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Zigbee is extensivelyused for its efficiencyin using wireless resources the Internet of Things. 

Recently, Manufacturer-manufactured IoT devices were recently affected because of serious flaws 

in Zigbee standards. Testing security of Zigbee protocols is getting more important. However, 

applying the existing methods of vulnerability detection like fuzzing to the Zigbee protocol isn't an 

easytask.Handling of low-level hardwareevents is a major issue. In the case of those usingthe 

Zigbee protocol which is communicated via a radio channel most of the existing tools for fuzzing 

protocols don't have the right execution environment. ZigBee ensures the security ofsensitive data 

on networks and devices by implementing the Advanced Encryption Standard (AES) which is the 

best encrypted symmetric key block While AES is currently considered highly secure, there is 

ongoing research and anticipation that it may become vulnerable to security lapses in the future as 

computing power increases and new vulnerabilities are discovered. Additionally, symmetric 

cryptosystems, like AES, face challenges with authentication and key management, particularly in 

large-scale systems. To address security concerns in wireless sensor networks, especially those 

related to Zigbee communications, we have developed Z-Fuzzer. Z-Fuzzer is a program designed 

to detect security weaknesses in Zigbee protocols and can be deployed on any compatible device. 

In this research, we utilized Z-Fuzzer, which employs an embedded commercial system simulator. 

This simulator comes equipped with pre-defined hardware and accessories that interact with the 

fuzzy engine to accurately mimic the operations of the Zigbee protocol. Z-Fuzzer utilizes code 

coverage techniques to enhance the quality of tests it provides. In our research, we compared Z-

Fuzzer's simulation platform with other recent protocol fuzzing tools, such as BooFuzz and Peach 

Fuzzer. The results demonstrate that Z-Fuzzer achieves higher code coverage within Z-Stack, a 

widely adopted Zigbee protocol implementation. Furthermore, Z-Fuzzer identified more flaws 

compared to BooFuzz or Peach Fuzzer, despite conducting fewer tests. They found three significant 

flaws, with severity scores ranging from 7.5 to 8.2. The analysis evaluates the effectiveness 

ofthesystemacrossvariousaspects,includingsecurityfeatures,communications,and computational 

costs. 

Keywords: ZigBee protocol, advanced encryption standard (AES), internet of things (IoT), 

cryptography, Zigbee protocol, fuzzing. 

 

 

1. Introduction 

Today, the use of the Internet has become an essential part of everyday life. The idea of a 

comprehensive system administration phase based upon the relation to thearticle's brilliant 

content is officially a huge leap. The supposed Internet of Things (IoT) technologyis evolving 

into a foundation for a modern world where humans and their 

http://www.nano-ntp.com/
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objectscanbecoordinated[1].Theadvancementswillallowthecreationofnew apps as well as 

administrations that are likely to make use of the abundance of both physical and digital 

substances. The IoT model relies on available communication technology, such as Wi-Fi 

Bluetooth, Zig-Bee, among others to name some [2]. But, establishing a suitable and desired 

IoT network, which is based upon these different technologies is a difficult and laborious 

problem. 

IoT devices have the ability to communicate to multiple communication protocols 

simultaneously within the IoT network. Some devices require a higher speed 

connectioninordertocarryouttheirfunctionseffectively.However,therearedevices with fewer 

resources that need connectivity that is low in usage of resources. It is the Zigbee protocol [5] 

an omnipresent wireless protocol that helps reduce costs forpower and memory and has seen 

widespread use for home manufacturing, automated systems, and in manufacturing. Zigbee is 

very dependent on hardware setup since it uses the radio channel to transmit data instead of 

the internet. The Zigbee protocol, which offers a range of security measures and options inside 

the Zigbee network, is defined by the Zigbee Alliance. The shortcomings and imperfections 

present in different Zigbee stacks have been exposed by recent study [37, 46, 53]. The flaws 

might be used to launch a denial-of-service attack or send remote executable malware to a 

Zigbee-enabled Philips lighting system. Although the latest iterations of the Zigbee protocol 

have addressed some security concerns, the scientific community is not giving the protocol 

much attention. Thus, it is crucial and very useful to discover security vulnerabilities in Zigbee 

protocols. 

In order to help IoT developers assess security issues associated with the Zigbee protocol used 

for their applications We have developed Z-Fuzzer an open protocolthat is device independent. 

simulation system that allows the test of fuzzing in Zigbee protocols. Z-Fuzzer comprises two 

primary parts: a fuzzing engine as well as a test harness performing protocols stack. Z-Fuzzer 

initially aims at creating superior test scenarios that adhere to protocol packet format 

requirements. Thus, we use coverage- based feedback to enhance grammar-based fuzzing[25] 

and generate high-qualitytest cases, which we subsequently rank in order of increasing 

difficulty. The coverage measure is employed within AFL [58] in our estimation of code 

coverage. 

We created Z-Fuzzer and tested its efficacyin identifying securityweaknesses. We've picked 

two of the most effective protocols fuzzing software tools, BooFuzz [41] and Peach [38], that 

will be our test tools to test this technique of fuzzing. Experts in the field Sulley [21] as well 

as Peach [38] use protocol fuzzers. BooFuzz replaces them. Peach is an extremely popular 

commercial protocol fuzer. In addition to Peach is Zigbee protocols simulation system we use 

BooFuzz and Peach. We use the common Zigbee protocol, Z-Stack (29), for fuzzing in order 

to test them against Z-Fuzzer. 

Three of the vulnerabilities mentioned were given As of the publication date of this article, 

CVE IDs with extremely high CVSS scores [20] were still being examined. Our research 

provides insight into the vulnerabilities in the Zigbee protocol whenused in a software 

simulation environment without actual hardware access. What we provide is as follows: 
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Proposed Work: 

Z-Fuzzeroffersadevice-independentfuzzingplatformthatsupportsZigbeeprotocols. It 

achievesthisbyrunningtheprotocolstack on afullsoftwaresimulatorandutilizing an intermediate 

server to facilitate communication between the fuzzing engine and 

simulator.Byleveragingcodecoveragestatisticstoprovidefeedbackandimprovethe test-

generation process of the grammar-based fuzzing approach, Z-Fuzzer enhances the quality of 

tests generated. 

Compared to tools like BooFuzz or Peach, Z-Fuzzer can potentially achieve higher code 

coverage with fewer tests. During testing, six previously unknownvulnerabilities were 

discovered within Z-Stack, three of which have been classified as high-severity CVE IDs. 

Problemstatement: 

It's not an easy undertaking to apply fuzzing methods to Zigbee protocols. In the 

beginning,fuzzersmaybreak compilerinspection whenaddinginstruments tocodein the Zigbee 

protocols source code in the event that it is they are available. Zigbee protocol providers 

generally design protocols for specific embedded devices using a certain toolchain for 

development [2425. Regarding the availability of protocols, it is common for vendors to 

implement checks against compilers within their protocols to block compilers that aren't on 

the list of accepted, specifically those that are general- purpose compilers (e.g., GCC and 

LLVM) employed by numerous coverage-guided fuzzyers. 

The remaining portion of the paper is set up as follows. The duties of fuzzing testing and 

Zigbee security analysis are discussed in Section 2. The history of the Zigbee protocol and the 

foundations for current protocol fuzzing are given in Section 3. Z- Fuzzer's idea and 

implementation are described in Section 4. In Section 5, Z-Fuzzer's performance is analysed 

in comparison to two cutting-edge protocols for fuzzers. The drawbacks of the existing model 

and the possibility of future improvements are examinedinSection6.Section7endswitha 

fewremarksandideasformore research. 

 

2. Related Work 

Fuzz testing is a widely employed method for identify security weaknesses with tools like AFL 

and its extensions such as AFL++ gaining popularity in recent years for automatic security 

analysis. These tools use algorithms for code coverage to guide their mutation-based approach. 

However, they do not directly support validation ofthe Zigbee protocol's source code. Due to 

the diverse nature of Zigbee protocol implementations bydifferent providers usingvarious 

toolchains, compiler inspections tailored to embedded systems are often required. This 

presents a challenge for integratingAFL-

likefuzzersthatrelyonuniversalcompilerslikeGCCandLLVMfor instrumentation. Z-Fuzzer 

addresses this challenge by incorporating measurement directly into the source code using the 

IAR Workbench's embedded compiler, afeature compatible with most Zigbee protocol 

vendors. Similar to AFL and other coverage-guided fuzzers, Z-Fuzzer utilizes coverage 

measurement techniques to determine edge coverage. 

The security flaws in the the Zigbee protocol may be studied in a number of ways. 
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Snout[36],createdbyMikulskisandothers,andZ3Sec[37]byMorgneretal.are systems for 

penetration testing, which uses spoofing and packet replaying to identify Zigbeeflaws and 

vulnerabilities. Two tools havebeen createdto assess thesecurityof the Zigbee protocol, 

specifically in relation to embedded devices: IoTcube [31] and beSTORM (48). Zigator, a 

security analysis tool that examines encrypted Zigbee packets to detect specific jamming and 

spoofing attempts, has also been proposed by Akestoridis et al. [3]. Security evaluation devices 

are black-box techniques that examine and alter data flowing via the Zigbee network in order 

to identify security holes in the protocol. 

Devices that use different protocols for communication like WiFi, Bluetooth Low Energy 

(BLE) as well as Zigbee can coexist in the same space in the Internet of Things system. To 

address this the researchers recently released novel attackstrategies that use using the Zigbee 

protocol. It is known that the BLE protocol is employed in Cayre et al. (12) to initiate the first 

pivoting attack WazaBee that targets Zigbee enabled devices. Bluetooth is a protocol. Since 

WiFi as well as Zigbee each use their own 2.4 frequency range, Chi and co. [14] identified a 

variety of new risks that could be exploited through hidden jamming. The researchers showed 

that attackers might send WiFi packets to interfere with or even completely stop the 

connectivity between Zigbee devices. 

Unlike the other vulnerability-exploiting methods, Z-Fuzzer looks for unknown flaws in the 

source code of the Zigbee protocol rather than in the active Zigbee network and the several 

protocols that are part of the same system. The application does not need physical hardware 

or a specific understanding of the fundamental hardware architecture. Our results from our 

experiments show vulnerability in the protocol stack's top layer may also result in devastating 

failures and risks to the IoT applications' capabilities. 

Zhao and Co. [10] first presented an IoT mutual authentication solution intended to enhance 

security inside IoT devices. In addition to implementing mutual authentication for devices and 

gateways, dynamic password generation, this scheme aimstoimprovethe 

securityofauthentication. It wasevaluatedusingcalculationsand simulations, showing superior 

results in terms of efficiency and security when compared to existing systems. However, it's 

important to note that the scheme comes with a few drawbacks since it is unable to take into 

account essential properties like the ability to hide, not link ability, and non-traceability. 

Discussion 

Numerous research studies have examined the possibility of using lightweight 

cryptographictools,includingbitswitchfunctionsorhashfunctionsXOR andbitwise XOR, to 

meet various requirements. Yet, these research studies do not take into account the need for 

solid mutual authentication that is low in computation and communication costs vital to 

ZigBee devices. As a result, creating a mutual authentication system that works well is a 

significant task for the Internet of Things community. It's also important to be awarethat most 

of these solutionsconcentrate on the strength of two-way authentication, ignoring important 

factors like anonymity, traceability, and link ability, or improving encryption. Our proposed 

method does not just focus on an option for D2TC as well as D2D authentication within the 

ZigBee protocolbutisalsoamethodtoimproveencryption.Inaddition,ourstrategy 

addressescriticalsecurityfeaturessuch astransactionanonymity aswellaslinkability in the 

absence of it as well and the lack of traceability 
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3. Background 

Zigbee is a wireless standard technology designed to provide the use of low-cost and low-

power wireless machine-to-machine (M2M) as well as the Internet of Things (IoT) networks. 

Zigbee is an open standard that is optimised for low data rate applications andrequires little 

power. It is possible, in theory, to combine implementations from several vendors. 

Interoperability problems plague Zigbee devices in the real world, where they have been 

altered and adapted by several vendors. As opposed to Wi-Fi networks which connect the 

endpoints of devices to networks with high speeds, Zigbee supports a much lower rate of data 

transfer and utilizes an interconnected network protocol that allows users to eliminate hub 

devices and build an autonomous architecture. 

With only four layers, ZigBee is an inexpensive wireless sensor network withminimal power 

consumption. The control of media access (MAC) layer and the physical (PHY) layer are the 

first two levels. The MAC layer performs fundamental radio operations and allows 

communication between two devices through a one hop link. Their compliance with IEEE 

802.15.4 standard is guaranteed. Additionally, the networks (NWK) layer was created to 

handle duties including address management and packet routing. The application (APL) layer, 

which is the topmost layer, is where a node in the network performs its main function. It also 

ensures the installation and management of safe connections between nodes [21,23] 

In the ZigBee protocol, there are three types of key keys that serve to protect the network: (1) 

A master secret that is shared by all of the equipment in a ZigBee network is called the network 

key, or NWK key for short. It offers encryption capabilities and network-wide encryption. 

 

Fig1:Tyoesof ZIgBee Devices 
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Fig2: ArchitectureofZigBee 

NetworkModel 

The three main types of topologies seen in ZigBee networks are thought to be star, tree, and 

mesh topologies. ZigBee networks often employ mesh or star topologies as their primary 

architecture. Trust Centre (TC) is in charge of managing devices linked to the network and 

traffic management for mesh-based networks. Endpoints may use the Trust Centre to establish 

a network connection. Since the TC is aware of every device in the network, it is responsible 

for both setting up and maintaining thenetwork as well as handling the data of each device. 

Every ZigBee device must authenticate with the TC during the startup procedure. The purpose 

of the TC is to produce a key for encryption for the session and to provide authentication for 

all communications between devices. Thus, every ZigBee network has to be equipped with the 

TCT. ZigBee devices generally connect to the physical world and other devices within the 

network. 

Mutationin protocolfuzzing tools. 

Various black-box protocol fuzzing methods have been proposed and utilized to generate 

structured and logical packets compliant with network protocol standards. These methods 

often rely on grammar-based fuzzing techniques. Test inputs are constructed from scratch, 

adhering to input requirements that specify information 

formatandintegrityrestrictions.Protocolfuzzersutilizeabstractrepresentationblocks to construct 

protocol frames, a method sometimes referred to as block-based representation. These blocks 

consist of basic or nested blocks compatible with the protocol's format. By employing a script 

for format definition, the fuzzer canrepresent the protocol's message using basic data organized 

according to their positions. 

The fuzzer typically modifies only one message field during each iteration of the 

fuzzingprocess.Atransformationinstanceofmanystate-of-the-artprotocolfuzzing tools is 

depicted in Figure 3. Fuzzing a command which triggers various brand- specificcodes resulted 
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inTestCase1.Thefuzzerreverts thisfieldtoitsoriginalvalue of zero after allowing sufficient time 

for the modification to take effect. It then proceeds to modify the subsequent fields. In the 

second test scenario, the Command Identifier (CmdID) field is fuzzed, executing a new line in 

the command using the value 0x05. 

Assumptionsand Model Threat 

The goal of our paper is to assist IoT developers in better understanding the security risks 

associated with the Zigbee protocol. By providing insights into these risks, developers can 

make informed decisions when utilizing Zigbee for constructing IoT applications. To mitigate 

these security risks, programmers should take necessary actions either before or during the 

development process. 

Inourframework,weassumethattheowneroftheplannedprotocolimplementation's source code is 

the user utilizing our framework. We also presume that the user possesses all essential 

information about the embedded device they are using, including details such as the type of 

CPU, peripheral interrupts, lines of code for peripherals, and processor model. This 

information is crucial for implementing the stack protocols tested in our simulator. 

We are currently focused on generating high-quality Zigbee Cluster Library (ZCL) messages 

for fuzzing the Zigbee protocol, given their importance for device functionality. Our approach 

aims to assist Internet of Things (IoT) developers in identifyingimproper ZCLmessages 

thatcouldleadto protocolstackexecution issues. 

Ourthreatmodelassumesthattheuser'sZigbee-basednetworkisatargetforpotential adversaries. It 

is assumed that attackers have the capability to access the victim's Zigbee network or possess 

the network key, enabling them to gain unauthorized access through false ZCL messages. This 

implies that ZCL messages sent to the victim's IoT device may be tampered with or encrypted 

by the attacker. 

 

4. PROPOSED MODEL AND DESIGN 

Wewilltalkabouttheintricaciesof Z-Fuzzer'screationandapplicationinthissection. This article's 

first section will go through the problems with the Z-Fuzzer idea andtheir fixes. Then, we 

present the protocol fuzzing algorithm of Z-Fuzzer. We then present the details of how to 

implement the key elements in Z-Fuzzer to tackle the issues. 

Z-FuzzerDesign: 

Z-Fuzzer seeks to identify vulnerabilities in the Zigbee protocol without the need for real 

embedded devices. In other words, to mimic how the Zigbee protocol functions in 

anappropriatesoftware-basedenvironment.Duetodifferentdeviceandsystemsetups, most 

existing IoT software for software simulation has problems executing the Zigbee protocol. 

Different embedded devices operate with different peripheral disruptions to trigger different 

actions in the Zigbee protocol. Regretfully, embedded simulators lack the necessary expertise 

to simulate every kind of peripheral interrupt.Additionally,the Zigbee protocol typicallyruns 

on a hardware-embedded device. It can be modified to suit specific embedded devices that 

manufacturers require that aren't compatible with all simulators available. So, it is necessary 

to build a suitable environment for executing software to mimic peripheral interrupts to 



                                  Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1434  
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

simulate peripheral interrupts, without taking into account the hardware used in specific 

embedded devices. 

To meet these requirements, we have developed Z-Fuzzer comprising two main elements: a 

test harness and a mutation engine. The test harness includes an analysis tool for generating 

coverage reports to calculate cumulative coverage data. It also features an execution engine 

responsible for running applications that utilize Zigbee protocol stacks using the generated test 

cases within an emulator. 

Utilizing the coverage input, the test harness maintains interesting test cases, leading to an 

increasein coverageand enabling more effectivefuzzing. Additionally, wehave implemented 

proxy servers within the execution engine to bridge the gap between simulators and the 

mutation engine, allowing for testing without the need to join a complete Zigbee network. 

Algorithm: 

AlgorithmforZ-Fuzzer 

Input:ProgrammebeingtestedP,inputformscriptS 

Output:Thecurrentcumulativeseedsthatcausetheprogramtocrash code coverage 

current_coverage 

1:crash<-0 

2:block<-Start(S) 3: high_rated <- 0 

4:current_coverage<-0 

5: repeat 

6:if high_rated is not 0 then sorted<-select(high_rated) seed<- stack(sorted) 

if sorted.was_fuzzed then high_rated <- high_rated \ sorted else 

test_case<-Choose(block) seed <- stack(test_case) 

7: end 

ImplementationDetails 

The fuzzing procedure is a core component of the Z-Fuzzer framework, 

whichconsistsoffourfundamentalelements: anoffline parser, atestcase generationengine, an 

execution engine, and a coverage report parser. Additionally, it includes an online proxy server 

and a stack driver that facilitates the execution of protocols. 

The message fields used to create the test case will be mutated depending on their chosen 

sequence. If a test case that is preferred is selected, the engine is able to skip the transformation 

of interesting values when there is a skip_mutation flag. In addition, the other basic data 

representing the spaces below are changed sequentially in sequence. Z-Fuzzer can fuzzy initial 

information by piecing together the standard test scenario based on the selection order of the 

basic data. Z-Fuzzer may choose the valuesinasequence tobechangedif 

theuserhasspecifiedthemessagefieldcontains numbers inside the formatting script. The 

mutation engine modifies it in additional situations by using the pre-defined fuzzing library. 
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Once each message field has been altered entirely, the test case that has garnered a great deal 

of popularity is removed from the corpus. If all of the tests in the text are fuzzed and no 

favourite test cases remain unfinished, Z-Fuzzer can finish the fuzzing operation entirely. This 

mutated input then gets transmitted directly to an execution engine to test during runtime. 

PerformingaProtocol. 

Z-Fuzzer consists of two main components: a stack driver, responsible for executing the 

Zigbee protocol, and a proxy server. The proxy server serves to facilitate communication 

between the mutation engine and the simulator via socket connection. It locally hosts the proxy 

server to enable transmission of mutations to the simulator, while also saving received 

messages to a file for later processing through the protocol stack. 

Additionally, we have developed an engine for stack drivers to configure the system properly 

by analyzing the source code of the protocol stack intended for implementation. 

EVALUATION 

The Z-Fuzzer protocol fuzzing technique aims to provide high-quality testing inputs that 

adhere to the protocol's frames. By comparing it with two widely used advanced protocol 

fuzzers, BooFuzz and Peach, we demonstrate the uniqueness of Z-Fuzzer. Both BooFuzz and 

Peach have been extensively utilized in previous research studies. 

One significant distinction is that BooFuzz and Peach do not support Zigbee or other IoT 

wireless protocols, such as Bluetooth. To address this limitation, we integrated Zigbee and 

Bluetooth protocols into our simulator platform, allowing Z-Fuzzer to interface with both 

protocols. 

When it comes to the evaluation criteria, we carried out our research based on variables 

suggested by Klees and co. [32]. Particularly, we assessed the vulnerability count and the 

effectiveness of fuzzing during 24 hours of experimentation with fuzzing. Regarding 

vulnerabilities, We assessed the efficacyof fuzzers on four fronts: distinct vulnerabilities, The 

relation between the amount of tests, as well as theamount of vulnerabilities found and also 

the connection between the level of protection for line as well as the amount of vulnerabilities 

identified and the vulnerabilities found on real IoT devices. Four variables wereassessed to 

evaluate the effectiveness of fuzzers. These include the number of tests with a system-specific 

nature as well as the time of edge coverage of the test, and also the duration of time- to-execute 

coverage. 

Experiment Setup. All of our tests were conducted on a Windows 10 Pro system that has a 32 

GB RAM and an Intel(r) CoreTM i7-6700 CPU running at 3.40 GHz. Additionally, version 

8.3 of IAR Embedded Workspace for ARM was installed[29]. Texas Instruments created Z-

Stack using many project codebases. There is also the source code accessible. 

Table1.Totalnumberof crashesandunique vulnerabilities. 

Fuzzer TotalCrashes UniqueVulnerabilities 

BooFuzz 65 3 

Peach 8 4 

Z-Fuzzer 122 8 
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UniqueVulnerabilities. 

We used the information in the call stack to deduplicate the crashes observed. The simulator 

provides a trace of the call stack for a crash in memory. This includes 

informationabouttheroutinesthatwereexecuted,linenumbers,particularstatements in the 

functions, as well as statements in the functions and. For locating a crash, we analyzed the 

name of the function the line number and memory address. Stack hashing may thus result in 

bug overcounting. To prevent overcounting, we closely 

inspecttheoriginalcodeofeveryvulnerability. Inoursituation,wepersonallyreview the function 

call trail in the source code of each vulnerability is to ensure that there are no instances of the 

overcount of vulnerabilities. The experiment's findings are shown in Table 1. It demonstrates 

that compared to the other two fuzzers, the Z- Fuzzer can identifya greater number of distinct 

vulnerabilities and crashes. Bycross- checking, all vulnerabilities have also been verified. 

BooFuzz is limited to reproducing a single vulnerability. Peach Fuzzer and Z-Fuzzer test 

scenarios can replicate any vulnerability. Every vulnerability was reported to both the vendors 

and CVE. CVE IDs and CVSS ratings (7.5-8.2) are high for three of them. 

Psudeo code typedefstruct 

{ 

unit8discComplete; unit8 cmdtype;4 unit8 numCmd; unit8 *pCmdID; 

}zclDiscoverCmdsCmdRsp_t; 

saticvoid 

{ 

if9pDiscoverRSPcmd!=Null) 

{ 

unit8 i; 

pDiscovercmd<-discComplete=*pBuff++ for(i=0,i<numcmds; i++) 

{ 

PDiscover->pCmdID[i]=*pBuf++; 

} 

} 

return((void*) 

} 

Most protocol suppliers substitute common functions of the C library with their own 

customised APIs. It is because embedded devices have limited computing and 

memorypower.ThismakesitdifficulttorunallC-standardAPIlibraries,likePC software. This 

customization can also pose security threats, in addition to the bugsthat may exist within the 

implementation of the protocol. The Zigbee vendors are responsible for anyvulnerabilities in 

the protocol. Securityproblems can be mitigated or prevented entirely by the vendor's response 
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to reported security issues. IoT developers might not know about these potential problems 

until after they have completed the production. We were also motivated by this observation to 

suggest Z- Fuzzer to developers so they could be aware of the potential Zigbee stack issues 

earlier in the development process. This way, they would have the opportunityto take the 

necessary actions and avoid these problems before waiting for feedback from the protocol 

vendor. 

Fuzzing Performance 

Each fuzzer was subjected to a series of experiments in order to determine the variation of the 

test case number, execution time, edge and line coverage over time. All fuzzers were given the 

same format of protocol frames. The fuzzing processes were therefore initialized using the 

same protocol frame. The fuzzers use the script to format the frames and generate the test cases 

using the predefined or user-specific fuzzing dictionary. 

Fuzzer Total #  of 

Unique  Test 

Cases 

Test Case 

Exec. Time (ms) 

LineCoverage EdgeCoverage 

Z-Fuzzer 62458 541 98776.21% 78184.23% 

BooFuzz 17542 645 85472.31% 68772.31% 

Peach 19845 684 83069.12% 58564.21% 

Weinitiallyexaminedtheuniquenessproducedbyeachfuzzer.Table3illustratesthat Z-Fuzzer can 

generate six times as many distinct test cases as the other two fuzzers. Testcases 

arecategorizedbasedonthe ZCLheader'sfield commandidentification,as specified in the Zigbee 

Protocol Standard, enabling differentiation of various fuzzers in terms of test case creation. 

While BooFuzz or Peach can generate only 35 of the 308 distinct test case types generated by 

Z-Fuzzer. 

Manytest cases also provide incremental coverage, making it desirable to retain them for 

further mutations. For example, if the field framework controls are kept at 0x08,Z-Fuzzer may 

generate the message seen in Figure 3. 

Additionally, test case execution times were assessed on average. Z-Fuzzer's overall execution 

time is 541 milliseconds per test, as indicated in Table 3's third column. This represents a 

14.9% and 13.4% increase in execution speed compared to Peach and BooFuzz, respectively. 
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Fig. 9. Fuzzers achieved line coverage and edge cover over 10 runs. The median test case 

number is represented by the x-axis. 

 

5. Conclusion 

Fuzzer has better code coverage than BooFuzz or Peach, thanks to the test cases generated 

based on coverage. With the feedback on coverage, the interesting values can be recorded and 

used to guide the test case generation process. This allows for more detailed code to be 

accessed. ZCL has a number of functions that handle processing the upper-level application 

object's payload. It's possible that in order to execute more intricate code inside those methods, 

they need that the test case pass certain condition checks. BooFuzz and Peach ignore the 

message values that maymeet such dependency constraints during their mutation processes. 

Z-Fuzzer, on the other hand, can deduce such a relationship from runtime feedback. All of the 

previous fields and mutant primitives are kept for further fuzzing, satisfying these conditions. 

This covers more code and edges. 

We have already implemented the BooFuzz fuzzing engines on our simulation platform. In the 

future, In our effort, we want to include additional simulation settings. This also applies to the 

proxy servers that other fuzzers make use of. To implementthe Zigbee protocol, they may 

transmit their test cases through the Internet. We can also apply our test-case generating engine 

to existing embedded fuzzers, as HALucinator[16]. After that, they may test Zigbee protocols 

and get acquainted with the Zigbee session format. 
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