
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S15 (2024) 1427-1442

Trust Aware Ensemble Secure Protocol

in IoT using ZigBee Optimized Mode

Pushpa Latha Thumma1, Dr. Prasadu Peddi2

1Research scholar, Shr iJJT University, Jaipur

2Professor, Shri JJT University Jaipur

Zigbee is extensivelyused for its efficiencyin using wireless resources the Internet of Things.

Recently, Manufacturer-manufactured IoT devices were recently affected because of serious flaws

in Zigbee standards. Testing security of Zigbee protocols is getting more important. However,

applying the existing methods of vulnerability detection like fuzzing to the Zigbee protocol isn't an

easytask.Handling of low-level hardwareevents is a major issue. In the case of those usingthe

Zigbee protocol which is communicated via a radio channel most of the existing tools for fuzzing

protocols don't have the right execution environment. ZigBee ensures the security ofsensitive data

on networks and devices by implementing the Advanced Encryption Standard (AES) which is the

best encrypted symmetric key block While AES is currently considered highly secure, there is

ongoing research and anticipation that it may become vulnerable to security lapses in the future as

computing power increases and new vulnerabilities are discovered. Additionally, symmetric

cryptosystems, like AES, face challenges with authentication and key management, particularly in

large-scale systems. To address security concerns in wireless sensor networks, especially those

related to Zigbee communications, we have developed Z-Fuzzer. Z-Fuzzer is a program designed

to detect security weaknesses in Zigbee protocols and can be deployed on any compatible device.

In this research, we utilized Z-Fuzzer, which employs an embedded commercial system simulator.

This simulator comes equipped with pre-defined hardware and accessories that interact with the

fuzzy engine to accurately mimic the operations of the Zigbee protocol. Z-Fuzzer utilizes code

coverage techniques to enhance the quality of tests it provides. In our research, we compared Z-

Fuzzer's simulation platform with other recent protocol fuzzing tools, such as BooFuzz and Peach

Fuzzer. The results demonstrate that Z-Fuzzer achieves higher code coverage within Z-Stack, a

widely adopted Zigbee protocol implementation. Furthermore, Z-Fuzzer identified more flaws

compared to BooFuzz or Peach Fuzzer, despite conducting fewer tests. They found three significant

flaws, with severity scores ranging from 7.5 to 8.2. The analysis evaluates the effectiveness

ofthesystemacrossvariousaspects,includingsecurityfeatures,communications,and computational

costs.

Keywords: ZigBee protocol, advanced encryption standard (AES), internet of things (IoT),

cryptography, Zigbee protocol, fuzzing.

1. Introduction

Today, the use of the Internet has become an essential part of everyday life. The idea of a

comprehensive system administration phase based upon the relation to thearticle's brilliant

content is officially a huge leap. The supposed Internet of Things (IoT) technologyis evolving

into a foundation for a modern world where humans and their

http://www.nano-ntp.com/

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1428

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

objectscanbecoordinated[1].Theadvancementswillallowthecreationofnew apps as well as

administrations that are likely to make use of the abundance of both physical and digital

substances. The IoT model relies on available communication technology, such as Wi-Fi

Bluetooth, Zig-Bee, among others to name some [2]. But, establishing a suitable and desired

IoT network, which is based upon these different technologies is a difficult and laborious

problem.

IoT devices have the ability to communicate to multiple communication protocols

simultaneously within the IoT network. Some devices require a higher speed

connectioninordertocarryouttheirfunctionseffectively.However,therearedevices with fewer

resources that need connectivity that is low in usage of resources. It is the Zigbee protocol [5]

an omnipresent wireless protocol that helps reduce costs forpower and memory and has seen

widespread use for home manufacturing, automated systems, and in manufacturing. Zigbee is

very dependent on hardware setup since it uses the radio channel to transmit data instead of

the internet. The Zigbee protocol, which offers a range of security measures and options inside

the Zigbee network, is defined by the Zigbee Alliance. The shortcomings and imperfections

present in different Zigbee stacks have been exposed by recent study [37, 46, 53]. The flaws

might be used to launch a denial-of-service attack or send remote executable malware to a

Zigbee-enabled Philips lighting system. Although the latest iterations of the Zigbee protocol

have addressed some security concerns, the scientific community is not giving the protocol

much attention. Thus, it is crucial and very useful to discover security vulnerabilities in Zigbee

protocols.

In order to help IoT developers assess security issues associated with the Zigbee protocol used

for their applications We have developed Z-Fuzzer an open protocolthat is device independent.

simulation system that allows the test of fuzzing in Zigbee protocols. Z-Fuzzer comprises two

primary parts: a fuzzing engine as well as a test harness performing protocols stack. Z-Fuzzer

initially aims at creating superior test scenarios that adhere to protocol packet format

requirements. Thus, we use coverage- based feedback to enhance grammar-based fuzzing[25]

and generate high-qualitytest cases, which we subsequently rank in order of increasing

difficulty. The coverage measure is employed within AFL [58] in our estimation of code

coverage.

We created Z-Fuzzer and tested its efficacyin identifying securityweaknesses. We've picked

two of the most effective protocols fuzzing software tools, BooFuzz [41] and Peach [38], that

will be our test tools to test this technique of fuzzing. Experts in the field Sulley [21] as well

as Peach [38] use protocol fuzzers. BooFuzz replaces them. Peach is an extremely popular

commercial protocol fuzer. In addition to Peach is Zigbee protocols simulation system we use

BooFuzz and Peach. We use the common Zigbee protocol, Z-Stack (29), for fuzzing in order

to test them against Z-Fuzzer.

