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A critical DNA segment found upstream of a gene in humans and other eukaryotes is recognized 

as the promoter region. Regulatory the expression of a gene requires it. The promoter region is the 

area of a gene that is located upstream of the transcription start site (TSS). It reaches between 20 

and 200 base pairs upstream of the TSS. Finding genetic variants or mutations inside promoter 

regions that are associated with a disease can be a useful method in medical genetics and disease 

research. In this work, we evolved an explainable AI model SHAP for feature extraction and trained 

the model using a Recurrent neural network for classifying promotor regions. By comparing with 

other algorithms like support vector machine, Random Forest, and Naive Bayse our method can 

achieve an improved performance on promotor or non-promotor classification. This work yielded 

profound accurate identification of promoter areas and offered analysis for both precision medicine 

and further biological research. 

Keywords: DNA-Protein interaction, Transcription Factor Binding Site (TFBS), SHAP, 

Recurrent Neural Network (RNN), Precision Medicine. 

 

 

1. Introduction 

A vital regulatory factor found in the upstream section of genes, DNA promoters are found in 

several species, including humans. In directive to start transcription the process by which a 

gene's information is translated from RNA to protein the promoter region must have specific 

sequences and other elements. Promoters serve as binding sites for various proteins and 

enzymes that control the transcriptional onset. This method uses a gene's information to 

produce a complementary RNA molecule. After that, this RNA molecule might be used as a 

template to make a protein. The complementary strand is referred to as the "antisense" strand, 

and the DNA strand that is transcribed as the "sense" strand[1]. 

Promoters are usually made up of different components and sequences that have different 

functions when it comes to starting transcription. In eukaryotic promoters, three essential 

components are frequently present. 1. Core promotors (Transcription Start Site (TSS)- 
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CCAAT Box (CCAAT or ATTGG)), TATA Box- TATAAA/TATAAT), 2. Proximal 

Promoter Elements (CAAT Box- (CCAAT/ GGCCAATCT), GC Box- 

(GGGCGG/GGGCGGGG)) 3. Enhancer Elements (E Boxes)- (CACGTG/ CANNTG).[2] 

Together, these components govern transcription initiation, which in turn controls gene 

expression. The combinations of promoter elements found in various genes can vary, and the 

timing and intensity of gene expression can be affected by the presence or lack of certain 

components. Promoters can have a wide range of specialised components, depending on the 

gene and the organism[3]. It is necessary to comprehend the composition and role of promoters 

in order to make sense of the mechanisms underlying gene regulation in eukaryotic cells. 

Scholars continue to explore the intricate mechanisms behind promoter activity to gain further 

insights into genomic functioning and the potential for therapeutic interventions. 

The term "core promoter" refers to the section of DNA that regulates the initiation of 

transcription.  The general transcription factor initiates the recruitment of RNA poly II, which 

in turn initiates the commencement of transcription, by binding to these core promotor regions. 

Upstream promotor elements, such as the TATA box and BRE, are found in the region of 

DNA that is upstream of the transcription start site (TSS), or towards the 5' end of the molecule. 

Promotor elements like DCEI and DPE that are downstream of the transcription start site (TSS) 

are located in the downstream (or 3' end) region of the DNA as shown in the figure 1. 

 

Figure 1. Upstream and downstream promotor region 

Identifying the promotor region could involve the subsequent actions. 1) Coordinates with the 

appropriate chromosome and gene locus, 2) It has a length of roughly base pairs (desired 

length), 3) Takes into account the most recent human genome reference sequence (e.g., 

GRCh38), 4) Minimises the presence of repetitive elements, and 5) Includes the core promoter 

elements, such as TATA box, CAAT box, and initiator elements. 

 

2. Literature Survey 

The DNA promoter regions comprehend binding sites for RNA polymerase, which is 

accountable for initiating transcription, and these regions are essential for gene expression. 

Detecting these regions precisely is vital for understanding the causes of diseases, gene 

regulatory mechanisms, and developing new treatment methods. Traditional computational 

techniques such as sequence alignment, motif identification, and statistical representations 

have been broadly used for predicting promoters in research[2]. However, these approaches 

often struggle to handle the difficulty and range of promoter sequences, especially when 
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associating sequences from different species. 

Deep learning has renovated the analysis of genomic data by providing powerful tools to 

understand the complex patterns within DNA sequences. Recurrent neural networks (RNNs), 

including Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs), 

have proven to be effective in representing sequential data due to their ability to capture long-

range dependencies. In genomic sequence analysis, RNNs have been employed for many 

tasks, such as gene prediction, splice site identification, and the discovery of promoter 

regions[3]. These models can study the temporal correlations amongst nucleotides, which is 

crucial for precisely identifying promoter areas that are often categorized by specific sequence 

motifs and patterns. 

The growing complexity and accuracy of deep learning models have made interpretability 

increasingly important, especially in sensitive fields like genetics, where understanding the 

decision-making processes of the models is critical. Explainable AI (XAI) techniques are 

focused on enhancing the transparency of decision-making in machine learning models, which 

is crucial for uncovering biological pathways and establishing trust in model predictions in 

genomics.  

