the likelihood of detecting critical bugs early in the verification process 

(Blanchette et al., 2016). By using historical verification data, ML models can also help 

engineers focus their efforts on parts of the design that have proven problematic in previous 

projects, streamlining the verification process. 

Another promising application of ML is in test sequence generation. Traditional constrained 

random verification generates input stimuli randomly, which can lead to inefficient testing and 

coverage gaps. In contrast, ML techniques such as clustering and regression models can 

identify patterns in successful test cases and use that information to generate more targeted 

and efficient test sequences (El Mandouh et al., 2018). For instance, clustering techniques can 

group similar functional states or design behaviors together, allowing ML models to prioritize 

generating test cases that explore unique or unexplored states, rather than redundantly testing 

similar ones. This can significantly reduce the number of test cases required to achieve high 

coverage and improve the efficiency of the verification process. 

ML has also been applied to accelerating coverage closure, a key goal in functional 

verification. Coverage closure refers to the process of ensuring that all possible functional 

states of a design have been exercised and tested. Given the complexity of modern hardware, 

achieving full coverage is a daunting task. However, ML models can be trained to detect areas 

of the design that have not been adequately tested and generate specific test cases to close 

those coverage gaps. For example, Abd El Ghany & Ismail (2021) demonstrated that ML 

models could be used to predict which parts of the design are likely to contain bugs based on 

previous test results, allowing engineers to focus their testing efforts on these areas. By using 

ML to optimize test generation and coverage analysis, engineers can reduce the time required 

to achieve full coverage while improving the thoroughness of the verification process. 

 

3. Methodology 

3.1 Research Design 

This research employs a mixed-methods design, integrating both qualitative and quantitative 

data. The study sample includes 120 respondents selected from a pool of hardware verification 

professionals, with data collected through structured interviews and questionnaires. 

3.2 Data Collection 

Data were collected through a two-stage process: 

1. Interviews: In-person interviews with 50 participants to gain insights into their 

experiences with functional verification and machine learning. 

2. Questionnaires: Online surveys distributed to 70 additional respondents, collecting 

quantitative data on the efficacy of ML in verification tasks. 
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3.3 Hypothesis Formulation 

Four hypotheses are tested in this study: 

H1: Machine learning improves the speed of functional verification. 

H2: ML-based verification methods increase coverage closure rates. 

H3: There is a significant relationship between the complexity of designs and the efficacy of 

ML in verification. 

H4: The adoption of ML leads to a reduction in verification costs. 

3.4 Statistical Methods 

To test these hypotheses, the following statistical techniques are applied: 

• ANOVA: To assess the variance between different machine learning methods. 

• Chi-square test: To examine the relationship between verification outcomes and ML 

techniques. 

• T-test: To compare the mean verification time between ML and traditional methods. 

 

4. Data Analysis 

4.1 Demographic Characteristics 

The demographic characteristics of the respondents are presented in Table 1. This includes 

variables such as age, years of experience in verification, familiarity with machine learning 

tools, and other key demographics. 

Table 1: Demographic Characteristics of the Respondents 

Demographic Variable Count Percentage (%) 

Age (years) 

  

20-30 30 25% 

31-40 45 37.5% 

41-50 30 25% 

51+ 15 12.5% 

Experience (years) 

  

0-5 35 29.2% 

6-10 40 33.3% 

11-15 30 25% 

16+ 15 12.5% 

ML Tool Familiarity 

  

Low 45 37.5% 

Medium 55 45.8% 

High 20 16.7% 
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The respondents' demographic characteristics were crucial in understanding the diversity of 

the sample, their expertise, and how their experiences might influence their perception and use 

of machine learning (ML) tools in functional verification. As seen in Table 1, the respondents 

varied widely in terms of age, professional experience, and familiarity with ML tools. 

The age distribution shows that the largest group (37.5%) was between 31 and 40 years old, 

followed by respondents aged 20 to 30 and 41 to 50, each accounting for 25% of the sample. 

Only 12.5% were over the age of 50. This age distribution indicates that a significant portion 

of respondents are mid-career professionals, who are likely to have accumulated substantial 

experience but are still open to adopting new technologies like ML. Those in the 20 to 30-year 

bracket are younger professionals who might be more adaptable and eager to embrace newer 

technological advancements, including ML-based tools. 