Three of the vulnerabilities mentioned were given As of the publication date of this article,

CVE IDs with extremely high CVSS scores [20] were still being examined. Our research

provides insight into the vulnerabilities in the Zigbee protocol whenused in a software

simulation environment without actual hardware access. What we provide is as follows:

1429 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Proposed Work:

Z-Fuzzeroffersadevice-independentfuzzingplatformthatsupportsZigbeeprotocols. It

achievesthisbyrunningtheprotocolstack on afullsoftwaresimulatorandutilizing an intermediate

server to facilitate communication between the fuzzing engine and

simulator.Byleveragingcodecoveragestatisticstoprovidefeedbackandimprovethe test-

generation process of the grammar-based fuzzing approach, Z-Fuzzer enhances the quality of

tests generated.

Compared to tools like BooFuzz or Peach, Z-Fuzzer can potentially achieve higher code

coverage with fewer tests. During testing, six previously unknownvulnerabilities were

discovered within Z-Stack, three of which have been classified as high-severity CVE IDs.

Problemstatement:

It's not an easy undertaking to apply fuzzing methods to Zigbee protocols. In the

beginning,fuzzersmaybreak compilerinspection whenaddinginstruments tocodein the Zigbee

protocols source code in the event that it is they are available. Zigbee protocol providers

generally design protocols for specific embedded devices using a certain toolchain for

development [2425. Regarding the availability of protocols, it is common for vendors to

implement checks against compilers within their protocols to block compilers that aren't on

the list of accepted, specifically those that are general- purpose compilers (e.g., GCC and

LLVM) employed by numerous coverage-guided fuzzyers.

The remaining portion of the paper is set up as follows. The duties of fuzzing testing and

Zigbee security analysis are discussed in Section 2. The history of the Zigbee protocol and the

foundations for current protocol fuzzing are given in Section 3. Z- Fuzzer's idea and

implementation are described in Section 4. In Section 5, Z-Fuzzer's performance is analysed

in comparison to two cutting-edge protocols for fuzzers. The drawbacks of the existing model

and the possibility of future improvements are examinedinSection6.Section7endswitha

fewremarksandideasformore research.

2. Related Work

Fuzz testing is a widely employed method for identify security weaknesses with tools like AFL

and its extensions such as AFL++ gaining popularity in recent years for automatic security

analysis. These tools use algorithms for code coverage to guide their mutation-based approach.

However, they do not directly support validation ofthe Zigbee protocol's source code. Due to

the diverse nature of Zigbee protocol implementations bydifferent providers usingvarious

toolchains, compiler inspections tailored to embedded systems are often required. This

presents a challenge for integratingAFL-

likefuzzersthatrelyonuniversalcompilerslikeGCCandLLVMfor instrumentation. Z-Fuzzer

addresses this challenge by incorporating measurement directly into the source code using the

IAR Workbench's embedded compiler, afeature compatible with most Zigbee protocol

vendors. Similar to AFL and other coverage-guided fuzzers, Z-Fuzzer utilizes coverage

measurement techniques to determine edge coverage.

The security flaws in the the Zigbee protocol may be studied in a number of ways.

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1430

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Snout[36],createdbyMikulskisandothers,andZ3Sec[37]byMorgneretal.are systems for

penetration testing, which uses spoofing and packet replaying to identify Zigbeeflaws and

vulnerabilities. Two tools havebeen createdto assess thesecurityof the Zigbee protocol,

specifically in relation to embedded devices: IoTcube [31] and beSTORM (48). Zigator, a

security analysis tool that examines encrypted Zigbee packets to detect specific jamming and

spoofing attempts, has also been proposed by Akestoridis et al. [3]. Security evaluation devices

are black-box techniques that examine and alter data flowing via the Zigbee network in order

to identify security holes in the protocol.

Devices that use different protocols for communication like WiFi, Bluetooth Low Energy

(BLE) as well as Zigbee can coexist in the same space in the Internet of Things system. To

address this the researchers recently released novel attackstrategies that use using the Zigbee

protocol. It is known that the BLE protocol is employed in Cayre et al. (12) to initiate the first

pivoting attack WazaBee that targets Zigbee enabled devices. Bluetooth is a protocol. Since

WiFi as well as Zigbee each use their own 2.4 frequency range, Chi and co. [14] identified a

variety of new risks that could be exploited through hidden jamming. The researchers showed

that attackers might send WiFi packets to interfere with or even completely stop the

connectivity between Zigbee devices.

Unlike the other vulnerability-exploiting methods, Z-Fuzzer looks for unknown flaws in the

source code of the Zigbee protocol rather than in the active Zigbee network and the several

protocols that are part of the same system. The application does not need physical hardware

or a specific understanding of the fundamental hardware architecture. Our results from our

experiments show vulnerability in the protocol stack's top layer may also result in devastating

failures and risks to the IoT applications' capabilities.

