
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com  

 

Nanotechnology Perceptions 20 No. S15 (2024) 1552-1565                         

Hybrid Sand Scorpion and 

Thunderstrike Optimization: A Novel 

Approach to Self-Adjusting Clustering 

and Energy Management in Wireless 

Sensor Networks  

K. Nirmal1, Dr. S. Murugan2 

 
1Research Scholar, Department of Computer and Information Science, Annamalai 

University, India, nirmalphd21@gmail.com 
2Assistant Professor, Department of Computer Science, Dr. M.G.R. Government Arts and 

Science College for Women, India, smuruganmpt79@gmail.com  

 

 
Wireless Sensor Networks (WSNs) face critical challenges in energy efficiency, dynamic 

clustering, and adaptability to changing network conditions. To address these challenges, this paper 

proposes a novel Hybrid Sand Scorpion and Thunderstrike Optimization (HSSTO) algorithm. 

Inspired by the adaptive hunting strategies of sand scorpions and the rapid strike precision of 

thunder, the HSSTO algorithm synergizes environmental adaptation with swift decision-making to 

optimize clustering and energy management in WSNs. The Sand Scorpion component focuses on 

environmental sensing and adaptive resource allocation, while the Thunderstrike mechanism 

ensures rapid adjustments to network dynamics, minimizing energy consumption during critical 

events. Extensive simulations demonstrate the effectiveness of HSSTO in enhancing network 

performance, achieving up to 40% improvement in energy efficiency and 35% reduction in cluster 

reformation time compared to state-of-the-art methods. The proposed algorithm also exhibits 

superior scalability and robustness, ensuring prolonged network lifetime under varying 

environmental and operational conditions. This work presents a transformative approach to self-

adjusting clustering in WSNs, paving the way for more sustainable and efficient sensor networks. 

Keywords: Wireless Sensor Networks, Hybrid Optimization, Sand Scorpion Algorithm, 

Thunderstrike Algorithm, Dynamic Clustering, Energy Management, Adaptive Resource 

Allocation, Network Scalability, Energy Efficiency, Robustness.  

 

 

1. Introduction 

Wireless Sensor Networks (WSNs) have become pivotal in various applications, including 

environmental monitoring, healthcare, industrial automation, and smart cities. These networks 

consist of distributed sensor nodes that collaboratively gather and transmit data to a central 

unit. However, the limited energy resources of sensor nodes pose significant challenges to the 

efficiency and longevity of WSNs. Efficient clustering and energy management are crucial for 
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addressing these challenges, as they help optimize resource utilization, reduce communication 

overhead, and prolong network lifetime. 

Existing clustering algorithms often struggle with dynamic environmental changes, uneven 

energy consumption, and scalability issues. While bio-inspired optimization techniques have 

shown promise in tackling these challenges, most fail to simultaneously balance adaptability 

to environmental conditions and rapid response to sudden changes in the network. To bridge 

this gap, we propose the Hybrid Sand Scorpion and Thunderstrike Optimization (HSSTO) 

algorithm, a dual-inspired approach that leverages the adaptive behavior of sand scorpions and 

the rapid response dynamics of thunder. 

The Sand Scorpion Optimization component emulates the sensory precision of sand scorpions, 

which detect subtle environmental changes and adapt their behavior to optimize resource 

usage. This feature ensures that clusters are formed dynamically based on environmental and 

network conditions. Complementing this, the Thunderstrike Optimization component mimics 

the swift and decisive nature of thunder strikes, enabling rapid cluster reformation and load 

balancing during critical events or sudden network disruptions. 

This paper explores the design and implementation of the HSSTO algorithm, focusing on its 

capability to address key challenges in WSN clustering and energy management. The main 

contributions of this work are: 

• A hybrid optimization framework that combines environmental adaptation and rapid 

decision-making for dynamic clustering in WSNs. 

• A detailed evaluation of the algorithm’s performance in terms of energy efficiency, 

cluster stability, and scalability under varying conditions. 

• A comparative analysis with state-of-the-art clustering algorithms, showcasing the 

superiority of HSSTO in achieving prolonged network lifetime and reduced energy 

consumption. 

The remainder of this paper is organized as follows: Section 2 discusses related work. Section 

3 details the proposed HSSTO algorithm. Section 4 presents the experimental setup and 

results. Section 5 concludes the paper with future research directions. 

 

2. RELATED WORKS 

Advanced clustering protocols addressed the "hotspot" problem, where nodes near cluster 

heads drain energy faster due to high traffic [1]. These protocols employed gradient-based 

metrics and predictive models for adaptive load distribution, ensuring longer network 

lifespans. Centralized Clustering Protocol utilized a centralized controller to optimize cluster 

head (CH) selection, factoring in energy levels, distance to the base station, and node density 

[2]. Simulation results demonstrated a 20–30% increase in network lifetime compared to 

decentralized approaches. An innovative routing framework focused on sustainable clustering 

strategies, where machine learning predicted node energy depletion to preemptively rotate 

cluster heads [3]. This improved network stability and reduced maintenance costs. 

Energy-Efficient and Reliable Clustering Protocol (ERCP) achieved balanced energy 
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consumption across nodes by incorporating fuzzy logic for CH selection, using residual 

energy, node degree, and proximity as parameters [4]. The protocol also enhanced reliability 

by integrating error-correction codes during data transmission. Combining edge-based AI with 

WSNs, this approach leveraged deep learning for context-aware clustering decisions, 

improving adaptability in dynamic environments [5]. This framework excelled in smart cities 

and environmental monitoring scenarios. Power-Efficient Cluster-Based Routing (PECR) 

algorithm used multi-layered clustering with alternating main cluster heads to reduce 

redundancy and minimize energy overhead [6]. The integration of real-time energy monitoring 

further extended the operational life of the network. 

A hybrid framework merged convolutional neural networks (CNNs) with evolutionary 

algorithms like ant colony optimization, resulting in significant improvements in both data 

throughput and energy utilization across varying network topologies [7]. The proposed 

multicast routing protocol adapted to real-time network changes using dynamic deep 

reinforcement learning. It balanced load across CHs while maintaining high data delivery rates 

even under heavy traffic [8]. Secure and Efficient Energy Protocols enhanced data integrity 

through lightweight cryptographic methods embedded within clustering algorithms [9]. Secure 

data transmission was achieved without compromising energy efficiency, particularly for 

healthcare monitoring systems. 

LEACH's improved variants incorporated novel CH rotation schemes based on predicted 

energy trends and node density clustering, achieving over 40% better performance in high-

density networks [10]. Combining techniques such as particle swarm optimization and whale 

optimization, these algorithms offered dynamic adaptability for CH selection in energy-

constrained and heterogeneous networks [11]. Blockchain-enabled protocols addressed data 

tampering risks while balancing energy consumption. These were particularly effective in 

scenarios requiring decentralized data validation, such as disaster monitoring [12]. 

With 5G compatibility, these clustering models offered low-latency and energy-efficient 

routing for IoT applications. Integration with 5G edge devices enabled real-time analytics and 

dynamic CH selection [13]. Reinforcement learning-based clustering frameworks 

incorporated reward mechanisms for energy-efficient CH rotation and fault-tolerant routing 

under varying environmental stresses [14]. Advanced IoT-WSN models utilized intelligent 

clustering to tackle real-time challenges such as high-speed data aggregation, dynamic routing, 

and low-power operations [15]. These systems were particularly impactful in industrial IoT 

deployments. 

 

3. PROPOSED METHODOLOGY 

The Hybrid Sand Scorpion and Thunderstrike Optimization for Self-Adjusting Clustering in 

Wireless Sensor Networks method aims to dynamically adjust clustering mechanisms and 

optimize energy management by combining the strengths of two optimization algorithms: 

Sand Scorpion Optimization (SSO) and Thunderstrike Optimization (TSO). An overall 

architecture of proposed model is shown in Fig 1. 
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Figure 1: Overall Architecture of Proposed HSSTO for Self-Adjusting Clustering 

Step 1: Initial Network Setup 

1.1 Node Deployment 

The deployment of nodes in a wireless sensor network is typically modeled as a random 

process within a defined network area. The network area is a square or rectangular region, and 

sensor nodes are deployed randomly within this region. Each sensor node has a limited energy 

supply and may vary in terms of initial energy capacity. Let the area of the network be denoted 

as A, and the number of sensor nodes as N. The position of each node i (where i ∈ {1,2, … , N}) 

is represented by its Cartesian coordinates: 

Pi = (xi, yi) where 0 ≤ xi ≤ Ax and 0 ≤ yi ≤ Ay                          (1) 

where Ax and Ay are the dimension of the area in the x and y directions, respectively. The base 

station (BS) is positioned at a fixed location, say PBS = (xBS, yBS). 

1.2 Parameters Setup 

For each sensor node, we define the following parameters: 

Energy consumption per node: Each node consumes energy during its operation. The energy 

consumption for transmitting a message Etxcan be modeled as: 

Etx = ϵtx ∙ dn                                                             (2) 
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where: ϵtx is the energy required to transmit one bit of data per unit distance. d is the distance 

between the node and the base station (or cluster head). n is a path loss exponent, typically 

between 2 and 4, depending on the environment (free-space, multipath, etc.). The energy 

consumption for receiving data, Erx, is typically constant and independent of the distance: 

 Erx = ϵrx ∙ L                                                            (3) 

where: ϵrx is the energy required to receive one bit of data. L is the message length in bits. 

Initial energy levels: The initial energy Ei
0 of each node is given as: 

Ei
0 = Emax for all nodes i ∈ {1,2, … , N}                                    (4) 

where Emax is the maximum initial energy of each node (a constant). Some node may be pre-

configured with more energy (e.g., high-powered nodes or sink nodes), while others have 

lower energy levels. 

Step 2: Pre-Processing and Initialization 

2.1 Initialization of Clusters 

Random Cluster Head Assignment: Initially, a random selection of sensor nodes is made to 

serve as CHs. This can be done by selecting a node randomly or based on some predefined 

probability distribution. Let N be the total number of sensor nodes, and C ⊂ N represent the 

set of initial cluster heads, where |C| is the number of cluster heads: 

C = {i1, i2, … , ik} where k ≪ N                                      (5) 

Each node in C is randomly chosen, or probabilistic method like LEACH (Low-Energy 

Adaptive Clustering Hierarchy) can be used, where a node’s probability of becoming a cluster 

head is proportional to its residual energy Ei. 

2.2 Energy Level Check 

Cluster Head Selection Based on Energy: Nodes with higher energy are preferred as cluster 

heads, as they are capable of handling more energy-intensive tasks (e.g., data aggregation, 

communication to the base station). The energy Ei
0 of each node i is used to decide the 

likelihood of being selected as a cluster head. A node i with energy Ei
0 has a probability Pi of 

becoming a cluster head given by: 

Pi =
Ei

0

∑ Ei
0N

i=1

 where 0 ≤ Pi ≤ 1                                            (6) 

Thus, nodes with higher energy levels have a higher probability of being selected. 

Step 3: Hybrid Optimization Process 

3.1 Sand Scorpion Optimization (SSO) 

The SSO algorithm is an environment-sensitive optimization technique that seeks to maximize 

energy efficiency within the network by selecting optimal cluster heads based on both 

proximity and energy levels of the nodes. The process is split into exploratory and exploitative 

phases to balance exploration of new solutions and exploitation of already identified good 

solutions. 
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Environmental Adaptation: SSO focuses on adapting the clustering strategy to the dynamic 

conditions of the wireless sensor network. The environmental changes may include varying 

node energy levels, the distance from nodes to cluster heads, and network traffic. The fitness 

function for selecting cluster heads takes into account these factors, aiming to balance the 

energy consumption of the nodes. Let Ei represent the energy of node i, and di,j the distance 

between node i and cluster head j. The fitness function Fi for selecting a cluster head for node 

i can be defined as: 

Fi = α ∙
Ei

∑ Ei
N
i=1

+ β ∙
1

di,j
                                     (7) 

Where: 

• α and β are weighting factors that balance the energy and distance components. 

• The first term represents the node's energy relative to the total energy of the network, 

encouraging the selection of nodes with higher energy as cluster heads. 

• The second term favors cluster heads that are closer to the node. 

SSO's exploration phase focuses on discovering potential cluster head candidates across the 

network, while the exploitation phase selects those nodes that show higher energy and better 

proximity to other nodes. This hybrid approach ensures that the algorithm balances energy 

efficiency with the need to maintain network connectivity. 

Node Energy Monitoring: SSO also continuously tracks the energy consumption of each node, 

which is crucial to prevent overuse of a single node’s energy. This dynamic energy monitoring 

adjusts the selection of cluster heads in real-time to balance the load across the network, 

avoiding energy depletion in any one cluster head. The residual energy Ei(t) of node i at time 

t is updated as: 

Ei(t) = Ei
0 − ∑ (Etx + Erx)t

k=1                               (8) 

Where Etx and Erx represent the energy spent on transmission and reception, respectively. 

3.2 Thunderstrike Optimization (TSO) 

Thunderstrike Optimization is a rapid-response optimization technique that focuses on making 

quick adjustments in the face of sudden changes in the network, such as node failure, high 

traffic, or sudden changes in energy levels. TSO aims to quickly update the clustering and 

ensure minimal communication overhead during network disturbances. 

Rapid Response Strategy: TSO's key feature is its ability to respond swiftly to network 

changes. When a node fails or a cluster head's energy runs low, TSO uses a real-time update 

mechanism to swiftly readjust the cluster head selection. The strategy reduces delays and 

ensures that the network remains functional despite unexpected disruptions. A simple 

mathematical model to describe the rapid response in TSO is to update the cluster head 

assignment Ci of a node i as follows: 

Ci(t + 1) = arg min
j

 (distance(i, j))   subject to Ej > ϵ    (9) 

Where: 
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• distance(i, j) represents the Euclidean distance between node i and potential cluster 

head j. 

• Ej is the residual energy of cluster head j, and ϵ is the minimum energy threshold for 

cluster heads. 

This update rule ensures that when a cluster head fails (i.e., its energy drops below the 

threshold ϵ, another node can immediately take over, ensuring minimal disruption. 

Load Balancing: TSO also focuses on load balancing by ensuring that the energy load is spread 

uniformly across all nodes. The goal is to prevent any single node from becoming 

overburdened, which could lead to its early energy depletion. The load Li on node i can be 

expressed as the total energy used for transmission and reception: 

Li = ∑ Etx(i, j) + Erx(i)N
j=1                                       (10) 

TSO adjusts the load dynamically by reassigning cluster head duties to nodes with lower load 

values, thereby optimizing the overall energy distribution across the network. 

Step 4: Cluster Head Selection and Adjustment 

4.1 Selection Mechanism 

In this step, the SSO and TSO algorithms are integrated to dynamically select and adjust the 

cluster heads (CHs) in the network. The cluster head selection process is based on the 

following criteria: 

1. Energy Levels: Nodes with higher residual energy are prioritized as cluster heads 

because they can support the energy-intensive role of aggregating data and forwarding it to the 

base station (BS). As the energy consumption of nodes is monitored in real-time by SSO, 

nodes with adequate energy are given higher priority. 

2. Proximity to BS: The distance from each node to the base station is also a key factor. 

Nodes that are closer to the BS are preferred as cluster heads because they minimize the energy 

consumption needed for communication with the base station. 

The fitness function FCH(i) for a node i to become a cluster head combines both energy and 

distance factors: 

FCH(i) = α ∙
Ei

∑ Ei
N
i=1

+ β ∙
1

di,BS
                                    (11) 

Where: 

• α and β are coefficients that balance the importance of energy and proximity. 

• Ei is the energy of node i. 

• di,BS is the distance between node i and the base station. 

Nodes with a high value of FCH(i) will be selected as cluster heads. 

Once the initial cluster heads are selected based on the combined evaluation of energy and 

distance, TSO adjusts the cluster head selection dynamically. If a cluster head's energy drops 
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below a threshold, TSO recalculates the fitness function and reassigns the role to another node 

that meets the energy and proximity criteria. 

4.2 Cluster Formation 

After selecting the cluster heads, the remaining nodes (non-cluster heads) are assigned to the 

nearest cluster head based on the updated configuration. The distance metric is used to 

determine the most optimal assignment. Each node i is assigned to the cluster head j that 

minimizes the distance between them, i.e., the node is assigned to the cluster head j such that: 

Assign node i to cluster head j  if di,j = min
k

(di,k)  ∀k ∈ C     (12) 

Where: 

• di,j is the distance from node i to cluster head j. 

• C is the set of selected cluster heads. 

This ensures that each node is connected to the nearest cluster head, optimizing 

communication paths and minimizing energy consumption during data transmission. 

As the network operates, the cluster heads are continually monitored. If a node's energy drops 

or if a sudden network disruption occurs (e.g., node failure or high traffic), TSO is used to 

make quick adjustments to the cluster head assignments, ensuring minimal disruption in the 

network's operation. This adjustment process keeps the network stable and ensures that cluster 

heads with high energy and optimal positions remain responsible for data aggregation and 

transmission. 

Step 5: Data Aggregation and Transmission 

The next step involves selecting the most energy-efficient transmission path to the base station. 

Since WSNs typically consist of multiple cluster heads, the algorithm aims to select the 

shortest and least energy-intensive path. The energy required to transmit data from a cluster 

head j to the base station is influenced by both the distance and the energy consumption of 

intermediary nodes, if any. The Energy-Efficient Path Epath from cluster head j to the base 

station can be expressed as: 

Epath = ∑ (Ptx,i ∙ di,j+1)k
i=1                            (13) 

Where: 

• Ptx,i is the transmission power of node i.. 

• di,j+1 is the distance between consecutive nodes along the path. 

• k is the number of nodes on the path from the cluster head to the base station. 

By choosing the path with the lowest Epath, the algorithm ensures that the data transmission 

is as energy-efficient as possible. 

Algorithm: Hybrid Sand Scorpion and Thunder-strike Optimization 

Input: Network of sensor nodes, base station location, initial energy. 
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 Output: Optimized cluster head selection and energy-efficient clustering. 

 1. Initialize Network: 

  • Deploy sensor nodes and set initial energy levels. 

  • Define communication range and base station location. 

 2. Select Initial Cluster Heads: Randomly select initial cluster heads from sensor 

nodes. 

 3. Energy Evaluation: Evaluate energy of each nodes: 

Eresidual = Einitial − Eused 

 4. Apply sand Scorpion Optimization (SSO): Select cluster heads based on high 

energy and proximity to base station. 

 5. Apply Thunderstrike Optimization (TSO): Quickly adjust cluster heads to 

respond to network changers or node failures. 

 6. Cluster Formation: Assign nodes to the nearest cluster head. 

 7. Energy-Aware Transmission: Minimize energy consumption during 

transmission: 

Ptransmit =
d2

Eavailable
 

 8. Check Energy Levels: If node energy is insufficient, return to SSO and TSO for 

adjustment. 

 9. Final Cluster Head Selection: Confirm final selection of cluster heads. 

 10. End. 

The Hybrid Sand Scorpion and Thunder-strike Optimization algorithm is designed for energy-

efficient clustering and cluster head selection in sensor networks. It begins by initializing the 

network with deployed sensor nodes, setting initial energy levels, and defining communication 

parameters. Initial cluster heads are selected randomly, followed by evaluating node energy 

based on residual energy calculation. The algorithm utilizes SSO to select cluster heads with 

high energy levels and proximity to the base station, and TSO to dynamically adjust cluster 

heads in response to network changes or node failures. Nodes are then assigned to the nearest 

cluster heads to form clusters. Energy-aware transmission is implemented to minimize energy 

consumption using distance and available energy metrics. The process continuously checks 

node energy levels, reverting to SSO and TSO for adjustments if needed, and finalizes cluster 

head selection for optimal network operation. This hybrid approach ensures enhanced energy 

efficiency and robust clustering in dynamic environments. 

 

4. RESULTS AND DISCUSSIONS 

The proposed Hybrid Sand Scorpion and Thunderstrike Optimization (HSSTO) algorithm was 
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extensively evaluated using simulated Wireless Sensor Networks (WSNs) under diverse 

environmental and operational conditions. The results reveal significant improvements in 

network performance metrics, showcasing the efficacy of the HSSTO algorithm. 

1. Energy Efficiency 

The HSSTO algorithm achieved up to 40% improvement in energy efficiency compared to 

benchmark algorithms such as LEACH, HEED, and ABC. This improvement is attributed to 

the adaptive clustering process driven by Sand Scorpion Optimization (SSO), which selects 

cluster heads based on residual energy and proximity to the base station. The Thunderstrike 

Optimization (TSO) further enhances energy savings by enabling swift responses to network 

changes, preventing excessive energy depletion due to cluster reformation. 

2. Cluster Reformation Time 

The dynamic nature of TSO resulted in a 35% reduction in cluster reformation time. By 

quickly reallocating cluster heads in response to node failures or energy depletion, the HSSTO 

algorithm minimized delays associated with traditional re-clustering processes. This rapid 

adaptation ensures uninterrupted communication and reduces downtime. 

3. Network Lifetime 

The HSSTO algorithm extended the network lifetime by an average of 45% compared to 

traditional clustering methods. By prioritizing energy-aware transmission and adaptive 

resource allocation, the algorithm balances energy consumption across nodes, delaying the 

onset of node failures and maintaining network connectivity over an extended period. 

4. Scalability 

Simulations demonstrated that HSSTO scales efficiently with increasing numbers of sensor 

nodes. The algorithm maintained robust performance in networks ranging from 100 to 1000 

nodes, showing minimal degradation in energy efficiency and cluster stability as network size 

increased. This highlights the algorithm's suitability for large-scale WSN deployments. 

5. Communication Overhead 

The HSSTO algorithm reduced communication overhead by 25% compared to existing 

methods. The streamlined clustering process and energy-aware transmission mechanism 

reduced the number of redundant transmissions, ensuring efficient use of network resources. 

The superior performance of HSSTO can be attributed to its hybrid approach, which integrates 

the strengths of SSO and TSO. The SSO component, inspired by sand scorpions' 

environmental adaptability, ensures that cluster head selection is energy-efficient and location-

aware. Meanwhile, the TSO mechanism, inspired by the rapid precision of thunderstrikes, 

enables the network to swiftly adapt to dynamic conditions, such as node failures and energy 

depletion, without incurring significant computational overhead. 

Additionally, the proposed algorithm demonstrated exceptional robustness, maintaining stable 

performance under varying environmental conditions, including high node density, uneven 

energy distribution, and dynamic base station placement. This adaptability ensures that 

HSSTO can be effectively deployed in real-world scenarios where network conditions are 

unpredictable.  
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Table 1: Overall Comparison of Performance Metrics 

Metric HSSTO 

(Proposed) 

LEACH Centralized Clustering 

Protocol 

ERCP FCM 

Energy Consumption (J) 0.45 0.75 0.68 0.60 0.55 

Cluster Reformation Time (ms) 30 50 45 40 35 

Network Lifetime (Rounds) 1450 1000 1150 1200 1300 

Scalability (Nodes) 100-1000 nodes 100-500 100-600 100-

700 

100-

800 

Communication Overhead 
(Packets) 

850 1800 1600 1400 1250 

Throughput (%) 94.5 82.5 85.2 88.0 90.0 

Table 1 presents a comprehensive comparison of performance metrics for the proposed 

HSSTO algorithm against four existing methods: LEACH, Centralized Clustering Protocol, 

ERCP, and FCM. The HSSTO algorithm demonstrates the lowest energy consumption at 

0.45J, outperforming LEACH (0.75J) and other protocols as shown in Fig 2. It achieves the 

fastest cluster reformation time of 30ms, significantly reducing delays compared to LEACH 

(50ms) and other methods as shown in Fig 3. In terms of network lifetime, HSSTO sustains 

operation for 1450 rounds, representing a substantial improvement over LEACH (1000 

rounds) and even outperforming FCM (1300 rounds). 

 

Figure 2: Energy Consumption Comparison 
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Figure 3: Cluster Reformation 

 

Figure 4: Comparison of Network Lifetime 

 

Figure 5: Comparison of Throughput 

The scalability of HSSTO is robust, efficiently managing networks with 100 to 1000 nodes, 

whereas LEACH is limited to 100-500 nodes, and other methods handle slightly larger scales 

as shown in Fig 4. HSSTO also minimizes communication overhead with just 850 packets, far 
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less than LEACH's 1800 packets and other protocols. Finally, the HSSTO algorithm achieves 

the highest throughput of 94.5%, ensuring the most reliable data transmission, compared to 

LEACH (82.5%), Centralized Clustering Protocol (85.2%), ERCP (88.0%), and FCM (90.0%) 

as shown in Fig 5. These results underscore HSSTO's superior performance across key metrics, 

making it a robust and efficient solution for clustering and energy management in Wireless 

Sensor Networks. 

 

5. Conclusion 

The Hybrid Sand Scorpion and Thunderstrike Optimization (HSSTO) algorithm presents a 

significant advancement in the field of Wireless Sensor Networks (WSNs), addressing key 

challenges such as energy efficiency, dynamic clustering, and adaptability to changing 

network conditions. By combining the environmental adaptation of the Sand Scorpion 

component with the rapid decision-making of the Thunderstrike mechanism, HSSTO 

optimizes resource allocation and enhances network performance. Simulation results 

demonstrate that HSSTO outperforms existing methods, achieving up to a 40% improvement 

in energy efficiency and a 35% reduction in cluster reformation time. These results highlight 

HSSTO's capability to minimize energy consumption while maintaining robust performance 

under dynamic conditions. Additionally, the algorithm’s scalability ensures its effectiveness 

in large-scale networks, further extending the network lifetime. The proposed HSSTO 

algorithm paves the way for more sustainable and efficient sensor networks, offering a 

transformative approach to self-adjusting clustering and energy management. Future work can 

explore further optimizations and real-world deployment scenarios to validate the algorithm’s 

performance in diverse and challenging operational environments. 
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