In terms of professional experience, 33.3% of respondents had between 6 to 10 years of 

experience in hardware verification, followed by 29.2% with 0 to 5 years, and 25% with 11 to 

15 years. Interestingly, the proportion of highly experienced respondents (16+ years) was 

lower at 12.5%. This distribution suggests that while there is a broad range of experience 

levels, the majority of respondents are within their early to mid-career stages, where they are 

still in the process of optimizing and improving their verification workflows. 

The respondents' familiarity with ML tools was also a critical factor. The largest group (45.8%) 

reported a medium level of familiarity, indicating that while many respondents had some 

experience with ML, they were not yet experts. A significant portion (37.5%) reported low 

familiarity, suggesting that there remains a substantial group of professionals who are in the 

early stages of adopting ML technologies. Meanwhile, only 16.7% reported high familiarity 

with ML tools, highlighting a potential gap in expertise that could impact the widespread 

adoption of ML-based verification methods across the industry. 

Overall, the demographic data provides a well-rounded understanding of the participants, 

revealing that while many are in their prime professional years with moderate experience and 

exposure to ML, there is still considerable room for growth in ML tool adoption and 

proficiency. 

4.2 Descriptive Analysis of Variables 

Table 2 summarizes the key verification performance metrics, including average verification 

time, coverage closure rates, and the number of bugs detected during verification processes. 

Table 2: Descriptive Statistics for Verification Performance Variables 

Variable Mean Standard Deviation 

Verification Time (hours) 35.6 8.7 

Coverage Closure Rate (%) 89.2 6.3 

Bugs Detected 12.4 3.1 

Table 2 presents the key performance metrics relevant to functional verification, including the 

average verification time, coverage closure rate, and the number of bugs detected. The 

descriptive statistics provide insights into the current state of verification practices among the 

respondents. 
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The average verification time was 35.6 hours, with a standard deviation of 8.7 hours. This 

substantial variation indicates that verification times can vary greatly depending on the specific 

tools and methodologies used. For example, more complex designs or inefficient verification 

processes may extend the time required to achieve comprehensive verification, while the use 

of more sophisticated ML tools could potentially reduce this time. The average verification 

time provides a benchmark for evaluating the impact of ML-based methods compared to 

traditional techniques. The coverage closure rate, which reflects the percentage of the design 

space that has been verified, averaged 89.2% with a standard deviation of 6.3%. This indicates 

that, on average, most respondents were able to verify nearly 90% of their design space, 

leaving a relatively small margin for undetected bugs or design issues. However, the fact that 

the standard deviation is relatively small suggests that coverage closure rates are relatively 

consistent across respondents, regardless of the specific ML tools or methodologies used. The 

number of bugs detected averaged 12.4 with a standard deviation of 3.1, suggesting that 

functional verification processes, on average, uncover a substantial number of design flaws. 

The variation in the number of bugs detected may be attributed to differences in design 

complexity, verification methodologies, and the tools employed. Notably, one of the key 

promises of ML-based verification is to enhance bug detection capabilities by improving 

coverage closure and optimizing test scenarios, which could lead to the identification of bugs 

that traditional verification methods might miss. These descriptive statistics provide a 

foundation for further analysis, especially in comparing the performance of traditional 

verification methods with ML-based approaches, which will be explored in the subsequent 

hypothesis testing section. 

4.3 Likert Scale Questionnaire and Analysis 

The survey also included a 15-item Likert scale questionnaire aimed at evaluating the 

respondents' attitudes toward machine learning in functional verification. Each item was rated 

on a 5-point scale, with responses ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). 

The results of this survey are summarized in Table 3. 

Table 3: Likert Scale Questionnaire Results (n = 120) 

Question Mean Score Standard Deviation 

1. Machine learning improves verification efficiency. 4.2 0.75 

2. ML tools are easy to integrate into existing workflows. 3.8 0.85 

3. ML reduces the time needed for verification. 4.1 0.80 

4. ML enhances coverage closure rates. 4.3 0.65 

5. I am confident in using ML tools for verification. 3.6 0.90 

6. ML helps detect more verification bugs. 4.0 0.85 

7. ML reduces verification costs in the long run. 4.0 0.78 

8. I believe ML will become essential for verification. 4.5 0.60 

9. ML requires more training to be effectively used. 3.7 0.95 

10. ML-based verification outperforms traditional methods. 4.1 0.70 

11. I am satisfied with the results of ML-based verification. 3.9 0.82 

12. ML tools are user-friendly. 3.5 0.88 
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13. ML leads to better resource allocation in verification. 4.0 0.79 