Zhao and Co. [10] first presented an IoT mutual authentication solution intended to enhance

security inside IoT devices. In addition to implementing mutual authentication for devices and

gateways, dynamic password generation, this scheme aimstoimprovethe

securityofauthentication. It wasevaluatedusingcalculationsand simulations, showing superior

results in terms of efficiency and security when compared to existing systems. However, it's

important to note that the scheme comes with a few drawbacks since it is unable to take into

account essential properties like the ability to hide, not link ability, and non-traceability.

Discussion

Numerous research studies have examined the possibility of using lightweight

cryptographictools,includingbitswitchfunctionsorhashfunctionsXOR andbitwise XOR, to

meet various requirements. Yet, these research studies do not take into account the need for

solid mutual authentication that is low in computation and communication costs vital to

ZigBee devices. As a result, creating a mutual authentication system that works well is a

significant task for the Internet of Things community. It's also important to be awarethat most

of these solutionsconcentrate on the strength of two-way authentication, ignoring important

factors like anonymity, traceability, and link ability, or improving encryption. Our proposed

method does not just focus on an option for D2TC as well as D2D authentication within the

ZigBee protocolbutisalsoamethodtoimproveencryption.Inaddition,ourstrategy

addressescriticalsecurityfeaturessuch astransactionanonymity aswellaslinkability in the

absence of it as well and the lack of traceability

1431 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

3. Background

Zigbee is a wireless standard technology designed to provide the use of low-cost and low-

power wireless machine-to-machine (M2M) as well as the Internet of Things (IoT) networks.

Zigbee is an open standard that is optimised for low data rate applications andrequires little

power. It is possible, in theory, to combine implementations from several vendors.

Interoperability problems plague Zigbee devices in the real world, where they have been

altered and adapted by several vendors. As opposed to Wi-Fi networks which connect the

endpoints of devices to networks with high speeds, Zigbee supports a much lower rate of data

transfer and utilizes an interconnected network protocol that allows users to eliminate hub

devices and build an autonomous architecture.

With only four layers, ZigBee is an inexpensive wireless sensor network withminimal power

consumption. The control of media access (MAC) layer and the physical (PHY) layer are the

first two levels. The MAC layer performs fundamental radio operations and allows

communication between two devices through a one hop link. Their compliance with IEEE

802.15.4 standard is guaranteed. Additionally, the networks (NWK) layer was created to

handle duties including address management and packet routing. The application (APL) layer,

which is the topmost layer, is where a node in the network performs its main function. It also

ensures the installation and management of safe connections between nodes [21,23]

In the ZigBee protocol, there are three types of key keys that serve to protect the network: (1)

A master secret that is shared by all of the equipment in a ZigBee network is called the network

key, or NWK key for short. It offers encryption capabilities and network-wide encryption.

Fig1:Tyoesof ZIgBee Devices

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1432

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Fig2: ArchitectureofZigBee

NetworkModel

The three main types of topologies seen in ZigBee networks are thought to be star, tree, and

mesh topologies. ZigBee networks often employ mesh or star topologies as their primary

architecture. Trust Centre (TC) is in charge of managing devices linked to the network and

traffic management for mesh-based networks. Endpoints may use the Trust Centre to establish

a network connection. Since the TC is aware of every device in the network, it is responsible

for both setting up and maintaining thenetwork as well as handling the data of each device.

Every ZigBee device must authenticate with the TC during the startup procedure. The purpose

of the TC is to produce a key for encryption for the session and to provide authentication for

all communications between devices. Thus, every ZigBee network has to be equipped with the

TCT. ZigBee devices generally connect to the physical world and other devices within the

network.

Mutationin protocolfuzzing tools.

Various black-box protocol fuzzing methods have been proposed and utilized to generate

structured and logical packets compliant with network protocol standards. These methods

often rely on grammar-based fuzzing techniques. Test inputs are constructed from scratch,

adhering to input requirements that specify information

formatandintegrityrestrictions.Protocolfuzzersutilizeabstractrepresentationblocks to construct

protocol frames, a method sometimes referred to as block-based representation. These blocks

consist of basic or nested blocks compatible with the protocol's format. By employing a script

for format definition, the fuzzer canrepresent the protocol's message using basic data organized

according to their positions.

The fuzzer typically modifies only one message field during each iteration of the

fuzzingprocess.Atransformationinstanceofmanystate-of-the-artprotocolfuzzing tools is

depicted in Figure 3. Fuzzing a command which triggers various brand- specificcodes resulted

1433 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

inTestCase1.Thefuzzerreverts thisfieldtoitsoriginalvalue of zero after allowing sufficient time

for the modification to take effect. It then proceeds to modify the subsequent fields. In the

second test scenario, the Command Identifier (CmdID) field is fuzzed, executing a new line in

the command using the value 0x05.

Assumptionsand Model Threat

The goal of our paper is to assist IoT developers in better understanding the security risks

associated with the Zigbee protocol. By providing insights into these risks, developers can

make informed decisions when utilizing Zigbee for constructing IoT applications. To mitigate

these security risks, programmers should take necessary actions either before or during the

development process.

Inourframework,weassumethattheowneroftheplannedprotocolimplementation's source code is

the user utilizing our framework. We also presume that the user possesses all essential

information about the embedded device they are using, including details such as the type of

CPU, peripheral interrupts, lines of code for peripherals, and processor model. This

information is crucial for implementing the stack protocols tested in our simulator.