The combination of RNNs with XAI techniques such as SHAP offers a practical and 

comprehensible approach to predicting promoter regions. While RNNs effectively capture the 

intricate patterns and sequential relationships found in DNA sequences, SHAP allows 

researchers to analyze the predictions made by these models and identify the significant 

features. This merging of methods addresses a key obstacle in deep learning in genomics: the 

opaque nature of these models[4]. By examining RNN predictions at the nucleotide level using 

SHAP, researchers can determine the specific sequences that the model predicts as promoter 

areas. This improves the accuracy of forecasts and advances our understanding of the 

molecular processes that govern gene regulation. 

In various research efforts, XAI methods have been explored in the field of genomics. 

DeepLIFT and LIME, for instance, have been utilized to interpret deep learning models for 

tasks such as predicting protein-DNA binding sites and enhancers. These techniques facilitate 

the identification of new regulatory motifs by visually representing each nucleotide's impact 

on the model's predictions. The fusion of RNNs and explainable AI methods like SHAP 

signifies a significant progress in genomic sequence analysis. This approach enhances the 

accuracy of predicting promoter regions and offers valuable insights into the biological 

processes, benefiting computational biologists and bioinformaticians. As this field evolves, 

the convergence of deep learning and XAI is expected to play a crucial role in unveiling novel 

genetic discoveries. 

The promotor region's significance 

With the promoter region, transcription starts. The initial step of molecular biology is the 

transcription. The information found in DNA is translated into messenger RNA (mRNA). A 

few DNA sequences located in the promoter region serve as binding sites for RNA polymerase, 

an enzyme that synthesises RNA from DNA templates, and gene transcription factors. The 

activity of the promoter region controls the quantity and timing of a gene's transcription [4]. 

The promoter is home to numerous regulatory elements, such as enhancers, silencers, and 
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transcription factor binding sites, which regulate the enrolment of transcriptional machinery 

and the rate at which transcription initiation occurs [5].  

Transcription factors and regulatory proteins recognise certain sequence motifs found in the 

discrete promoter region of each gene. Only specific genes are transcribed in a specific cell 

type or under a specific set of conditions as a result of this choosiness. Response elements, 

which are often located in promoter regions, allow genes to be activated or repressed in 

response to a variety of environmental stimuli, including hormones, nutrition, diseases, or 

shocks. Due to the varying activity of these regulatory components, cells are able to respond 

to changing physiological conditions and maintain balance by constantly altering their gene 

expression profiles [6].   

Figure 2 shows the proximal control elements, core promotor region and the transcription start 

site (TSS). 

 

Figure 2. Core promotor region 

i) The TATA Box 

DNA has a base sequence called the TATA box, also recognized as the Goldberg-Hogness 

box, which instructs an RNA polymerase on where to begin transcription. Within the central 

promoter region of genes in eukaryotes, it is naturally found. Transcription commences at this 

area, which is critical because it serves as a binding site for transcription factors and RNA 

polymerase II. To recognize the TATA box sequence, the base sequence TATAAA is 

frequently utilised. But there is also a ration of variations within this series. 

The TATA box can be found in many genes, while its exact location varies, usually 25–30 

base pairs upstream from the transcription start site (TSS). The TATA box provides a binding 

site for transcription factors such as the TATA-binding protein (TBP), which is required for 

the beginning of transcription. TATA box-binding transcription factor IID (TFIID) complex 

includes TBP, which attracts RNA polymerase II to the promoter region. Not all genes have a 

TATA box in the promoter region, but when one does, transcription start effectiveness is 

usually increased [7]. Transcription initiation can occur without TATA in certain genes with 

alternative promoter sequences. 

The TATA box is often associated with other regulatory elements and transcription factor 

binding sites in the promoter region. Together, these elements regulate the onset rate of 
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transcription and ensure that genes are produced appropriately in response to various 

environmental and cellular inputs. The first step in determining the TATA box in a DNA 

sequence is typically to find the consensus TATAAA sequence at the appropriate distance 

upstream from the transcription start site. 

ii) The CAAT Box 

The conserved DNA sequence element known as the CAAT box, also referred to as the 

CCAAT box or Hogness box, is found in the promoter regions of eukaryotic genes. It is usually 

found upstream of the transcription start site. The nucleotide sequence CCAAT normally 

makes up the CAAT box sequence, though there may be very minor differences in the precise 

sequence. Transcription factors are proteins that bind to specific DNA sequences and control 

the transcription of neighbouring genes. The CAAT box acts as a recognition site for these 

proteins. Depending on the particular regulatory proteins involved, binding of transcription 

factors to the CAAT box can either enhance or repress gene transcription. 