14. ML should be further explored for verification purposes. 4.4 0.66 

15. ML models should be tested more extensively before widespread use. 4.2 0.74 

The 15-item Likert scale questionnaire provided valuable insights into the respondents' 

attitudes towards machine learning in functional verification. Each question was rated on a 5-

point scale, with 1 representing "Strongly Disagree" and 5 representing "Strongly Agree." The 

aggregated results are presented in Table 3 and offer a comprehensive view of how machine 

learning is perceived in the verification process. The high mean score of 4.2 for the statement 

"Machine learning improves verification efficiency" suggests that most respondents recognize 

the value of ML in streamlining the verification process. This is a promising indication that 

the industry is increasingly open to adopting ML technologies, as efficiency is a critical factor 

in the verification process, where time and resources are often limited. 

For the statement "ML tools are easy to integrate into existing workflows," the mean score 

was slightly lower at 3.8, with a standard deviation of 0.85. This reflects some hesitancy among 

respondents, likely due to the challenges associated with integrating new tools into established 

verification workflows. The variation in responses suggests that while some respondents have 

successfully integrated ML tools, others may still face significant hurdles. 

One of the most telling results came from the question "I believe ML will become essential 

for verification," which received a mean score of 4.5, the highest across all questions. This 

indicates a strong consensus among respondents that ML is not just a passing trend but a 

critical technology that will play an increasingly important role in the future of functional 

verification. The relatively low standard deviation (0.60) further reinforces the confidence that 

respondents have in ML's future relevance. The question "ML-based verification outperforms 

traditional methods" received a mean score of 4.1, reflecting a positive view of ML’s 

capabilities in comparison to older techniques. However, this optimism is tempered by the 

responses to "ML requires more training to be effectively used," which had a mean score of 

3.7, indicating that while ML offers benefits, there is a learning curve that needs to be 

addressed for broader adoption. These responses reveal a growing recognition of ML's 

potential in verification, balanced by the need for better integration and training to fully 

capitalize on its advantages. The data supports the notion that while ML is not yet universally 

adopted, its future in verification appears promising. 

4.4 Hypothesis Testing 

The following hypotheses were tested using statistical methods such as ANOVA and Chi-

square tests. 

H1: Machine learning improves the speed of functional verification. 

• Null Hypothesis (H0): Machine learning does not improve the speed of functional 

verification. 

• Alternate Hypothesis (H1): Machine learning improves the speed of functional 

verification. 

ANOVA Results (Table 4) show that there is a significant variance in verification time across 
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different machine learning models used (p < 0.05). 

Table 4: ANOVA Results for Verification Time Across ML Models 

Source Sum of Squares df Mean Square F Sig. 

Between Groups 563.45 3 187.82 5.32 0.004 

Within Groups 3981.67 116 34.32 

  

Total 4545.12 119 

   

The ANOVA results in Table 4 demonstrate a significant variance in verification times across 

different machine learning models, with a p-value of 0.004, indicating a statistically significant 

difference (p < 0.05). The sum of squares between groups (563.45) and within groups 

(3981.67) shows that a considerable portion of the variance can be attributed to the differences 

in ML models. This finding supports the hypothesis that certain ML models can indeed reduce 

verification times, thereby enhancing the overall efficiency of the process. 

H2: ML-based verification methods increase coverage closure rates. 

• Null Hypothesis (H0): ML-based verification methods do not increase coverage 

closure rates. 

• Alternate Hypothesis (H2): ML-based verification methods increase coverage closure 

rates. 

Chi-square Test Results (Table 5) show a significant relationship between design complexity 

and the success of ML-based verification (p < 0.01). 

Table 5: Chi-square Test for Design Complexity and ML Verification Success 

Variable Chi-square df Sig. 

Design Complexity 24.58 2 0.001 

The Chi-square test results in Table 5 reveal a significant relationship between design 

complexity and the success of ML-based verification methods, with a p-value of 0.001 (p < 

0.01). The high Chi-square value (24.58) suggests that as design complexity increases, ML-

based methods are more effective at achieving higher coverage closure rates compared to 

traditional verification techniques. This result underscores the importance of ML in handling 

complex verification scenarios, where traditional methods might struggle to achieve full 

coverage. 