We are currently focused on generating high-quality Zigbee Cluster Library (ZCL) messages

for fuzzing the Zigbee protocol, given their importance for device functionality. Our approach

aims to assist Internet of Things (IoT) developers in identifyingimproper ZCLmessages

thatcouldleadto protocolstackexecution issues.

Ourthreatmodelassumesthattheuser'sZigbee-basednetworkisatargetforpotential adversaries. It

is assumed that attackers have the capability to access the victim's Zigbee network or possess

the network key, enabling them to gain unauthorized access through false ZCL messages. This

implies that ZCL messages sent to the victim's IoT device may be tampered with or encrypted

by the attacker.

4. PROPOSED MODEL AND DESIGN

Wewilltalkabouttheintricaciesof Z-Fuzzer'screationandapplicationinthissection. This article's

first section will go through the problems with the Z-Fuzzer idea andtheir fixes. Then, we

present the protocol fuzzing algorithm of Z-Fuzzer. We then present the details of how to

implement the key elements in Z-Fuzzer to tackle the issues.

Z-FuzzerDesign:

Z-Fuzzer seeks to identify vulnerabilities in the Zigbee protocol without the need for real

embedded devices. In other words, to mimic how the Zigbee protocol functions in

anappropriatesoftware-basedenvironment.Duetodifferentdeviceandsystemsetups, most

existing IoT software for software simulation has problems executing the Zigbee protocol.

Different embedded devices operate with different peripheral disruptions to trigger different

actions in the Zigbee protocol. Regretfully, embedded simulators lack the necessary expertise

to simulate every kind of peripheral interrupt.Additionally,the Zigbee protocol typicallyruns

on a hardware-embedded device. It can be modified to suit specific embedded devices that

manufacturers require that aren't compatible with all simulators available. So, it is necessary

to build a suitable environment for executing software to mimic peripheral interrupts to

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1434

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

simulate peripheral interrupts, without taking into account the hardware used in specific

embedded devices.

To meet these requirements, we have developed Z-Fuzzer comprising two main elements: a

test harness and a mutation engine. The test harness includes an analysis tool for generating

coverage reports to calculate cumulative coverage data. It also features an execution engine

responsible for running applications that utilize Zigbee protocol stacks using the generated test

cases within an emulator.

Utilizing the coverage input, the test harness maintains interesting test cases, leading to an

increasein coverageand enabling more effectivefuzzing. Additionally, wehave implemented

proxy servers within the execution engine to bridge the gap between simulators and the

mutation engine, allowing for testing without the need to join a complete Zigbee network.

Algorithm:

AlgorithmforZ-Fuzzer

Input:ProgrammebeingtestedP,inputformscriptS

Output:Thecurrentcumulativeseedsthatcausetheprogramtocrash code coverage

current_coverage

1:crash<-0

2:block<-Start(S) 3: high_rated <- 0

4:current_coverage<-0

5: repeat

6:if high_rated is not 0 then sorted<-select(high_rated) seed<- stack(sorted)

if sorted.was_fuzzed then high_rated <- high_rated \ sorted else

test_case<-Choose(block) seed <- stack(test_case)

7: end

ImplementationDetails

The fuzzing procedure is a core component of the Z-Fuzzer framework,

whichconsistsoffourfundamentalelements: anoffline parser, atestcase generationengine, an

execution engine, and a coverage report parser. Additionally, it includes an online proxy server

and a stack driver that facilitates the execution of protocols.

The message fields used to create the test case will be mutated depending on their chosen

sequence. If a test case that is preferred is selected, the engine is able to skip the transformation

of interesting values when there is a skip_mutation flag. In addition, the other basic data

representing the spaces below are changed sequentially in sequence. Z-Fuzzer can fuzzy initial

information by piecing together the standard test scenario based on the selection order of the

basic data. Z-Fuzzer may choose the valuesinasequence tobechangedif

theuserhasspecifiedthemessagefieldcontains numbers inside the formatting script. The

mutation engine modifies it in additional situations by using the pre-defined fuzzing library.

1435 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Once each message field has been altered entirely, the test case that has garnered a great deal

of popularity is removed from the corpus. If all of the tests in the text are fuzzed and no

favourite test cases remain unfinished, Z-Fuzzer can finish the fuzzing operation entirely. This

mutated input then gets transmitted directly to an execution engine to test during runtime.

PerformingaProtocol.

Z-Fuzzer consists of two main components: a stack driver, responsible for executing the

Zigbee protocol, and a proxy server. The proxy server serves to facilitate communication

between the mutation engine and the simulator via socket connection. It locally hosts the proxy

server to enable transmission of mutations to the simulator, while also saving received

messages to a file for later processing through the protocol stack.

Additionally, we have developed an engine for stack drivers to configure the system properly

by analyzing the source code of the protocol stack intended for implementation.

EVALUATION

The Z-Fuzzer protocol fuzzing technique aims to provide high-quality testing inputs that

adhere to the protocol's frames. By comparing it with two widely used advanced protocol

fuzzers, BooFuzz and Peach, we demonstrate the uniqueness of Z-Fuzzer. Both BooFuzz and

Peach have been extensively utilized in previous research studies.

One significant distinction is that BooFuzz and Peach do not support Zigbee or other IoT

wireless protocols, such as Bluetooth. To address this limitation, we integrated Zigbee and

Bluetooth protocols into our simulator platform, allowing Z-Fuzzer to interface with both

protocols.