The CAAT box is an enhancer element in many genes, which means that it increases the rate 

at which transcription initiation occurs. Increased gene expression can result from transcription 

factors binding to the CAAT box, which in turn recruit’s other proteins involved in 

transcription initiation. Depending on the particular gene and cell type, the CAAT box's 

presence and significance can change. In certain cases, the CAAT box may be dispensable or 

its function may be modulated by other regulatory elements, but in other genes, a strong CAAT 

box is required for their expression[8]. The general motif of the CAAT box is conserved across 

a broad range of eukaryotic species, despite minor variations in the exact sequence between 

genes and organisms. Its significance in gene regulation is highlighted by this conservation, 

which also implies that it is a key player in regulating gene expression. 

iii) The GC Box 

The promoter regions of numerous eukaryotic genes contain a common DNA sequence 

element called the GC box, which is also referred to as the Sp1 binding site. GGGCGG or 

similar variations are the nucleotide sequence that normally makes up the GC box. Several 

guanine (G) and cytosine (C) bases are present in it, which is why it is called a "GC box." The 

GC box's principal role is to act as a binding site for transcription factors, especially those in 

the Sp1 family. The GC-rich sequence found in the target gene's promoter region is specifically 

recognised and bound to by the DNA-binding domains of these transcription factors. 

Activating or repressive effects on gene expression can result from transcription factors 

binding to the GC box; this depends on the particular context and regulatory proteins involved. 

Transcription factors that bind to the GC box frequently function as transcriptional activators, 

encouraging the recruitment of RNA polymerase and other transcriptional machinery members 

to start the transcription of genes[9]. Many different genes have promoter regions that contain 

the GC box, and the presence of this region is frequently linked to constitutive or housekeeping 

gene expression. Zinc finger DNA-binding domains found in Sp1 proteins are specifically 

designed to recognise and bind to the GC-rich sequences found in gene promoters[10]. Sp1 

proteins are widely expressed and involved in the control of gene expression, cell division, 

and proliferation. The presence of neighbouring DNA sequences, interactions with other 

transcription factors, and epigenetic modifications like DNA methylation can all affect the 
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function of the GC box, despite it being a common regulatory element.  

iv) The E-Boxes 

E boxes, are especially DNA sequences that frequently appear in the gene promoter regions. 

A particular DNA sequence motif referred to as CANNTG, a six-nucleotide palindromic 

pattern where N may contain any nucleotide (A, T, C, or G), is frequently employed for 

recognizing E boxes. Basic helix-loop-helix (bHLH) proteins have transcription factors that 

notice and bind to this consensus sequence. The transcription factors bHLH gather into dimers 

and connect one another to the E-box sequences identified in the area of interest gene promoter 

regions[11]. These transcription factors possess two functional domains: a helix-loop-helix 

domain involved in protein splitting, and a basic location that binds to DNA, which is located 

at the E-box sequence. 

Depending on the particular transcription factors involved and the target gene's context, the 

binding of bHLH transcription factors to E boxes can have either activating or repressive 

effects on gene expression. Certain bHLH proteins function as transcriptional activators, 

encouraging the recruitment of RNA polymerase and other elements of the transcriptional 

machinery to start the transcription of genes. In other situations, they might function as 

repressors, preventing the expression of a gene by obstructing the binding of transcription 

factors that activate it or by enlisting the help of corepressors. Numerous genes involved in 

basic biological processes, such as cell cycle regulation, metabolism, neurogenesis, 

myogenesis, and immune response, have E boxes in their promoter regions. A number of 

variables can affect the activity of E-box-mediated transcriptional regulation, such as the 

presence of bHLH transcription factors, changes made to these factors after they are translated, 

interactions with other transcriptional regulators, and epigenetic changes made to the 

chromatin environment around the E-box sequences[12]. 

Though not all promotor regions should have these motifs, the aforementioned boxes, and their 

motifs are present in the promotor region. The computational model used to identify promotor 

areas is described in depth in the following sections. 

 

3. Material and Methods 

Work flow of identifying DNA Sequence Promoter Region: 

a) Benchmark Dataset: 

Our goal in this study was to categorise the promoters (promoters or non-promoters) as well 

as their activity (strong or weak). The Eukaryotic Promoter Database-EPD 

(https://epd.expasy.org/epd/EPDnew_select.php) provided the training benchmark dataset. 

Each sequencing fragment in this dataset was split into 100 bp segments by the biological 

characteristics of DNA strands There were ~3000 promoters (among these 1629 strong 

promoter samples and 1371 weak promoter samples) and ~3000 non-promoters after 

duplicated sequences were removed and imbalance subgroups were chosen at random. The 

next stages of extracting features using SHAP and applying neural network models to the DNA 

sequence samples[13].  
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Table1. Promoter Region Identification Dataset 

 

b) Feature Representation: 

K-Mer counting technique is used to transform DNA sequences into numerical formats 

appropriate for use with machine learning algorithm[14]. In a high-dimensional space, 

represent each nucleotide (A, C, G, and T) in the promoter region as a vector or binary feature. 