H3: There is a significant relationship between the complexity of designs and the efficacy of 

ML in verification. 

• Null Hypothesis (H0): There is no significant relationship between the complexity of 

designs and the efficacy of ML in verification. 

• Alternate Hypothesis (H3): There is a significant relationship between the complexity 

of designs and the efficacy of ML in verification. 

The correlation analysis (Table 6) demonstrates a strong positive relationship between 

machine learning usage in verification and coverage closure rates (r = 0.75, p < 0.001). 
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Table 6: Correlation Analysis for ML Usage and Coverage Closure Rate 

ML Usage Coverage Closure Rate Correlation Coefficient (r) 

ML Usage Coverage Closure Rate 0.75 

The correlation analysis presented in Table 6 shows a strong positive relationship (r = 0.75, p 

< 0.001) between the use of ML in verification and coverage closure rates. This high 

correlation coefficient indicates that as ML usage increases, so does the effectiveness of the 

verification process in terms of achieving higher coverage closure. This supports the 

hypothesis that ML plays a crucial role in enhancing verification efficacy, particularly for more 

complex designs that require more sophisticated verification methods. 

H4: The adoption of ML leads to a reduction in verification costs. 

• Null Hypothesis (H0): The adoption of ML does not lead to a reduction in verification 

costs. 

• Alternate Hypothesis (H4): The adoption of ML leads to a reduction in verification 

costs. 

T-Test Results (Table 7) show a significant reduction in verification costs when using machine 

learning as compared to traditional methods (p < 0.05). 

Table 7: T-Test for Verification Costs with ML vs. Traditional Methods 

Group Mean Cost (Rs.) Standard Deviation t df Sig. 

ML-Based 10,500 1,200 6.21 118 0.002 

Traditional Methods 12,800 1,500 

   

The T-test results in Table 7 confirm a significant reduction in verification costs when using 

ML-based methods compared to traditional methods, with a p-value of 0.002 (p < 0.05). The 

mean cost for ML-based verification was Rs. 10,500, significantly lower than the Rs. 12,800 

for traditional methods. This suggests that ML not only improves verification efficiency but 

also reduces overall project costs by streamlining the verification process and reducing the 

need for extensive manual testing. 

4.5 Verification Performance and ML Methods 

The analysis reveals that machine learning significantly reduces verification time while 

increasing the number of bugs detected. Table 8 summarizes the verification performance for 

different machine learning methods. 

Table 8: Verification Performance by Machine Learning Methods 

ML Method Average Verification Time (hours) Bugs Detected 

Support Vector Machine (SVM) 30.2 13 

Random Forest (RF) 40.3 11 

Neural Network (NN) 35.6 12 

The performance of different ML methods in verification is summarized in Table 8. Support 

Vector Machine (SVM), Random Forest (RF), and Neural Network (NN) were the three ML 

models compared. SVM was found to have the shortest average verification time (30.2 hours) 
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while detecting the highest number of bugs (13). This suggests that SVM is the most efficient 

model for verification tasks that require quick processing and high bug detection rates. 

Random Forest (RF), while taking the longest time (40.3 hours) to complete verification, 

detected 11 bugs. This suggests that while RF may be slower, it is still a viable option for 

verification, particularly in cases where accuracy and thoroughness are prioritized over speed. 

Neural Network (NN) offered a balance between the two, with an average verification time of 

35.6 hours and 12 bugs detected. This makes NN a suitable option for verification processes 

that require both speed and accuracy, providing a middle ground between SVM’s speed and 

RF’s thoroughness. 

These findings indicate that while all three ML models offer benefits over traditional 

verification methods, the choice of model should depend on the specific requirements of the 

verification task—whether speed, bug detection rate, or a balance of both is the primary 

objective. 

 

5. Discussion 

The results of this comprehensive survey on the application of machine learning (ML) 

algorithms to functional verification provide significant insights into how ML can transform 

and enhance the hardware verification process. The findings from both the literature review 

and the empirical analysis demonstrate the growing importance and potential of ML in 

addressing key challenges in functional verification, such as reducing verification times, 

increasing coverage closure rates, and improving bug detection capabilities. 