When it comes to the evaluation criteria, we carried out our research based on variables

suggested by Klees and co. [32]. Particularly, we assessed the vulnerability count and the

effectiveness of fuzzing during 24 hours of experimentation with fuzzing. Regarding

vulnerabilities, We assessed the efficacyof fuzzers on four fronts: distinct vulnerabilities, The

relation between the amount of tests, as well as theamount of vulnerabilities found and also

the connection between the level of protection for line as well as the amount of vulnerabilities

identified and the vulnerabilities found on real IoT devices. Four variables wereassessed to

evaluate the effectiveness of fuzzers. These include the number of tests with a system-specific

nature as well as the time of edge coverage of the test, and also the duration of time- to-execute

coverage.

Experiment Setup. All of our tests were conducted on a Windows 10 Pro system that has a 32

GB RAM and an Intel(r) CoreTM i7-6700 CPU running at 3.40 GHz. Additionally, version

8.3 of IAR Embedded Workspace for ARM was installed[29]. Texas Instruments created Z-

Stack using many project codebases. There is also the source code accessible.

Table1.Totalnumberof crashesandunique vulnerabilities.

Fuzzer TotalCrashes UniqueVulnerabilities

BooFuzz 65 3

Peach 8 4

Z-Fuzzer 122 8

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1436

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

UniqueVulnerabilities.

We used the information in the call stack to deduplicate the crashes observed. The simulator

provides a trace of the call stack for a crash in memory. This includes

informationabouttheroutinesthatwereexecuted,linenumbers,particularstatements in the

functions, as well as statements in the functions and. For locating a crash, we analyzed the

name of the function the line number and memory address. Stack hashing may thus result in

bug overcounting. To prevent overcounting, we closely

inspecttheoriginalcodeofeveryvulnerability. Inoursituation,wepersonallyreview the function

call trail in the source code of each vulnerability is to ensure that there are no instances of the

overcount of vulnerabilities. The experiment's findings are shown in Table 1. It demonstrates

that compared to the other two fuzzers, the Z- Fuzzer can identifya greater number of distinct

vulnerabilities and crashes. Bycross- checking, all vulnerabilities have also been verified.

BooFuzz is limited to reproducing a single vulnerability. Peach Fuzzer and Z-Fuzzer test

scenarios can replicate any vulnerability. Every vulnerability was reported to both the vendors

and CVE. CVE IDs and CVSS ratings (7.5-8.2) are high for three of them.

Psudeo code typedefstruct

{

unit8discComplete; unit8 cmdtype;4 unit8 numCmd; unit8 *pCmdID;

}zclDiscoverCmdsCmdRsp_t;

saticvoid

{

if9pDiscoverRSPcmd!=Null)

{

unit8 i;

pDiscovercmd<-discComplete=*pBuff++ for(i=0,i<numcmds; i++)

{

PDiscover->pCmdID[i]=*pBuf++;

}

}

return((void*)

}

Most protocol suppliers substitute common functions of the C library with their own

customised APIs. It is because embedded devices have limited computing and

memorypower.ThismakesitdifficulttorunallC-standardAPIlibraries,likePC software. This

customization can also pose security threats, in addition to the bugsthat may exist within the

implementation of the protocol. The Zigbee vendors are responsible for anyvulnerabilities in

the protocol. Securityproblems can be mitigated or prevented entirely by the vendor's response

1437 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

to reported security issues. IoT developers might not know about these potential problems

until after they have completed the production. We were also motivated by this observation to

suggest Z- Fuzzer to developers so they could be aware of the potential Zigbee stack issues

earlier in the development process. This way, they would have the opportunityto take the

necessary actions and avoid these problems before waiting for feedback from the protocol

vendor.

Fuzzing Performance

Each fuzzer was subjected to a series of experiments in order to determine the variation of the

test case number, execution time, edge and line coverage over time. All fuzzers were given the

same format of protocol frames. The fuzzing processes were therefore initialized using the

same protocol frame. The fuzzers use the script to format the frames and generate the test cases

using the predefined or user-specific fuzzing dictionary.

Fuzzer Total # of

Unique Test

Cases

Test Case

Exec. Time (ms)

LineCoverage EdgeCoverage

Z-Fuzzer 62458 541 98776.21% 78184.23%

BooFuzz 17542 645 85472.31% 68772.31%

Peach 19845 684 83069.12% 58564.21%

Weinitiallyexaminedtheuniquenessproducedbyeachfuzzer.Table3illustratesthat Z-Fuzzer can

generate six times as many distinct test cases as the other two fuzzers. Testcases

arecategorizedbasedonthe ZCLheader'sfield commandidentification,as specified in the Zigbee

Protocol Standard, enabling differentiation of various fuzzers in terms of test case creation.

While BooFuzz or Peach can generate only 35 of the 308 distinct test case types generated by

Z-Fuzzer.

Manytest cases also provide incremental coverage, making it desirable to retain them for

further mutations. For example, if the field framework controls are kept at 0x08,Z-Fuzzer may

generate the message seen in Figure 3.

Additionally, test case execution times were assessed on average. Z-Fuzzer's overall execution

time is 541 milliseconds per test, as indicated in Table 3's third column. This represents a

14.9% and 13.4% increase in execution speed compared to Peach and BooFuzz, respectively.

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1438

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Fig. 9. Fuzzers achieved line coverage and edge cover over 10 runs. The median test case

number is represented by the x-axis.