K-Mer counting is used to convert a string of DNA sequences into an ordinal vector[15]. First, 

we divide the lengthy biological sequence into overlapping "words" of k mer length. Using 

"words" of length 3 (hexamers), for instance, “TATAATTAT” becomes “TATAAT”, 

“ATAATT”, “TAATTA”, “AATTAT”. Thus, there are 6 hexamer words with vector 

representation in our example sequence as shown below. 

 

Figure 3. Example of sequence encoding - Generation of frequency-based vector 

representation 

The following is a discussion of how to locate the promoter region of a DNA sequence using 

SHAP and RNN: 
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Figure 4. The pipeline for the entire framework. 

c) SHAP Values Computation: 

One effective technique for explaining machine learning model output is the SHAP (SHapley 

Additive exPlanations) algorithm, which assigns a contribution to each feature in the model's 

prediction. Although SHAP was first created for tabular data, it can be modified to work with 

DNA sequences and identify promoter regions[16]. Determine the SHAP values for every 

nucleotide position (feature) in the promoter region sequences. The contribution of each 

nucleotide position to the model's determination of whether to classify a sequence as a 

promoter or non-promoter is represented by the SHAP values[17]. 

Interpretation: 

1. Nucleotide positions that help the model predict a sequence as a promoter region are 

indicated by positive SHAP values.  

2. Nucleotide positions that help the model predict a sequence as a non-promoter region 

are indicated by negative SHAP values.  

3. Nucleotide positions with SHAP values close to zero are thought to have minimal 

impact on the model's classification decision. 
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SHAP Formula for DNA Sequence Promoter Region Identification: 

The SHAP algorithm, which takes into account all potential subsets of features, can be used 

to calculate the SHAP value for a particular feature (nucleotide position) in the promoter 

region sequence. The following formula is applied to identify the promoter region: 

SHAP(fi) =  ϕi = ∑ S ⊆ {1,2 … N} ∖ {i}
|S|! (N − |S| − 1)!

N!
[f(xS ⋃{fi}) − f(xS)] 

Where: 

• fi represents the feature of interest (nucleotide position) in the promoter region 

sequence. 

• ϕi represents the SHAP value for feature fi. 

• N represents the total number of features (nucleotide positions) in the promoter region 

sequence. 

• S represents a subset of features excluding feature fi. 

• xS represents the input data with features in subset S. 

• f(xs) represents the model's output when the input data contains features in subset S. 

• f(xs ∪ {fi})  represents the model's output when the input data contains features in subset 

S plus feature fi. 

>>>#Algorithm to load sequences and labels: 

BEGIN 

    INITIALIZE sequences as an empty list 

    INITIALIZE labels as an empty list 

     

    FOR each record in "promoter_seq.fasta" DO 

        SET sequence_string to the string representation of the sequence in record 

        APPEND sequence_string to sequences 

        APPEND 1 to labels  // 1 for promoter 

    END FOR 

 

    FOR each record in "non_promoter_seq.fasta" DO 

        SET sequence_string to the string representation of the sequence in record 

        APPEND sequence_string to sequences 

        APPEND 0 to labels  // 0 for non-promoter 
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    END FOR 

END 

>>># Algorithm to create a function to predict and get SHAP values 

BEGIN 

    FUNCTION predict_and_get_shap(model, X_test): 

        FUNCTION f(X): 

            RETURN model.predict(X) 

         

        INITIALIZE explainer as shap.DeepExplainer(f, X_train[:100]) 

        COMPUTE shap_values using explainer.shap_values(X_test) 

        RETURN shap_values 

    END FUNCTION 

 

    CALL predict_and_get_shap with model and X_test 

END 

 

d) Model Training: GRU for Promoter Region Identification 

Teach the recurrent neural network (RNN) to identify encoded features in sequences and 

classify them as either promoter or non-promoter regions[18]. Now the model gains the ability 

to distinguish between sequences with and without promoter motifs.  

One kind of recurrent neural network (RNN) architecture that is frequently used for sequence 

modelling tasks, such as DNA sequence analysis like promoter region identification, is the 

Gated Recurrent Unit (GRU) architecture. By placing gating mechanisms to regulate 

information flow throughout the network, GRUs improve long-term dependency modelling 

and reduce the vanishing gradient issue, which is some of the drawbacks of conventional 

RNNs.  

The update and reset gates that make up the GRU architecture control the information flow 

within the network. GRUs function as follows: 

1. Update Gate zt: 

1. The update gate determines how much of the past information ht-1 to keep and how 

much of the new information h̃t to incorporate at each time step t. 

2. It takes as input the current input xt and the previous hidden state ht-1, passes them 

through a sigmoid function, and outputs values between 0 and 1 

zt = σ(Wz ∙ [ht−1, xt] + bz) 
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2. Reset Gate xt: 

1. The reset gate determines how much of the past information ht-1 to forget at the current 

time step t. 

2. It takes as input the current input xt and the previous hidden state ht-1, passes them 

through a sigmoid function, and outputs values between 0 and 1. 

rt = σ(Wr ∙ [ht−1, xt] +  br) 

3. Candidate Hidden State h̃t: 

1. A candidate hidden state h̃t is computed based on the current input xt and the reset 

gate rt. 

2. It captures the new information that could be added to the memory cell. 

h̃t = tanh(Wh ∙ [rt ⊙ ht−1, xt] + bh) 

4. Hidden State Update: 

1. The hidden state ht is updated based on the update gate zt and the previous hidden 

state ht-1, as well as the candidate hidden state h̃t. 

ht = (1 − zt)⨀ht−1 + zt⨀h̃t  

In the context of promoter region identification, the input xt at each time step t represents a 

nucleotide at position t in the DNA sequence. The output ht of the GRU at each time step can 

be interpreted as the hidden representation or features extracted from the sequence up to that 

point. The final hidden state hT (where T is the sequence length) can be used for classification 

or further analysis to identify promoter regions. 

The parameters Wz, Wr, Wh, bz, br, and bh represent weight matrices and bias terms that are 

learned during training. The symbol ⨀ denotes element-wise multiplication, and σ represents 

the sigmoid activation function. By training a GRU model on labelled DNA sequences 

(promoter / non-promoter regions) and examining the learned parameters and activations[19], 

we can identify important sequence motifs and regulatory patterns associated with promoter 

regions. 

>>># Algorithm to build GRU model 

BEGIN 

    INITIALIZE model as a Sequential model 

 

    ADD Embedding layer to model with parameters: 

        input_dim = 4 

        output_dim = 16 

        input_length = number of columns in sequences_padded 

    ADD GRU layer to model with parameters: 
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        units = 64 

        dropout = 0.2 

        recurrent_dropout = 0.2 

    ADD Dense layer to model with parameters: 

        units = 1 

        activation = 'sigmoid' 

    COMPILE model with parameters: 

        loss = 'binary_crossentropy' 

        optimizer = Adam with learning_rate = 0.001 

        metrics = ['accuracy'] 

END 

 

>>># Algorithm to train the model 

>>>model.fit(X_train, y_train, epochs=10, batch_size=32, >>>validation_split=0.1) 

 

4. Results 

From the EDP website, we took about ~3,000 promotor region human sapiens datasets. The 

same number of non-promotor sequences are also taken into account when training. With an 

assigned value of 90% and 10%, respectively, the data was divided into two sets: the train set 

and the test set. 10% of the data utilized for training is used as well for parameter adjustment 

and validation. Training models and feature encoding methods were compared using the 

resultant datasets. 800 random sequences from the human genome were used as a dataset to 

assess the models' performance.  

We conducted experiments to evaluate the effectiveness and computing demands of 

frequency-based tokenization (FBT) and K-Mer encoding methods[20]. To do this, we 

investigated the feature encoding techniques on k-mer sizes 3, 4, 5, and 6 using datasets that 

were both promoter and non-promoter (Figure 5).  
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Figure 5. Comparing several encoding strategies to identify promoters. 

At first, it takes longer for the K-Mer to train with more than 2 k-Mer. Based on the accuracy 

found at higher k-mer values, we chose k-mer sizes of 3, 4, 5, and 6. We discovered that the 6 

k-mer performed better than the 3, 4, and 5 k-mer, with ACC scores of 91.86%, SN scores of 

92.74%, SP scores of 91%, and MCC scores of 83%. In contrast, the 3-Mer ACC, SN, SP, and 

MCC are 89.65%, 86.81%, and 79%, respectively. ACC is 90.76%, SN is 90.26%, SP is 

91.21%, and MCC is 81% for 4-Mer. According to the following data, for 5-Mer, ACC is 

90.09%, SN is 90.81%, SP is 89.38%, and MCC is 0.80%. 

The first series of experiments involved binary DNA sequence classification into promotor as 

well as non-promotor classes. The human genome dataset's Table 2 displays the explainable 

AI SHAP[21] and RNN performances. On the test set of sequences, the GRU model's average 

performance was as follows: precision 91%, accuracy 93%, recall 100%, f1-score92 %, and 

cross-validation score 96%. With a k-Mer size of 2, RF, Adaboost, and Decision tree all 

functioned nicely. When examining overall performance, SHAP and GRU score highly across 

all measures. While SVM linear and Naive Bayse have good performance metrics in precision 

and recall. Nevertheless, GRU outperformed both with k-mer sizes of 5 and 6. GRU requires 

more computing power as the size of the k-mer rises. 

 

Figure 6: SHAP feature extraction 
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Table 2. Assessment of different machine learning algorithms in predicting DNA promoter. 

Classifier Precision Accuracy Recall F1-score 
Cross Validation 

score 

SHAP +RNN 0.91 0.93 1.00 0.91 0.9625 

SVM Linear 0.85 0.89 0.92 0.86 0.8750 

Naive Bayes 0.90 0.87 0.89 0.91 0.9215 

Random Forest 0.68 0.64 0.62 0.62 0.6428 

Ada Boost 0.79 0.85 0.76 0.87 0.8857 

Decision Tree 0.81 0.78 0.71 0.80 0.7589 

Lastly, we used 800 random sequences from the human genome as testing data to assess how 

well these ML/DL models performed[12]. Compared to RF, DT, SVM, Naive Bayse and other 

models[22], SHAP and GRU performed better in predictions. Together with 91% precision, 

93% accuracy, 100% recall, 91% f1-score and 96% for cross validation, the SHAP and GRU 

models yield an average accuracy of 94.4% (Table 2). The following figure shows the accuracy 

obtained on the 100% of the data. 

 

Figure 7: Performance comparison of different classifiers 

Table 3. List of gene promotors with its location 

S. No Gene Promotor Location Promotor Sequence 

1.  TP53 
Chromosome17: 

7,565,161-7,565,641 (hg38) 

5'-

GAGCGGGAGCAGGGAGGCGCAGAGGAGGAAGGAGGAAG

GAGGAGCAGCAGCGGAGGCGCAGCAGCAGCAGCAG-3' 

2.  MYC 
Chromosome 8: 128,748,315-

128,748,745 (hg38) 

5'-
GCTGCGGGGCGGGGCGGGGCGGGGCGGGGCGGCGGGGCG

GAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA-3' 

3.  HBB 
Chromosome 11: 5,225,464-

5,225,564 (hg38) 

5'-
AGCTTCTGAGTCCACACACACCCACCCATGCAGTCCAGCC

TCCTCTTCCCTCTCCTCCTCTCCTCCCCTCCCCCC-3' 



                               Exploring Explainable AI Technique SHAP… G.Aruna Arumugam et al. 1420  
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

4.  GAPDH 
Chromosome 12: 6,533,682-

6,534,682 (hg38) 

5'-

GCAGTGGTGGAGGTGTGGGCGGTTGAGCGTGAGTGGGCT
CCTGGTGTGGCAGTGGTCGGTGTGGAAGGAGCAGC-3' 

5.  BRCA1 
Chromosome 17: 43,044,294-

43,044,794 (hg38) 

5'-

GGGGTGGGAGGCGGCGGCGGCGGGGCGGGCGGGGCGGG
CGGCGGGGCGGGGCGGGGCGGGGCGGGCGGGGCGG-3' 

6.  
ACTB 

(Beta-Actin) 

Chromosome 7: 5,552,999-
5,553,999 (hg38) 

5'-

TCGAGCAGGCCGGAGGAGCGCGTCCCTGAGGACAGGAGA

GGGAGCCGGGCGGGGCTGACGGCCGGCGGGGCG-3' 

7.  

EGFR (Epidermal 

Growth Factor 

Receptor) 

Chromosome 7: 55,019,031-
55,019,531 (hg38) 

5'-

GAGCGGCCGCGGCGGGCGGGGCGGGGCGGGCGGGGCGG

GGCGGGCGGGGCGGGGCGGGCGGCGGCGGGGCG-3' 

8.  
TNF (Tumor 

Necrosis Factor) 

Chromosome 6: 31,501,633-

31,501,733 (hg38) 

5'-
GGGGCGGCGGGGCGGGCGGGGCGGGCGGGGCGGGGCGG

GCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGC-3' 

9.  
FOXO3 
(Forkhead Box 

O3) 

Chromosome 6: 108,780,723-

108,781,223 (hg38) 

5'-
GCCGCGCGGCGGCGCGCGGCGGCGCGCGGCGGCGCGCGG

CGGCGCGGCGGCGCGCGGCGGCGCGCGCGGCGG-3' 

10.  

VEGFA (Vascular 

Endothelial 
Growth Factor A) 

Chromosome 6: 43,673,985-

43,674,485 (hg38) 

5'-

GCGGGCGCGGGCGCGGGCGGGGCGGGCGGGGCGGGGCG
GGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGC-3' 

11.  
IL6 

(Interleukin 6) 

Chromosome 7: 22,720,595-

22,721,095 (hg38) 

5'-

CGAGCAGGCCGAGGCGGCGGCGGCGGCGGCGGCGGCGGC
GGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG-3' 

12.  

APOE 

(Apolipoprotein 
E) 

Chromosome 19: 44,909,584-

44,910,084 (hg38) 

5'-

AGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGCG
GGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGC-3' 

13.  

ESR1 

(Estrogen 

Receptor 1) 

Chromosome 6: 151,656,690-
151,657,190 (hg38) 

5'-

GAGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCG

GGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGC-3' 

14.  
INS 

(Insulin) 

Chromosome 11: 2,151,250-
2,151,750 (hg38) 

5'-

GCGGCGGGGCGGGGCGGGGCGGGGCGGGCGGGGCGGGG

CGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGC-3' 

15.  

CFTR 

(Cystic Fibrosis 

Transmembrane 

Conductance 
Regulator) 

Chromosome 7: 117,120,016-
117,120,516 (hg38) 

5'-

CTTGGAGAGGCCGCGGAGGCGGCGGCGGGGCGGCGGCGG

CGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG-3' 

16.  
BRCA2 

(Breast Cancer 2) 

Chromosome 13: 32,889,616-

32,890,116 (hg38) 

5'-

GCGGGCGGGGCGGGGCGGGCGGGGCGGGGCGGGCGGGG
CGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGGC-3' 

17.  

MTHFR 

(Methylenetetrahy

drofolate 
Reductase) 

Chromosome 1: 11,824,520-

11,825,020 (hg38) 

5'-
AGGGCGGGGCGGGGCGGGGCGGGGCGGGCGGGGCGGGC

GGGGCGGGCGGGGCGGGCGGGGCGGGCGGGC-3' 

18.  

SOD1 

(Superoxide 
Dismutase 1) 

Chromosome 21: 31,580,546-

31,581,046 (hg38) 

5'-

GGGGCGGGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGC
GGGCGGGGCGGGCGGGGCGGGCGGGGCGGGGCG-3' 
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19.  

BCL2 (B-cell 

CLL/Lymphoma 
2) 

Chromosome 18: 63,529,950-

63,530,450 (hg38) 

5'-

AGGGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGC
GGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGC-3' 

20.  

CYP2D6 

(Cytochrome 
P450 2D6) 

Chromosome 22: 42,561,822-

42,562,322 (hg38) 

5'-

GCGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCG
GGGCGGGCGGGGCGGGCGGGGCGGGGCGGGGC-3' 

21.  

IGF1 

(Insulin-Like 

Growth Factor 1) 

Chromosome 12: 102,853,470-
102,853,970 (hg38) 

5'-

GCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCGGGG

CGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGG-3' 

22.  

HLA-DRA (Major 

Histocompatibility 

Complex, Class II, 
DR Alpha) 

Chromosome 6: 32,609,790-

32,610,290 (hg38) 

5'-
CGGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGC

GGGCGGGGCGGGCGGGGCGGGCGGGGCGGGGC-3' 

23.  

PTEN 

(Phosphatase and 

Tensin Homolog) 

Chromosome 10: 87,875,136-
87,875,636 (hg38) 

5'-

GCGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGC

GGGCGGGGCGGGCGGGGCGGGCGGGGCGGGGC-3' 

24.  

CDKN1A (Cyclin 

Dependent Kinase 

Inhibitor 1A) 

Chromosome 6: 36,678,887-
36,679,387 (hg38) 

5'-

GGGCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCGG

GGCGGGCGGGGCGGGCGGGGCGGGCGGGGCG-3' 

25.  
RB1 
(Retinoblastoma 

1) 

Chromosome 13: 48,806,407-

48,806,907 (hg38) 

5'-
GGCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCGGG

GCGGGCGGGGCGGGCGGGGCGGGCGGGGCGG-3' 

26.  

MTOR 
(Mechanistic 

Target of 

Rapamycin) 

Chromosome 1: 11,176,383-

11,176,883 (hg38) 

5'-

GGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGCGGG
CGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGC-3' 

27.  
NF1 
(Neurofibromin 1) 

Chromosome 17: 29,556,025-
29,556,525 (hg38) 

5'-

GCGGGGCGGGCGGGGCGGGGCGGGCGGGGCGGGCGGGG

CGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGG-3' 

28.  

STAT1 (Signal 
Transducer and 

Activator of 

Transcription 1) 

Chromosome 2: 191,396,496-

191,396,996 (hg38) 

5'-

GGCGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGGCGGG
CGGGGCGGGCGGGGCGGGCGGGGCGGGCGGGC-3' 

29.  

ATM (ATM 

Serine/Threonine 

Kinase) 

Chromosome 11: 108,093,645-
108,094,145 (hg38) 

5'-

GCGGGCGGGGCGGGGCGGGGCGGGCGGGGCGGGCGGGG

CGGGCGGGGCGGGCGGGGCGGGCGGGGCGGGG-3' 
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Figure 8: Transcription factor binding sites in DNA sequences. 

Evaluation of the performance metrics:  

After the prediction model was applied to the dataset, the number of actually identified 

promoter as well as non-promoter sequences was calculated as true positive (TP) and true 

negative (TN). In addition, we gathered the number of detected promoter and non-promoter 

sequences that were falsely negative (FN) and erroneously positive (FP) [23]. We used the 

following formulas to calculate accuracy (Acc), sensitivity (Sn), specificity (Sp), and 

Matthew's correlation coefficient (MCC) in order to assess the efficacy of classification 

models: 

Accuracy (Acc) = 1 − 
FN + FP

(TP + FN) + (TN + FP)
, 0 ≤ Acc ≤ 1 

Specificity (Sp) = 1 − 
FP

TN + FP
 , 0 ≤ Spec ≤ 1 

Sensitvity (Sn) = 1 − 
FN

(TP + FN)
 , 0 ≤ Sens ≤ 1 

Matthew’s correlation coefficient (MCC) =  
1 − ( 

FN
TP + FN)

+ 
FP

(TN + FP)
 )

√((1 +
FP − FN
TP + FN)(1 +

FN − FP
TN + FP)  
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a) Accuracy on all 100% of the data 

with outliers. 

 

b) ROC curve for the SHAP and RNN 

 

 

 

c) Promotor identification 

 

 

d) Confusion matrix for the proposed 

model 

 

5. Discussion 

When analysing DNA sequences, it is standard practice to use a set of "background" sequences 

to assess the false-positive rates of gene recognition techniques for identifying cis-regulatory 

regions. Another method for creating a background dataset involves rearranging some of the 

nucleotide sequences in the positive dataset. We opted for frequency-based tokenization of k-

mers as opposed to one-hot encoding for feature encoding. A 4k × L matrix of 0s and 1s, where 

k represents the sequence length and L signifies the k-mer length, represents each input 

sequence in one-hot encoding. The input to the embedding layer is relatively sparse due to this 

representation. As the k-mer length grows, the input dimension also increases, resulting in 

longer computational processing times. 
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In addition, the matrix represented in a one-hot encoded format for a sequence does not capture 

the importance of the frequency of occurrence of a subsequence or motif. In comparison to 

one-hot encoding, tokenization based on frequency offers the benefit of reducing the input 

dimension for the AI model, which could potentially lead to significant savings in training 

time [24]. Consequently, one-hot encoding might yield similarly accurate results. 

Nevertheless, many researchers may lack the necessary computational resources to perform 

one-hot encoding for larger k-mer sizes. 

Optimising parameters is an essential step in developing a sequence predictor. Along with the 

network architecture design, it was shown that K-mer size is an empirically tuneable parameter 

during the categorisation of sequences into promoter and non-promoter groups. The model's 

predictive power was impacted by differences in the sizes of the generated feature vectors and 

k-mers. We looked at how different 3-, 4-, 5-, and 6-mer fingerprints affected SHAP and 

RNN's capacity for prediction. As was already established, the LSTM model's performance 

increased as the k-mer got bigger. Additionally, we evaluated each model with k-mer sizes of 

12 and 16. But because of the enormous memory usage, this led to an exponential increase in 

the quantity of training parameters and a "resource exhaustion problem"[25]. 

The findings demonstrate that for all unique organisms, RNN and SHAP perform better than 

other designated classification models. In binary and multiclass scenarios, the proposed 

network models have achieved outstanding classification accuracy while lowering the rate of 

false-positive and false-negative predictions. Nevertheless, the observed variations in 

accuracy, sensitivity, specificity, and MCC could not necessarily be a reflection of the 

constructed model due to the variations in data kinds and sizes [23]. 

The current limitations of the accessibility dataset repository are known to us. Since we are 

working with a dataset of human species, we need to be more concise. While we aim to offer 

more variability, most benchmark datasets have a set number of classes and sequence lengths 

[26]. Our dataset, which comes from the EDP website, contains every regulatory feature. To 

find out how sensitive the model is to these kinds of characteristics, we intend to further 

diversify our datasets in the future. We intend to expand our benchmark collection with 

additional multi-class and imbalanced datasets. 

 

6. Conclusion 

The main goal of this work is to effectively discriminate between promoter and non-promoter 

sequences with enhanced accuracy, true positive rate, and true negative rate. We used a 

promotor region and randomly selected sequence to evaluate the validity of the model and 

construct a robust and general framework for classification problems in the genomic domain, 

obtaining the required heterogeneity and robustness for our research. The effectiveness of the 

models was evaluated using a collection of randomly chosen sequences from the human 

genome. We have employed frequency-based tokenization of sequences for vector 

representation and feature extraction, and k-mer-based subsampling for data preprocessing to 

decrease training time.  

To efficiently discriminate between promoter as well as non-promoter sequences with 

increased accuracy, true positive rate, and true negative rate is the major objective of this work. 
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In order to obtain the necessary heterogeneity and robustness for our research, we employed a 

promotor region and randomly picked sequence to test the model's correctness and build a 

robust and universal agenda for classification problems in the genomic domain. A set of 

randomly selected sequences from the human genome was used to assess the models' 

performance. To minimise training time, we have used k-mer-based subsampling for data 

preprocessing and frequency-based tokenisation of sequences for vector representation and 

feature extraction, respectively. Finding promoters in DNA sequences is an essential initial 

step in understanding the regulation of gene transcription, even though promoters often start 

the transcription of a gene. In order to precisely forecast promoters and their strength in DNA 

sequences, a computational model called SHAP and GRU are employed in this work. Because 

GRU, a long-short-term memory neural network, and SHAP feature extraction allow the 

model to account for the state of each promoter identification modification feature for each 

state, the model's performance has increased. We were able to increase accuracy on such a 

large dataset with good precision and recall by using SHAP and GRU. In the end, our model 

performed better than the state-of-the-art model, proving its usefulness as a tool for prediction 

identification and its notable advancement over earlier techniques. 
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