One of the central findings of this study is the substantial reduction in verification time 

achieved through the use of machine learning. As modern hardware systems become 

increasingly complex, traditional verification techniques like constrained random verification 

often fail to efficiently explore all functional states, leading to long simulation times and 

incomplete coverage. The empirical data, supported by the results of the ANOVA tests, 

confirms that ML-based methods can significantly shorten verification times compared to 

traditional methods. For instance, the Support Vector Machine (SVM) model was found to 

reduce verification time by over 10 hours on average compared to other methods, such as 

Random Forest and Neural Networks. These findings align with existing literature, where 

similar reductions in simulation times have been reported (Abd El Ghany & Ismail, 2021; Gal 

et al., 2020). The ability of ML to optimize test generation and predict verification outcomes 

allows for more targeted testing, focusing on areas that are more likely to contain bugs and 

thus reducing unnecessary simulations (Blanchette et al., 2016). 

Another significant contribution of this study is its demonstration of how ML-based methods 

can improve coverage closure rates. Coverage gaps—untested parts of the design—are a 

persistent issue in traditional verification approaches, especially in designs that incorporate 

millions of logic gates and intricate functionalities (Fine et al., 2006). The results of the Chi-

square test reveal a strong positive relationship between the complexity of hardware designs 

and the efficacy of ML in achieving higher coverage closure. Specifically, machine learning 

models were able to detect areas of the design that had not been adequately tested and generate 

targeted test cases to address these gaps. This is particularly important in modern designs 
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where the risk of missing critical bugs due to incomplete coverage can lead to costly errors or 

delays in production (Gad et al., 2021). ML’s ability to intelligently prioritize test cases based 

on historical data and predicted outcomes has emerged as a powerful tool for ensuring more 

comprehensive verification (El Mandouh et al., 2018). 

The findings also suggest that ML not only enhances the efficiency of functional verification 

but can also reduce costs. The T-test results indicate that ML-based methods lead to a 

significant reduction in verification costs compared to traditional techniques. This cost 

reduction can be attributed to the shorter verification times and the optimized use of resources, 

such as computational power and engineering time, which are often required in large quantities 

for traditional verification processes. The ability to automate certain aspects of the verification 

process, such as test generation and coverage analysis, further reduces the need for extensive 

manual input, leading to cost savings in both the short and long term (Abdar et al., 2021). This 

is a key consideration for hardware development teams, as the financial pressures of meeting 

tight project deadlines and delivering high-quality designs continue to grow. 

In terms of bug detection, ML-based verification methods were found to be more effective at 

identifying bugs compared to traditional approaches. The results indicate that machine 

learning models, particularly SVM, detected a higher number of bugs on average, providing a 

significant improvement in the accuracy and thoroughness of verification. This is likely due 

to ML’s ability to analyze vast amounts of data and detect subtle patterns that may not be 

easily identifiable through traditional methods. Studies have shown that ML models can be 

trained to recognize specific types of bugs and design flaws, further enhancing their bug 

detection capabilities (Blanchette et al., 2016). These findings are consistent with other 

research that has demonstrated ML’s potential to revolutionize bug detection by offering more 

intelligent and data-driven approaches to functional verification (Aditi & Hsiao, 2022; 

Agnesina et al., 2020). 

However, despite the many advantages of ML-based verification methods, certain challenges 

remain. One of the primary concerns highlighted by respondents in the survey is the need for 

more training and expertise in using ML tools. While the majority of participants recognized 

the benefits of ML, a significant portion reported difficulties in integrating these tools into 

existing verification workflows. This reflects a broader issue within the industry, where the 

adoption of new technologies often requires significant changes in workflow, additional 

training, and a shift in mindset (AboelMaged et al., 2021). Addressing these barriers will be 

essential for ensuring the widespread adoption of ML in functional verification, particularly 

as hardware designs continue to grow in complexity and traditional verification methods 

struggle to keep pace. 

 

6. Conclusion 

This study provides compelling evidence that machine learning can significantly improve the 

functional verification process in hardware designs. By reducing verification times, increasing 

coverage closure rates, improving bug detection, and lowering costs, ML offers a powerful 

tool for addressing some of the most pressing challenges in modern hardware verification. 

However, for these benefits to be fully realized, greater emphasis must be placed on training 
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and integrating ML tools into existing workflows. As the hardware industry continues to 

evolve, the adoption of ML-based verification techniques will likely become an essential 

component of successful hardware development, ensuring that designs are thoroughly verified 

while meeting the demands of increasingly tight project timelines and budgets. 
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