5. Conclusion

Fuzzer has better code coverage than BooFuzz or Peach, thanks to the test cases generated

based on coverage. With the feedback on coverage, the interesting values can be recorded and

used to guide the test case generation process. This allows for more detailed code to be

accessed. ZCL has a number of functions that handle processing the upper-level application

object's payload. It's possible that in order to execute more intricate code inside those methods,

they need that the test case pass certain condition checks. BooFuzz and Peach ignore the

message values that maymeet such dependency constraints during their mutation processes.

Z-Fuzzer, on the other hand, can deduce such a relationship from runtime feedback. All of the

previous fields and mutant primitives are kept for further fuzzing, satisfying these conditions.

This covers more code and edges.

We have already implemented the BooFuzz fuzzing engines on our simulation platform. In the

future, In our effort, we want to include additional simulation settings. This also applies to the

proxy servers that other fuzzers make use of. To implementthe Zigbee protocol, they may

transmit their test cases through the Internet. We can also apply our test-case generating engine

to existing embedded fuzzers, as HALucinator[16]. After that, they may test Zigbee protocols

and get acquainted with the Zigbee session format.

References
1. Orfanos, V.A.; Kaminaris, S.D.; Papageorgas, P.; Piromalis, D.; Kandris, D. A Comprehensive

Review of IoT Networking Technologies for Smart HomeAutomation Applications. J. Sens.

Actuator Netw. 2023, 12, 30. [CrossRef]

2. D.SPA.16 Rev. 1.0, IST-2002-507932 ECRYPT; YearlyReport on Algorithms and Keysizes

(2005). European Network of Excellence in Cryptology. 2006.

3. Traore, M. Analyse des biais de RNG pour les mécanismes cryptographiques et applications

1439 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

industrielles. In Cryptographie et Sécurité [cs.CR]; Université Grenoble Alpes: Saint-Martin-

d’Hères, France, 2022; p. 190.

4. Cryptographic Key Length Recommendations. Available online: http://www.keylength.com

(accessed on 1 January 2020).

5. FIPS 197; Advanced Encryption Standard (AES). National Institute of Standards and

Technologies: St. Andrews, SC, USA, 2001.

6. NIST Special Publication 800-57 Draft; Recommendation for KeyManagement. National

Institute of Standards and Technologies: St. Andrews, SC, USA, 2006.

7. NIST Special Publication 800-67 Version1; Recommendation for the Triple DataEncryption

Algorithm (TDEA) Block Cipher. National Institute of Standards and Technologies: St.

Andrews, SC, USA, 2004.

8. Lee, J.Y.; Lin, W.C.; Huang, Y.H. A lightweight authentication protocol for internet of things.

In Proceedings of the 2014 International Symposium on Next- Generation Electronics (ISNE),

Tao-Yuan, Taiwan, 7–10 May 2014; pp. 1–2.

9. Kulkarni, S.; Ghosh, U.; Pasupuleti, H. Considering security for ZigBee protocol using message

authentication code. In Proceedings of the 2015 Annual IEEE India Conference (INDICON),

New Delhi, India, 17–20 December 2015; pp. 1–6.

10. Zhao, G.; Wang, X.; Si, J.; Long, X.; Hu, T. A novel mutual authentication scheme for internet

of things. In Proceedings of the 2011 International Conference on

Modelling,IdentificationandControl(ICMIC),Shanghai,China,26–29June2011;pp. 563–566.

11. Chu, F.; Zhang, R.; Ni, R.; Dai, W. An improved identity authentication scheme for internet of

things in heterogeneous networking environments. In Proceedings of the 2013 Sixteenth

International Conference on Network-Based Information Systems,

Gwangju,RepublicofKorea,4–6September2013;pp. 589–593.

12. Gaikwad, P.P.; Gabhane, J.P.; Golait, S.S. 3-level secure Kerberos authentication for smart home

systems using IoT. In Proceedings of the 2015 First International Conference on Next Generation

Computing Technologies (NGCT), Dehradun, India, 4–5 September 2015; pp. 262–268.

13. Ashibani, Y.; Kauling, D.; Mahmoud, Q.H. A context-aware authentication framework for smart

homes. In Proceedings of the 2017 IEEE Thirtieth Canadian

ConferenceonElectricalandComputerEngineering(CCECE),Windsor,ON,Canada, 30 April–3

May 2017; pp. 1–5.

14. Mishra, D.; Vijayakumar, P.; Sureshkumar, V.; Amin, R.; Islam, S.H.; Gope, P. Efficient

authentication protocol for secure multimedia communications in IoT- enabled wireless sensor

networks. Multimed. Tools Appl. 2018, 77, 18295–18325. [CrossRef]

15. Alshahrani, M.; Traore, I. Secure mutual authentication and automated access control for IoT

smart home using cumulative Keyed-hash chain. J. Inf. Secur. Appl. 2019, 45, 156–175.

[CrossRef]

16. Chang,C.-C.;Le,H.-D.AProvablySecure,Efficient,andFlexibleAuthentication Scheme for Ad

hoc Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2015, 15, 357–366. [CrossRef]

17. Alalak, S.; Ahmed, Z.; Abdullah, A.; Subramiam, S. Aes and ecc mixed for zigBee wireless

sensor security. Int. J. Electron. Commun. Eng. 2011, 5, 1224–1228.

