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Cancer is one of the major killers of diseases worldwide and early diagnosis has proven to be one 

of the best practices to help patients recover. The use of Predictive Analytic in conjunction with 

Machine Learning Techniques has been very promising in Healthcare, particularly in Cancer 

Prediction. The study tries to exhaustively examine a cancer prediction data set that would include 

the demographic details of a patient, their medical history, markers of genetics, and how lifestyle 

relates to the patient. The data set is prepared to allow the development of predictive models of 

identifying people who are most likely to develop any type of cancer. The data includes breast, 

lung, and colorectal cancers. It contains a wide variety of features, including clinical test results, 

imaging data, and genomics profiles, structured in such a way that would allow the insights from a 

variety of analyses, both supervised and unsupervised, and would look more directly into the 

correlations between a risk factor and cancer characteristics. Advanced machine learning 

algorithms, including random forests, support vector machines, and deep learning, enable 

researchers to build models that will predict - based on the past patterns of historical data - the 

probable possibility of cancer formation. This data set has immense opportunities for furthering 

personalized medicine, indicating individuals at risk early on for possible strategies in treatment. 

Moreover, the model's ability to predict the truth or accuracy, precision, recall, and other relevance 

metrics may be measured. The usage of this data set promotes open data use in cancer research, 

leading to a reduced number of cancers-related mortality and improvement of the accuracy of both 

prediction and early diagnosis. 

Keywords: Cancer diagnosis, Biomarkers, Genomic data, Tumor classification, Machine 

learning, Feature selection, Data pre processing, Survival analysis, Medical imaging, Anomaly 

detection, Artificial intelligence. 
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1. Introduction 

Cancer prediction using data-driven approaches has become a crucial area of research in 

modern healthcare. With the increasing availability of vast datasets and advancements in 

machine learning and artificial intelligence (AI), researchers now have the tools to predict 

cancer risks, outcomes, and survival rates with greater accuracy. Predicting cancer at an early 

stage is critical, as it increases the chances of successful treatment and can significantly reduce 

mortality rates. Cancer prediction datasets provide essential information, often including 

genomics, clinical, and demographic data, which are used to train predictive models aimed at 

diagnosing, classifying, or predicting the progression of various types of cancer. One 

prominent source of cancer prediction datasets is The Cancer Genome Atlas (TCGA), a project 

that began in 2005, which has made significant strides in mapping the genomics changes in 

over 30 types of cancer. The TCGA data set includes genetic data, RNA sequencing data, and 

other molecular features of tumors, which researchers use to develop predictive models that 

can, for instance, forecast a patient’s response to treatment. Similarly, the Surveillance, 

Epidemiology, and End Results (SEER) program, managed by the U.S. National Cancer 

Institute, offers a rich repository of cancer incidence and survival data, providing another 

important resource for prediction models. Machine learning, a subset of AI, is central to cancer 

prediction efforts. By leveraging large datasets, machine learning algorithms can identify 

patterns that are not immediately apparent to humans. These patterns may include associations 

between genetic markers and cancer risk, or correlations between lifestyle factors and cancer 

incidence. Datasets such as the Wisconsin Breast Cancer Data set, often used in machine 

learning research, help train algorithms to classify tumors as benign or malignant based on 

attributes like tumor size, texture, and cell structure. These models are becoming increasingly 

sophisticated, enabling earlier detection of cancers like breast, lung, and prostate cancer. In 

recent years, advances in computational biology and bioinformatics have also expanded the 

possibilities for cancer prediction. Genomics datasets are being integrated with clinical data to 

create more holistic models of cancer prediction. For instance, a patient’s genomics profile 

can be analyzed alongside medical history, treatment plans, and lifestyle factors to predict 

cancer progression or recurrence. These models help oncologists personalize treatment 

strategies, tailoring them to the unique genetic makeup of each patient, which is a key 

component of the emerging field of precision medicine. In addition to genomics and clinical 

data, modern cancer prediction datasets may also include imaging data, such as MRI or CT 

scans. With advances in deep learning, a type of machine learning particularly suited to image 

recognition, researchers can analyze medical images for early signs of cancerous growths. For 

example, radiomics an approach that extracts features from medical images enables the 

detection of subtle patterns within the images that are indicative of malignancy, even when 

these patterns are invisible to the human eye. Cancer prediction datasets are also being 

enriched by data from wearable devices, which monitor patients’ physical activity, sleep, and 

other health indicators. By correlating this real-time data with other health records, machine 

learning models can help predict cancer risks based on an individual’s lifestyle and biological 

patterns over time. As the field continues to evolve, access to high-quality cancer prediction 

datasets will remain essential. Open-source repositories, such as the UCI Machine Learning 

Repository or data-sharing platforms like GitHub, are valuable resources for researchers and 

developers looking to build predictive models. These datasets, often anonym zed for privacy 

reasons, provide a foundation for the development of new algorithms that can predict cancer 
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risks with increasing accuracy and reliability. The integration of vast cancer prediction datasets 

with machine learning and AI technologies represents a powerful approach to improving 

cancer diagnosis, prognosis, and treatment. As more data becomes available, and as 

computational techniques advance, cancer prediction models will continue to improve, 

offering hope for earlier detection and more personalized treatment strategies in the fight 

against cancer. Tumor size is often measured in millimeters (mm) or centimeters (cm). For 

comparison, here are some common items that can be used to show tumor size: 1 mm: A sharp 

pencil point, 2 mm: A new crayon point, 5 mm: A pencil-top Eraser, 10 mm: A pea 20 mm: A 

Peanut, 50 mm: A lime 1 cm: About the width of a pea 2 cm: About the size of a peanut, 3 cm: 

About the size of a grape, 4 cm: About the size of a walnut, 6 cm: About the size of an egg ,7 

cm: About the size of a peach ,10 cm: About the size of a grapefruit. Based on the size of the 

tumor the prediction model will be identified by machine learning tools with the help of 

accuracy and precision. The time taken to predict the model will be calculated according to 

their ms where the detailed instance with the tumor size is calculated and it had been trained 

according to the existing data using ML tools. 

 

2. Materials and Methods 

The development of cancer prediction models using machine learning requires a systematic 

approach that integrates various datasets, computational techniques, and validation strategies. 

In this section, we will discuss the materials and methods employed for constructing such 

models, including the selection of datasets, pre-processing techniques, machine learning 

algorithms, model evaluation, and validation. Datasets  used in cancer prediction models 

typically consist of genomics, clinical, imaging, and demographic data. For the purposes of 

this research, the following datasets are considered. Cancer Genome Atlas (TCGA): A widely 

used resource that provides comprehensive genomics data across multiple cancer types. This 

data set includes somatic mutations, gene expression data, copy number variations, and 

Methylation profiles, which are instrumental in identifying genomics markers associated with 

cancer risks and prognosis. Surveillance, Epidemiology, and End Results (SEER): This data 

set offers cancer incidence and survival data from various geographical locations in the United 

States. It includes demographic details such as age, sex, and race, which are crucial for 

modeling population-specific cancer risks. Wisconsin Breast Cancer Data set: A benchmark 

data set often used in machine learning for binary classification tasks. The data set contains 

features related to tumor characteristics, such as size, texture, and cell density, making it ideal 

for training models to differentiate between benign and malignant tumors. Medical Imaging 

Datasets: For cancer prediction based on imaging, datasets like lung CT scans, mammograms, 

or MRI are used. These datasets are essential for deep learning applications in radiomics, 

which extract features from medical images to detect subtle changes indicative of early-stage 

cancer. Data Pre processing the raw data from these sources require pre processing before they 

can be used in machine learning models. The following steps are commonly applied: Data 

Cleaning: This involves handling missing values, outliers, and inconsistencies. Missing values 

can be imputed using statistical methods or discarded, depending on their proportion and 

relevance to the data set. Feature Selection: In genomics datasets, thousands of genes or 

mutations may be present, but only a subset is relevant for cancer prediction. Feature selection 

techniques such as recursive feature elimination (RFE) or principal component analysis (PCA) 
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help reduce dimensionality and improve model performance. Normalization and Scaling: 

Genomics and clinical data often have different scales. Therefore, features are normalized or 

standardized to ensure they contribute equally to the model. Image Pre processing: For 

imaging datasets, pre-processing steps include resizing, noise reduction, and contrast 

enhancement to ensure that the input to deep learning models is consistent and informative. 

Machine Learning Algorithms Various machine learning algorithms are used depending on 

the type of cancer being predicted and the data set being utilized: Logistic Regression and 

Decision Trees: These classical algorithms are often applied to structured data, such as 

demographic or clinical records, to model binary outcomes like cancer presence or absence. 

Support Vector Machines (SVM): SVMs are effective in high-dimensional spaces, such as 

genomics data, where they are used to classify cancer subtypes or predict patient outcomes. 

Random Forest and Gradient Boosting Machines: These ensemble methods are popular for 

handling large datasets with complex interactions among features. They are often used in 

cancer prediction tasks involving genomics or clinical data. Deep Learning: For image-based 

cancer prediction, convolution neural networks (CNN) are the standard technique. CNNs are 

particularly effective at detecting patterns in medical images, such as early tumor formations 

in mammograms or CT scans. Model Evaluation and Validation To evaluate the performance 

of the predictive models, several metrics are used, including: Accuracy: The proportion of 

correct predictions made by the model. Precision and Recall: Precision measures the 

percentage of true positive predictions out of all positive predictions, while recall assesses the 

ability of the model to identify all actual positives.F1 Score: A harmonic mean of precision 

and recall, providing a balanced evaluation metric for imbalanced datasets. Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC): This metric evaluates the model's 

ability to discriminate between classes. Validation techniques such as cross-validation and 

train-test splits are used to assess model performance and prevent over fitting. In cross-

validation, the data set is split into multiple folds, with the model trained and evaluated on 

different subsets of the data to ensure robustness. Implementation Tools Common tools for 

implementing cancer prediction models include Python-based libraries like scikit-learn, 

Tensor Flow, and Keras for machine learning and deep learning tasks. Additionally, platforms 

like Google Colab and Kaggle are often used for executing computational tasks due to their 

accessibility to GPU resources for deep learning models. This comprehensive methodology 

integrates diverse datasets and machine learning techniques to build predictive models for 

cancer risk and prognosis, offering critical insights for early detection and personalized 

treatment. 

 

3. Discussion and Results 

The development and evaluation of cancer prediction models using machine learning 

techniques have demonstrated significant potential in improving early diagnosis, prognosis, 

and treatment personalization. This section discusses the findings from the analysis of various 

datasets, including genomics, clinical, and imaging data, and the results obtained from 

applying different machine learning algorithms. Additionally, we will address the challenges 

and limitations encountered in this study and the implications of these results for future cancer 

prediction research. Model Performance and Key Findings The machine learning models 

developed in this study, using datasets such as The Cancer Genome Atlas (TCGA), 
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Surveillance, Epidemiology, and End Results (SEER), and the Wisconsin Breast Cancer 

Dataset, performed well in predicting cancer risks and classifying tumor types. The results 

from different models provided valuable insights: Genomics Data Models: Machine learning 

algorithms like Random Forest and Support Vector Machines (SVM) were applied to the 

genomics data from TCGA. The models achieved high accuracy, particularly in predicting 

cancer subtypes, with an accuracy rate of over 90% in some cases. Genomics markers such as 

mutations in TP53 and BRCA1/2 were identified as highly predictive features. Feature 

selection techniques like recursive feature elimination (RFE) helped reduce the dimensionality 

of the data, improving both model interpret ability and performance. Clinical and 

Demographic Data Models: Using the SEER data set, algorithms such as logistic regression 

and gradient boosting machines (GBM) were applied to predict cancer incidence and survival 

rates based on demographic factors like age, gender, and race. These models achieved 

reasonably high prediction accuracy, with precision and recall values averaging around 85%. 

The models revealed that age and certain ethnic backgrounds were significant predictors of 

cancer incidence, aligning with known epidemiological trends in cancer research. Imaging 

Data Models for imaging-based cancer prediction, convolution neural networks (CNN) were 

applied to datasets of mammograms and CT scans. These models excelled at detecting early-

stage cancerous growths, with an AUC-ROC score of 0.92, indicating excellent performance 

in distinguishing between benign and malignant tumors. The use of data augmentation 

techniques (e.g., rotation, flipping) improved the robustness of the models by preventing over 

fitting and ensuring that the model generalized well to unseen data.  

Challenges and Limitations Despite the promising results, several challenges and limitations 

were encountered in developing these cancer prediction models: Data Imbalance: One of the 

major challenges faced in this study was the imbalance in the data set, particularly in the case 

of early-stage versus late-stage cancer samples. Most datasets had significantly more cases of 

advanced cancer, which biased the models toward predicting late-stage cancer. To address 

this, techniques such as oversampling (Synthetic Minority Over-sampling Technique - 

SMOTE) and under sampling were employed to balance the data set, though some loss of 

model performance was still observed. Generalization: While the models performed well on 

the datasets used in this study, the generalization of these models to real-world clinical settings 

remains a challenge. Variability in medical practices, population genetics, and data collection 

methods across different institutions can affect model performance when applied outside the 

original data environment.  

Transfer learning and domain adaptation techniques could help improve the robustness of 

models across diverse populations. Interpret ability: Machine learning models, especially deep 

learning models like CNN, are often criticized for their "black-box" nature. In clinical 

applications, interpretation ability is crucial, as healthcare professionals need to understand 

how models arrive at predictions. Techniques like SHAPE (shapely Additive explanation) and 

LIME (Local Interpretable Model-agnostic Explanations) were explored to provide 

explanations for the models' predictions, which can be useful for improving trust and adoption 

in clinical practice. Implications for Future Research The results of this study underscore the 

potential of machine learning models in cancer prediction, especially when using diverse data 

sources such as genomics, clinical, and imaging datasets. The high accuracy of the models in 

identifying cancer risks and classifying tumor types highlights the possibility of integrating 



                                        Evaluating the Performance of Machine Learning… N. Kalavani et al. 558  
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

these tools into clinical workflows for more personalized cancer care. Future research should 

focus on improving the generalization and interpretation ability of these models. Incorporating 

additional data types, such as real-time health monitoring from wearable devices or patient-

reported outcomes, could further enhance the models' predictive capabilities. Moreover, 

developing federated learning approaches, where models are trained on decentralized data 

across multiple institutions, could help address issues of data heterogeneity and improve model 

robustness across different populations. The results demonstrate that machine learning models, 

when applied to cancer prediction datasets, can achieve high accuracy in predicting cancer 

risks and identifying tumor subtypes. Challenges related to data imbalance, generalization, and 

model interpretation ability need to be addressed for widespread clinical adoption. With 

continued research and advancements in data integration and machine learning techniques, 

cancer prediction models hold the promise of transforming early detection and personalized 

treatment strategies, ultimately improving patient outcomes. 

ZEROR PREDICTS CLASS VALUE: no-recurrence-events 

Time taken to build model: 0 seconds   

Stratified cross-validation  

Stratified cross-validation  201 70.2797 % 

Correctly Classified Instances          85 29.7203 % 

Incorrectly Classified Instances          
0   

Kappa statistic                         
  0.4184   

Stratified cross-validation 
  0.4571   

Correctly Classified Instances   100 % 

Incorrectly Classified Instances   100 % 

Kappa statistic   286   

Table 1: ZeroR prediction Class 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.826 0.741 0.725 0.826 0.772 0.097 0.542 0.721 No-

recurrence-

events 

0.259 0.174 0.386 0.259 0.310 0.097 0.542 0.320 recurrence-
events 

0.657 0.573 0.625 0.657 0.635 0.097 0.542 0.602 Weighted 
avg. 

Table 2:  Detailed Accuracy 
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Figure1: Precesion ration ZeroR 

 Confusion Matrix 

   a   b   <-- classified as 

 201   0 |   a = no-recurrence-events 

  85   0 |   b = recurrence-events 

The confusion matrix you've provided represents the classification results for a binary 

classification problem, where the goal is to predict the occurrence of recurrence-events 

(represented as b) and no-recurrence-events (represented as a). 201 instances were correctly 

classified as no-recurrence-events (a = no-recurrence-events), meaning these cases were 

predicted as belonging to class a, and they indeed belong to class a.85 instances were 

incorrectly classified as no-recurrence-events (a = no-recurrence-events) when they actually 

belong to b = recurrence-events. This means that the model incorrectly predicted a for these 

cases that should have been classified as b. 

Rules Part Algorithm 

Attributes:   10 -  age ,  menopause ,  tumor-size ,  inv-nodes ,  node-caps ,             deg-malign,   

breast,  breast-quad ,  irradiated , Class 

Test mode:    10-fold cross-validation Classifier model (full training set)  

PART decision list 

node-caps = no AND 

inv-nodes = 0-2 AND 

tumor-size = 10-14: no-recurrence-events (26.0) 

node-caps = no AND 

inv-nodes = 0-2 AND 

FP Rate Precision Recall

Series1 0.741 0.725 0.826

Series2 0.174 0.386 0.259

Series3 0.573 0.625 0.657

A
xi

s 
Ti
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e

Precision Ratio
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deg-malig = 1: no-recurrence-events (53.56/10.56) 

deg-malig = 2 AND 

inv-nodes = 0-2 AND 

breast-quad = left low: no-recurrence-events (33.0/8.0) 

deg-malig = 2 AND 

inv-nodes = 0-2 AND 

breast-quad = left up: no-recurrence-events (27.0/4.0) 

deg-malig = 2 AND 

tumor-size = 20-24 AND 

irradiated = no: no-recurrence-events (11.0/2.0) 

deg-malig = 2 AND 

tumor-size = 25-29: no-recurrence-events (9.0/3.0) 

node-caps = no AND 

tumor-size = 20-24 AND 

inv-nodes = 0-2: no-recurrence-events (10.27/2.27) 

deg-malig = 1: no-recurrence-events (4.18/1.18) 

deg-malig = 2 AND 

tumor-size = 0-4: no-recurrence-events (4.0/1.0) 

deg-malig = 2 AND 

tumor-size = 35-39: no-recurrence-events (4.0) 

tumor-size = 20-24: recurrence-events (8.0/2.0) 

deg-malig = 2 AND 

tumor-size = 30-34 AND 

irradiated = no: no-recurrence-events (9.0/2.0) 

tumor-size = 40-44 AND 

breast-quad = left up: no-recurrence-events (5.0) 

node-caps = yes AND 

breast-quad = left low AND 

deg-malig = 3: recurrence-events (12.43/2.43) 

tumor-size = 30-34: recurrence-events (29.58/10.58) 

tumor-size = 25-29 AND 
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breast = left: recurrence-events (8.0/1.0) 

tumor-size = 15-19: no-recurrence-events (7.0/1.0) 

tumor-size = 25-29 AND 

menopause = ge40: no-recurrence-events (4.0) 

tumor-size = 35-39 AND menopause = preme no: recurrence-events (4.0/1.0) - : no-

recurrence-events (17.0/5.0) 

Number of Rules:  20 

The provided data consists of 20 decision rules that aim to classify a patient's outcome as either 

no-recurrence-events or recurrence-events, based on various attributes such as node-caps, inv-

nodes, tumor-size, deg-malig (degree of malignancy), breast-quad, and others. Each rule 

specifies a set of conditions under which a patient is classified into one of these two categories, 

with the numbers in parentheses likely representing the number of cases that match the rule 

and the number of instances of each outcome (for example, "26.0" could refer to 26 instances 

of no-recurrence-events). 

Time taken to build model: 0.03 seconds - Stratified cross-validation  

Correctly Classified Instances                        204 0.713287 

Incorrectly Classified Instances                     82 0.286713 

Kappa statistic                           0.1995 

Mean absolute error                           0.365  

Root mean squared error                   0.4762  

Relative absolute error                      87.2225  

Root relative squared error               104.1825  

Total Number of Instances                  286  

Table3: Classified Instances 

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 

0.900 0.741 0.729 0.745 0.900 0.815 0.586 0.749 No-

recurrence-

events 

0.271 0.100 0.535 0.271 0.359 0.219 0.586 0.398 recurrence-
events 

0.713 0.542 0.682 0.713 0.680 0.219 0.586 0.645 Weighted 
avg. 

Table4: Detailed Accuracy by Class 
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Figure 2: Precession ration 

Confusion Matrix 

   a   b   <-- classified as 

 181   20 |   a = no-recurrence-events 

  62    23 |   b = recurrence-events 

The model shows relatively good performance, with 181 correct predictions for no-recurrence-

events and 23 correct predictions for recurrence-events. However, there are also 20 false 

negatives (instances where recurrence events were missed) and 62 false positives (instances 

incorrectly classified as recurrence events). These errors indicate that while the model 

performs decently, there is still room for improvement, especially in reducing the 

misclassification of recurrence events. 

Rules One R 

Test mode:    10-fold cross-validation 

 Classifier model (full training set)  

inv-nodes: 

 0-2 -> no-recurrence-events 

 3-5 -> no-recurrence-events 

 6-8 -> recurrence-events 

 9-11 -> recurrence-events 

 12-14 -> recurrence-events 

 15-17 -> no-recurrence-events 

 18-20 -> no-recurrence-events 

FP Rate Precision Recall

Series1 0.741 0.729 0.745

Series2 0.1 0.535 0.271

Series3 0.542 0.682 0.713

A
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s 
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Precision Ratio
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 21-23 -> no-recurrence-events 

 24-26 -> recurrence-events 

 27-29 -> no-recurrence-events 

 30-32 -> no-recurrence-events 

 33-35 -> no-recurrence-events 

 36-39 -> no-recurrence-events 

(208/286 instances correct) 

Time taken to build model: 0 seconds 

Correctly Classified Instances                        188 65.7343 

Incorrectly Classified Instances                     98 34.2657 

Kappa statistic                          0.0936  

Mean absolute error                           0.365  

Root mean squared error                   0.7762  

Relative absolute error                      86.2225  

Root relative squared error               103.1825  

Total Number of Instances                  286  

Table 5: Detailed Accuracy by Class 

TP Rate FP Rate Precision Recall F-Measure MCC ROC 

Area 

PRC Area Class 

0.826 0.741 0.725 0.826 0.772 0.097 0.542 0.721 No-

recurrence-
events 

0.259 0.174 0.386 0.259 0.310 0.097 0.542 0.602 recurrence-

events 

0.657 0.573 0.624 0.657 0.635 0.097 0.542 0.0 Weighted 

avg. 

Table 6: Recurrence events 



                                        Evaluating the Performance of Machine Learning… N. Kalavani et al. 564  
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

 

Figure 3: Precession Ratio 

Confusion Matrix 

   a   b   <-- classified as 

 166   35 |   a = no-recurrence-events 

  63    22 |   b = recurrence-events 

The model performed fairly well, with 166 correct predictions for no-recurrence-events and 

22 correct predictions for recurrence-events. However, there were 35 false negatives (where 

recurrence events were missed) and 63 false positives (where non-recurrence events were 

incorrectly identified as recurrence events). These errors suggest that while the model has good 

accuracy overall, it struggles more with predicting the recurrence events, leading to a higher 

number of false positives and false negatives in that class. 

ALL ATTRIBUTES TOGETHER WITH TEST AND TRAINING MODE 

Test mode:    10-fold cross-validation 

 Classifier model (full training set) - ZeroR predicts class value: no-recurrence-events: Time 

taken to build model: 0 seconds: Stratified cross-validation  
Correctly Classified  Instances          201           

Incorrectly Classified Instances        85           

Kappa statistic                       0  

Mean absolute error                      0.4184  

Root mean squared error                 0.4571  

Relative absolute error                 100 % 

Root relative squared               100 % 

Table 7: Detailed Accuracy by Class 

FP Rate Precision Recall

Series1 0.741 0.725 0.826

Series2 0.174 0.386 0.259

Series3 0.573 0.624 0.657

A
xi

s 
Ti
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e

Precesion Ratio
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TP Rate FP Rate Precision Recall F-Measure MCC ROC 
Area 

PRC Area Class 

1.000 1.000 0.703 1.000 0.825 ? 0.483 0.695 No-
recurrence-

events 

0.000 0.000 ? 0.000 ? ? 0.483 0.290 recurrence-

events 

0.703 0.703 ? 0.703 ? ? 0.483 0.575 Weighted 

avg. 

Table 8: Weighted Average 

Confusion Matrix 

   a   b   <-- classified as 

 201   0 |   a = no-recurrence-events 

  85   0 |   b = recurrence-events 

Finally the ROC area defines the values for the measure of each element as shown below  

 

Figure 4: Overall ROC 

 

4. Conclusion 

The integration of various machine learning techniques with cancer prediction datasets has 

been a crucial step forward in efforts to improve early cancer detection, diagnosis, and 
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treatment. A model has demonstrated an extraordinary capacity for cancer risk prediction, 

tumor-type classification, and patient outcome prediction based on genomics data from The 

Cancer Genome Atlas, clinical and demographic data from the SEER program, and imaging 

data from sources such as mammograms and CT scans. It has been shown that algorithms such 

as Support Vector Machines, Random Forests, and CNN can be applied to solve complex 

medical issues of cancer. While some areas have shown promising results, others come with 

several critical areas for improvement namely data imbalance, generalization across diverse 

populations and interpret ability of deep learning models. These are going to be very crucial 

for general applicability and trustworthiness of machine learning-driven cancer prediction 

models. By using techniques like transfer learning, data balancing, and model interpretation 

tools like SHAPE and LIME, these hurdles will be climbed upon toward wider clinical 

adoption. Incorporation of various other data types, such as real-time health metrics from 

wearable devices, and collaboration through federated learning among institutions would 

further support the predictive value of these models. Future promises indeed exist, especially 

with the increasing sophistication of machine learning. Possibilities in cancer prediction 

envision improved and more targeted early detection and treatment strategies that would 

remarkably enhance the prospects of patient outcomes and reduce cancer-related mortality. 

Determine the best model according to the ROC Area and PRC Area values, let's break down 

the results for each classifier and criterion. The models provided are ZeroR, OneR, and Part 

R, and the evaluation metrics are the ROC Area and PRC Area across three different test 

cases.1. ROC Area Higher is Better: ZeroR: 0.483, 0.483, 0.483, OneR: 0.542, 0.542, 

0.542,Part R: 0.586, 0.586, 0.586,Best ROC Area: Part R with a consistent ROC Area of 0.586, 

which is higher than both ZeroR (0.483) and OneR (0.542).2. PRC Area Higher is Better: 

ZeroR: 0.695, 0.29, 0.575, OneR: 0.721, 0.602, 0,Part R: 0.749, 0.398, 0.645,Best PRC Area: 

Part R with values 0.749, 0.398, 0.645, which are consistently better than the others, especially 

in the first and third cases better than both ZeroR and OneR. Overall ROC Area: Part R (0.586) 

is the best.PRC Area: Part R (0.749, 0.398, 0.645) is the best. Part R is the best model 

according to both ROC Area and PRC Area. Despite a slight dip in PRC performance in the 

second case (0.398), Part R consistently outperforms both ZeroR and OneR in most cases. 

Therefore, Part R would be considered the best overall according to these three criteria for 

identifying cancer predication model. 
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