18. Mirsaraei, A.G.; Barati, A.; Barati, H. Asecure three factorauthentication scheme for IoT

environments. J. Parallel Distrib. Comput.2022, 169, 87–105. [CrossRef]

19. Gong, B.; Zheng, G.; Waqas, M.; Tu, S.; Chen, S. LCDMA: Lightweight Cross- domain Mutual

Identity Authentication Scheme for Internet of Things. IEEE Internet Things J. 2023. [CrossRef]

20. Amor, A.B.; Jebri, S.; Abid, M.; Meddeb, A. A secure lightweight mutual authentication scheme

in social industrial IoT environment. J. Supercomput. 2022. [CrossRef]

21. Yang, B. Studyon security of wireless sensor network based on ZigBee standard. In Proceedings

of the International Conference on Computational Intelligence and Security, Beijing, China, 11–

14 December 2009; pp. 426–430.

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1440

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

22. Qianqian, M.; Kejin, B. Security analysis for wireless networks based on ZigBee. In Proceedings

of the 2009 International Forum on Information Technology and Applications, Chengdu, China,

15–17 May 2009; pp. 158–160.

23. Misic, J.; Misic, V. Wireless Personal Area Networks: Performance, Interconnections and

Security with IEEE, 2008, 802.15.4; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2008.

24. Varghese, J.M.; Rao, N.; Varghese, V.T. Asurveyof thestateofthe art in ZigBee. Int. J. Cybern.

Inform. 2015, 4, 145–155. [CrossRef]

25. Haque, K.F.; Abdelgawad, A.; Yelamarthi, K. Comprehensive Performance Analysis of ZigBee

Communication: An Experimental Approach with XBee S2C Module. Sensors 2022, 22, 3245.

[CrossRef] [PubMed]

26. Amin, R.; Islam, S.H.; Biswas, G.P.; Khan, M.K.; Leng, L.; Kumar, N. Design of an anonymity-

preserving three factor authenticated key exchange protocol forwireless sensor networks.

Comput. Netw. 2016, 101, 42–62. [CrossRef]

27. Gope, P.; Hwang, T. A realistic lightweight anonymous authen-tication protocol forsecuringreal-

timeapplicationdataaccessinwirelesssensornetworks. IEEETrans. Ind. Electron. 2016, 63, 7124–

7132. [CrossRef]

28. Li, X.; Ibrahim, M.H.; Kumari, S.; Sangaiah, A.K.; Gupta, V.; Choo, K.K.R. Anonymous mutual

authentication and keyagreement scheme for wearable sensors in wireless body area net-works.

Comput. Netw. 2017, 129, 429–443. [CrossRef]

29. Wu, F.; Li, X.; Xu, L.; Kumari, S.; Karuppiah, M.; Shen, J. A lightweight and privacy-preserving

mutual authentication scheme for wearable devices assisted by cloud server. Comput. Electr.

Eng. 2017, 63, 168–181. [CrossRef]

30. Ankur, G.; Meenakshi, T.; Jamil, S.T.; Aakar, S. A lightweight anonymous user authentication

and key establishment scheme for wearable devices. Comput Netw. 2019, 149, 29–42.

31. Fotouhi, M.; Bayat, M.; Das, A.K.; Far, H.A.N.; Pournaghi, S.M.; Doostari, M. A lightweight

and secure two-factor authentication scheme for wireless body area networks in health-care IoT.

Comput. Netw. 2020, 177, 107333. [CrossRef]

32. Dave Aitel. 2002. The advantages of block-based protocol analysis for security testing. Immunity

Inc., 105 (February2002), 106.

33. Dimitrios-Georgios Akestoridis, Madhumitha Harishankar, Michael Weber, and Patrick Tague.

2020. Zigator: Analyzing the security of Zigbee-enabled smart homes. In Proceedings of the 13th

ACM Conference on Security and Privacy in Wireless and

MobileNetworks(WiSec’20).AssociationforComputingMachinery,NewYork,NY, 77–88.

https://doi.org/10.1145/3395351.3399363

34. Zigbee Alliance. August 5, 2015. Zigbee Specification. https://zigbeealliance.org/wp-

content/uploads/2019/11/docs-05-3474-21-0csg-zigbee- specification.pdf.

35. ZigbeeAlliance.January14,2016.ZigbeeClusterLibrarySpecification.

https://zigbeealliance.org/wp-content/uploads/2019/12/07-5123-06-zigbee-cluster- library-

specification.pdf.

36. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie

Bursztein,JaimeCochran,ZakirDurumeric,J.AlexHalderman,LucaInvernizzi,Michalis Kallitsis,

Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,Chad Seaman, Nick

Sullivan, Kurt 37. Thomas, and Yi Zhou. 2017. Understandingthe Mirai botnet. In Proceedings

of the 26th USENIX Security Symposium (USENIX Security’17). USENIX

 Association, 1093–1110. https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/antonakakis.

38. Vaggelis Atlidakis, Roxana Geambasu, Patrice Godefroid, Marina Polishchuk, and Baishakhi

Ray. 2020. Pythia: Grammar-Based Fuzzing of REST APIs with Coverage-guided Feedback and

Learning-based Mutations. arxiv:2005.11498 [cs.SE].

39. Greg Banks, Marco Cova, Viktoria Felmetsger, Kevin Almeroth, Richard Kemmerer,and

1441 Pushpa Latha Thumma et al. Trust Aware Ensemble Secure Protocol...

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

Giovanni Vigna.2006. SNOOZE: Toward astatefulnetworkprotocol fuzzer. In Proceedings of the

9th International Conference on Information Security (ISC’06). Springer, Berlin, 343–358.

40. Fabrice Bellard.2005.QEMU,a fastand portabledynamictranslator. InUSENIX Annual Technical

Conference, FREENIX Track, Vol. 41. USENIX Association, 46.

41. Romain Cayre, Florent Galtier, Guillaume Auriol, Vincent Nicomette, Mohamed Kaâniche, and

Géraldine Marconato. 2021. WazaBee: Attacking Zigbee networks by diverting Bluetooth low

energy chips. In Proceedings of the 51st IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’21). IEEE, Piscataway, NJ.

42. Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search. In Proceedings

of the 39th IEEE Symposium on Security and Privacy (S&P’18). IEEE, Piscataway, NJ, 711–

725. DOI: https://doi.org/10.1109/SP.2018.00046

43. Zicheng Chi, Yan Li, Xin Liu, Wei Wang, Yao Yao, Ting Zhu, and Yanchao Zhang. 2020.

Countering cross-technology jamming attack. In Proceedings of the13th ACM Conference on

Security and Privacy in Wireless and Mobile Networks (WiSec’20). Association for Computing

Machinery, New York, NY, 99–110.

44. Catalin Cimpanu. April 12, 2018. Over 65,000 Home Routers Are Proxying Bad Traffic for

Botnets, APTs. https://www.bleepingcomputer.com/news/security/over-65-000-home-routers-

are-proxying-bad-traffic-for-botnets-apts/.

45. Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David Fritz,

Christopher Kruegel, Giovanni Vigna, Saurabh Bagchi, and Mathias Payer. 2020. HALucinator:

Firmware re-hosting through abstraction layer emulation. In Proceedings of the 29th USENIX

46. Security Symposium (USENIX Security’20). USENIX Association, Berkeley,

 CA, 1201–1218.

https://www.usenix.org/conference/usenixsecurity20/presentation/clements. IEEE C/LM

LAN/MAN Standards Committee. 2020. IEEE Standard for Low-RateWireless Networks.

47. Baojiang Cui, Shurui Liang, Shilei Chen, Bing Zhao, and Xiaobing Liang. 2014.A novel fuzzing

method for Zigbee based on finite state machine. International Journal of Distributed Sensor

Networks 10, 1 (2014), 762891.

48. Baojiang Cui, Ziyue Wang, Bing Zhao, and Xiaobing Liang. 2016. CG-Fuzzing:A

comprehensive fuzzy algorithm for ZigBee. International Journal of Ad Hoc and Ubiquitous

Computing 23, 3–4 (2016), 203–215.

49. National Vulnerability Database. 2021. NVD Vulnerability Severity Ratings.

https://nvd.nist.gov/vuln-metrics/cvss.

50. Ganesh Devarajan. 2007. Unraveling SCADA Protocols: Using Sulley Fuzzer. Defon 15

Hacking Conference.

51. Bo Feng, Alejandro Mera, and Long Lu. 2020. P2IM: Scalable and hardware-

independentfirmwaretestingviaautomaticperipheralinterfacemodeling.In Proceedings of the 29th

USENIX Security Symposium (USENIX Security’20). USENIX Association, 1237–1254.

52. Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combiningincrementalstepsoffuzzingresearch.InProceedingsofthe14thUSENIX Workshop on

Offensive Technologies (WOOT’20). USENIX Association.

53. Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-based whitebox

fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’08). Association for Computing Machinery, New York, NY,

206–215.

54. Serge Gorbunov and Arnold Rosenbloom. 2010. Autofuzz: Automated network protocol fuzzing

framework. International Journal of Computer Science and Network Security (IJCSNS) 10, 8

(2010), 239.

55. Fortune Business Insights. July 2019. Internet of Things (IoT) Market

Analysis.https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-

 Trust Aware Ensemble Secure Protocol… Pushpa Latha Thumma et al. 1442

Nanotechnology Perceptions Vol. 20 No. S15 (2024)

market-100307.

56. Texas Instruments. 2006. Z-Stack 3.0 Developer's Guide. https://software-

dl.ti.com/simplelink/esd/plugins/simplelink_zigbee_sdk_plugin/1.60.00.14/docs/zigbe

e_user_guide/html/zigbee/developing_zigbee_applications/z_stack_developers_guide/ z-stack-

overview.html.

57. TexasInstruments.2013.CC2538.http://www.ti.com/product/CC2538.

58. George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating

fuzz testing. In Proceedings of the 25th ACM SIGSAC Conference on Computer and

Communications Security (CCS’18). Association for Computing Machinery, New York, NY,

2123–2138.

59. David Lodge. 2016. Steal Your Wi-Fi Key from Your Doorbell? IoT

WTF!https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your- doorbell-

iot-wtf/.

60. Zhengxiong Luo, Feilong Zuo, Yuheng Shen, Xun Jiao, Wanli Chang, and Yu Jiang. 2020. ICS

protocol fuzzing: Coverage guided packet crack and generation. In Proceedings of the 57th

Annual Design Automation Conference (DAC’20). ACM/IEEE, Piscataway, NJ, 1–6. DOI:

