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Due to the increasing frequency and complexity of attacks, Intrusion Detection Systems (IDS) must 

be increasingly intelligent to identify malicious activity across network settings. Traditional IDS 

methods use central data for training, raising concerns regarding its privacy and security. We 

propose a Federated Learning (FL) strategy that lets companies train machine learning models 

without sharing data to tackle these challenges. FL allows users to train models locally and 

communicate model updates instead of sensitive data, enabling decentralized learning and privacy. 

Fully Homomorphic Encryption (FHE) or Secure Multi-Party Computation (SMPC) enhances 

training confidentiality and security. These methods protect model changes during transmission and 

enable safe aggregation without decryption. This strategy protects privacy and lets companies 

improve their IDS models without releasing personal information. The recommended approach uses 

FL-trained anomaly detection technologies like neural networks and decision trees. All model 

updates are merged privately via secure aggregation. If data is captured during transmission, 

privacy-preserving methods like SMPC or FHE will protect model parameters and gradients. This 

framework enhances intrusion detection systems (IDS) in recognizing and mitigating cyber threats 

by enabling secure communication and providing a scalable solution. It also increases collaborative 

cyber security efforts across various entities. This system's Federated Learning and secure 

encryption technologies allow organizations to share knowledge and enhance defenses against 

sophisticated attacks without revealing sensitive data, solving cyber security challenges. 

Keywords: Federated learning, Collaborative intrusion detection system. 

 

 

 

1. Introduction 

The development of sophisticated attacks and the many new dangers that conventional 

intrusion detection systems (IDS) face are making it difficult for these systems to keep up with 

the pace of the situation. Concerns about security and privacy occur as a result of the fact that 

intrusion detection systems (IDS) often rely on centralized data processing, despite the fact 

that their primary purpose is to monitor network traffic for aberrant or destructive activities. 

Some of the reasons why companies can be reluctant or unable to share sensitive data with 

other parties include the risk of data breaches, the need to comply with regulatory 
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requirements, and the desire to gain a competitive edge. As a consequence of this, it is of the 

utmost importance to build an IDS cooperation architecture that enables coordinated efforts to 

detect complex threats while yet maintaining a respect for privacy. 

Federated Learning for Collaborative IDS 

Federated learning (FL) is a relatively recent technique to machine learning that enables 

several users to collaborate on the training of a single model without sharing any of the data 

that is used to train the model. This suggests that in the context of intrusion detection systems 

(IDS), a number of companies may collaborate in order to train a model by making use of 

decentralized data sources, hence enhancing the detection capabilities of their respective 

systems. During the process of training the model, every participant makes adjustments to the 

shared model parameters by using their own data; nevertheless, each participant does not 

reveal any personally identifying information. Through the use of FL, model updates may be 

integrated and refined, resulting in a more robust intrusion detection system (IDS) that is able 

to identify detailed patterns of assaults across several networks.  

Even if FL enables more secure data storage on local nodes, this does not guarantee that model 

updates are protected from malicious actors like as hackers and other cybercriminals. Both 

Fully Homomorphic Encryption (FHE) and Secure Multi-Party Computation (SMPC) are 

examples of approaches that are absolutely important at this moment in time for protecting 

individuals' privacy.  

Privacy-Preserving Techniques: SMPC and FHE 

By incorporating SMPC or FHE into the FL process, it is possible to alleviate concerns about 

the confidentiality of data during the training of employees. SMPC allows for the computation 

of a function over private inputs in a collaborative manner while maintaining the 

confidentiality of those respective inputs. Within the context of FL for IDS, SMPC ensures 

that participants are able to compute model updates while discretely concealing important local 

data from other individuals.  

The Fully Homomorphic Encryption (FHE) algorithm, on the other hand, enables 

computations to be carried out on encrypted data. This ensures that the original data is 

concealed even while the model is being updated. By using these privacy-preserving 

cryptographic techniques, the intrusion detection system (IDS) is able to make advantage of 

collaborative learning without compromising the confidentiality of data or model updates.  

In this paper, we investigate the potential advantages that secure federated learning might bring 

to interactive Intrusion Detection Systems (IDS) that are used in collaboration. The 

combination of federated learning with either SMPC or FHE is something that we wish to do 

in order to enhance the system's capabilities for breach detection and data protection.  

 

2. OBJECTIVES  

1. To make it possible for businesses to work together efficiently without exchanging 

data.  

2. To use SMPC and FHE to safeguard sensitive data and model update confidentially.  
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3. RESEARCH METHODOLOGY  

For the purpose of determining how well FL performs when it is applied to the detection of 

network threats, we employ Intrusion Detection as our benchmark. CIC-IDS2017, which 

stands for Evaluation Dataset2, has been made accessible to the public by the Canadian 

Institute of Cyber Security. These data sets are available to the scientific community so that 

they may do research on data mining for the purpose of achieving cyber goals. The usual 

configuration that was used for the purpose of acquiring network frames .The victim network 

is comprised of ten workstations that are configured with a variety of operating systems and 

are connected to two routers. The router that serves as the external interface is the target of an 

attack that is launched by a network of computers belonging to an outsider. Following the 

recording of the attack frames by the capture server, the final dataset is eventually collected. 

Machine Learning dataset 

Raw dataset: The capture server is responsible for gathering the system logs and network 

traffic of each individual computer. These data are subsequently included into the raw dataset. 

These figures are taken over a period of five days, commencing at nine o'clock in the morning 

on Monday, July 3, 2017, and finishing at five o'clock in the afternoon on Friday, July 7, 2017. 

It is possible for a feature extractor, namely CIC Flow Meter, to convert the raw data into 

tabular data that has been tagged; this research makes use of a processed dataset that is openly 

available to the general public. 

Processed dataset for Machine Learning 

The final collection is comprised of two,544,042 data points; each data point is described by 

83 separate parameters, in addition to a label that defines the kind of traffic that it corresponds 

to. A total of fifteen separate types of traffic are identified by the labels, which are as follows: 

Benign, Bot, Distributed Denial of Service, Denial of Service Attack, Heartbleed, Infiltration, 

PortScan, SSH-Patator, Web Attack—Brute Force, Web Attack—Sql Injection, and Web 

Attack—XSS. A detailed explanation of the classification process for the data points is 

included in Tab 1. In order to classify them, we divide them into seven distinct categories: 

benign, bot, brute force, distributed denial of service, heartbleed, infiltration, and port scan. 

Eleven factors are not required since they do not help to explain the general variance in the 

dataset. These qualities are as follows: There are a number of factors that need to be taken into 

consideration, including the Forward Average Bulk Rate, Forward Average Packets/Bulk, 

Forward Average Bytes/Bulk, CWE Flag Count, Forward URG Flags, Backward PSH Flags, 

and Forward Average Bulk Rate. At the conclusion of the process, we remove the features that 

are responsible for providing the traffic ID and instead make use of the remaining 65 features 

in a cleaned dataset (CDS) to feed the algorithm described in Section 4. 

Table 1: Class sample count and percentage. 

Attack Type Count Percentage 

Benign 599,945 58% 

Bot 1,944 0.19% 

D DoS 128,014 12% 

DoS Golden Eye 10,286 1.0% 
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DoS Hulk 172,846 17% 

DoS Slow http test 5,228 0.58% 

DoS slow loris 5,385 0.52% 

FTP-Patator 5,931 0.58% 

Heart bleed 11 0.0011% 

Infiltration 36 0.0035% 

Port Scan 90,694 8.8% 

SSH-Patator 3,219 0.31% 

Web Attack-Brute Force 1,470 0.14% 

Web Attack-Sql Injection 21 0.002% 

Web Attack-XSS 652 0.063% 

 

4. DATA ANALYSIS  

Training set 

The detection of network assaults continues to be a challenging task, even when using a 

centralized dataset, since there is a large imbalance between the many classes under 

consideration. For instance, the dataset includes more than sixty percent of traffic points that 

are not malicious, while the majority of attack types account for less than one percent of the 

total. In most cases, we may be able to solve this problem by resampling the classes that are 

considered to be in the minority. This would rectify the imbalance in the distribution of the 

data points. Validation of a federated optimization approach is required when it comes to FL. 

This technique must be verified against new significant qualities that are introduced by training 

set distributions. To begin, there is a possibility that the dataset belonging to the customers is 

not balanced. Furthermore, in contrast to a centralized dataset, which is often independent and 

uniformly distributed (non-IID), a decentralized dataset frequently includes skewed data 

distributions for each client.  

This is because a centralized dataset is centralized. It is important to assess the resilience of a 

federated training system by taking into account the attributes highlighted above. Because of 

this, we decided to build two distinct decentralized training sets, which we referred to as DS1 

and DS2. The procedure for acquiring these sets is described in Tab. 2. In the dataset that is 

presented in Section 1 of the CDS, these sets are derived from the 32 machines that have the 

highest population density. The machine level configuration is responsible for determining the 

training/test split, which is set at 70%. In addition, we generate two possible centralized 

datasets, which we refer to as B1 and B2. These datasets have the potential to be used in a 

conventional method of centralized training. We establish two hypothetical benchmarks in this 

simulation to investigate how FL impacts validation performance. This is done despite the fact 

that it is not possible to centralize remote private datasets in applications that are used in the 

real world.  

Validation metrics and test set 



587 Utkarsh Parashar et al. Advancing Secure Federated Learning for Collaborative...                                                                                             
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

A detailed examination of the performance of the federated training is carried out by making 

use of the two metrics that are shown in Tab. In classic Deep Learning models, the total number 

of epochs is a popular statistic that is used to evaluate the pace at which the model is going to 

converge. On account of the fact that a large number of local models are being trained 

concurrently in FL, it could be challenging to ascertain a comparable quantity. In the next step, 

we will employ one weight update per training cycle for both the benchmarks and the 

collaborative optimization. This will be done in the centralized architecture (batch) and the 

central server (round), respectively. When it comes to algorithms, this is referred to as the "s" 

unit step. It should be brought to your attention that we do not take into account any possible 

delays that may be caused by communication in apps that are used in the real world. It is not 

feasible to take into consideration these implications within the context of this work since it is 

a controlled research study that is conducted inside a simulated environment. Additionally, 

since there is only one GPU available, each round of federated training updates the 

decentralized models in a sequential manner.  

This results in an increase in the amount of time that the user is required to spend on each 

cycle. The practical implication of this is that secondary models may be trained in parallel by 

making use of the computational resources that are made accessible by each decentralized 

model simultaneously. Therefore, if we utilized the actual user-time as the time variable, our 

simulations would be more likely to penalize federated trainings in comparison to conventional 

ones, and they would also fail to take into account the unavoidable latencies that occur in real 

networks. As functions of the training unit s, the F1 score (Eq. 1) and the percentage of false 

negative detections (fn) are shown as performance measurements. Both of these metrics are 

given in terms of the training unit s. The precision p and recall r are the metrics that are used 

in the calculation of these metrics. These metrics are obtained by adding up the total number 

of true positive detections (ntp), false positive detections (nfp), and false negative detections 

(nfn) across all of the data points that were seen while performing step s.  

(1) 

We may be able to get the set that is utilized to assess the model (the central server in a 

federated training scenario) if we consolidate the test sets from the separate machines without 

resampling them. Both centralized and federated trainings are evaluated against the same 

dataset, and that evaluation is carried out using the same metrics at each level. 

Federated Learning And Neural Network Architecture 

Studies that have been conducted recently on the topic make it abundantly evident that FL has 

garnered a great deal of interest, both in terms of study and practical applications.  
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Table 2: How to get training sets for our study's experiments. The decentralized dataset 

applies actions to a randomly picked portion of data for each client. The train/test ratio is 

70%. The non-training data are centralized and used as a test set for both systems. 

Decentralized datasets 

Id. Statistical properties Description 

DS1 Non-IID  Balanced 

Destination IP in CDS is used to assign data points to decentralized users. The 

32 most populated users are kept. Classes in clients are balanced via re-

sampling. Final dataset size is unchanged. 

DS2 Non-IID Non-balanced 
Destination IP in CDS is used to assign data points to decentralized users. The 
32 most populated users are kept. 

Benchmarks 

Id Statistical properties Description 

B1 Balanced 
32 most populated machines in CDS are centralized. Classes are balanced via re-

sampling 

B2 Non-balanced 32 most populated machines in CDS are centralized. 

This is due to the fact that it provides a framework for improving machine learning algorithms, 

which may help circumvent significant data-related constraints such as privacy concerns and 

the cost of aggregating information across several servers. Numerous optimization techniques 

have been proposed for use with neural networks. These ideas have been put forth. We make 

use of the well-known Federated Averaging technique in our research since it is included in 

the FL high-level APIs that are made available by the Tensor Flow Federated package.  

Federated Averaging algorithm 

The Federated Averaging method, which was first given in, is summarized in method 1, which 

offers a concise summary of the technique. The weights and biases ρ of the core model are 

represented on the clients, which is the fundamental concept. Whenever client k is available, 

it obtains the weights and biases of the central model during a training round t. Additionally, 

it updates its model instance ρk locally by using the nk-size training dataset Pk that is 

accessible locally. It is the client optimizer's responsibility to evaluate data batches of size B 

for E training epochs. Following the conclusion of the process of updating the decentralized 

models, the weights {ωk}k=1,...,Sk are sent to the central server. The central server then 

employs a weighted average that takes into account the quantity of local samples in order to 

aggregate the models. Taking into consideration this paradigm, Tab. 6 provides a list of the 

hyper-parameters that were retained for our experiences. These hyper-parameters are divided 

down according to the collaborative and centralized trainings that served as benchmarks. 

When it comes to the Tensor Flow Federated high-level APIs, we are not aware of any method 

that allows for the hyper-parameters of the clients to be fine-tuned. All along the course of our 

inquiry, we saw a change in the core. 
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Fig. 1: Federated training performance on DS1. DS1's F1 score (black line) compared to 

centralized training for B1 (red dash-dotted line), B2 (red dotted line) and random prediction 

(dashed blue line with box shaped markers). The federated training was interrupted at the 

best performing point and extended for visualization; b) same analysis as in the first panel, 

but for the false negative detection ratio fn; c) F1 score obtained for DS1 (black line) against 

locally-trained machines in the 32 clients' databases retained for this study; d) same analysis 

as in the third panel, but for the 
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Fig. 2: DS2-based federated training performance analysis. From the top: a) DS2 F1 score 

(black line), centralized B1 and B2 training (red dash dotted lines) and random prediction 

(dashed blue line with box-shaped markers). The federated training was interrupted at the 

best performing point and extended for visualization; b) same analysis as in the first panel, 

but for the false negative detection ratio fn; c) F1 score obtained for DS2 (black line) against 

locally-trained machines in the 32 clients' databases retained for this study; d) same analysis 

as in the third panel. 
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Table 3: The proportion of clients accessible for server update determines FL's maximum 

performance across the two datasets. Minimum false-negative detection ratio defines 

maximum performance. 

DS1 

Frac. client 0.1 0.3 0.5 1.0 

Min. fn 0.24 0.20 0.22 0.22 

Round 4 4 3 15 

F1 0.78 0.80 0.78 0.78 

DS2 

Frac. client 0.1 0.3 0.5 1.0 

Min. fn 0.41 0.24 0.20 0.16 

Round 24 72 12 80 

F1 0.58 0.75 0.80 0.84 

server's efficiency during the course of multiple training cycles. Through the use of early 

halting, we were able to circumvent this outcome. There is a great probability that this problem 

is brought about by consumers who over fit their own training set. This leads to the global 

model receiving significantly biased weights due to the fact that the data is not integrated into 

the data. Due to the fact that our focus is on the benefits of Federated Learning for network 

attack detection and the fact that this behavior does not have any impact on the results 

presented in Section 4, we do not go any further into this issue and instead leave it for future 

research. 

 

5. RESULT 

When it comes to apps that are used in the real world, not all users are available for contact 

throughout each cycle. In order to determine how effectively the optimization approach 

mentioned in Section 4 works, we make use of both the training set from Table 2 as well as a 

variable percentage of customers. The next step is to determine how reliable the results are by 

randomly picking fifty percent, thirty percent, and ten percent of the workstations that are 

available to connect with the primary server. Following the completion of an evaluation of a 

federated decentralized benchmark in which all 32 clients are always accessible, this step is 

carried out. In the event where each and every client is employed for server updates throughout 

each and every cycle, the results for the training set DS1 are summarized in the different panels 

of Figure 1. Table 2 presents the link between the algorithmic unit s and the F1 score and the 

false negative detection ratio for the two benchmarks and the federated training. This 

relationship is shown in descending order from the top to the bottom of the table.  

Performing a random prediction on the attack classes is another component that is included in 

the system. In situations when there is no prior training set available, such as when a new client 

is being installed (also known as a cool start), this particular scenario may occur. It has been 

shown that the benchmark B2 performs better than the federated-trained neural networks that 

were terminated early in terms of the maximum number of epochs that may be used. It has 
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been shown that the F1 score decreases by around 15% when a collaborative detection 

approach is used, while the false negative detection ratio increases by roughly 2.5 times.  

FL demonstrates virtually no performance degradation for the benchmark B1 when compared 

to the case in which the virtual centralization is considered. In addition to this, it delivers 

optimal performance with just a few minor adjustments to the model. If a new machine is 

brought online without any prior data (cold start), extracting the central model may ensure an 

F1 score that is 4.5 times higher and a false negative detection percentage that is about four 

times lower than a random detection in real-world applications. This is because the F1 score 

is an indicator of how well the machine is doing. If you would want to analyze the performance 

of the federated neural networks in comparison to a hypothetical conservative benchmark, 

please refer to Section 1 for the definitions of benchmarks B1 and B2. Flavor learning is the 

most effective method for machine learning in situations when data centralization is not 

feasible. Over the course of all 32 decentralized datasets, we evaluate the validation 

performance of both federated and locally trained models using the same architecture.  

This evaluation is shown in the last two panels of Figure 1. There is a lot more significance to 

this exam. There have been no modifications made to the examination; it continues to contain 

all of the outcomes of population-based tests. Through the use of a consistent learning rate η 

= 10−3, the local models have been refined to perfection. When compared to the machine that 

performed the best, the data indicate that FL greatly enhances performance, which results in 

an increase of around 27% in the F1 score. On the contrary, there is a decrease of around 1.7 

in the ratio of false negative detection. Figure 1 presents the findings of the same research 

project that was carried out on the DS2 dataset. Even though there have been some minor 

modifications made to the overall performance measures in comparison to the data shown in 

the previous paragraph, the significant conclusions have not been altered. A client who makes 

use of collaborative learning has the ability to increase their F1 score by about five times and 

lower the false negative detection ratio by approximately 5.3 times. This is in contrast to the 

situation in which the customer begins from scratch.  

The federated training of a neural network outperforms even the most highly performing 

locally-trained machine by a margin of around 36% in terms of the F1 score and by a ratio of 

approximately 2.3 in terms of the fraction of false negative detection. As a last step in our 

analysis, we will determine whether or not the results are consistent when we gradually reduce 

the number of clients who are available at each round. Even when just a tiny number of 

customers take part in training rounds, as seen in Tab. 3, the performance of the dataset DS1 

shows essentially no signs of deterioration. When just ten percent of the clients are used in 

each cycle, the performance of the dataset DS2 suffers as a consequence. Even in the most 

severe case detailed here, the federated trained neural network surpasses the highest 

performing locally-trained individual machine, proving that the benefits of collaborative 

training are still visible up to a fraction of clients of 0.3.  

 

6. CONCLUSION  

In conclusion, Secure Federated Learning for Collaborative Intrusion Detection Systems (IDS) 

is an optimistic step towards improved cyber security since it enables organizations to 

collaborate on the training of machine learning models without allowing their sensitive data 



593 Utkarsh Parashar et al. Advancing Secure Federated Learning for Collaborative...                                                                                             
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

to fall into the wrong hands. By using Federated Learning (FL) in combination with privacy-

preserving technologies such as Secure Multi-Party Computation (SMPC) or Fully 

Homomorphic Encryption (FHE), it is possible to aggregate model updates while 

simultaneously ensuring that raw data is never taken out of the local context. This collaborative 

paradigm not only makes it easier to identify new threats across a wide range of networks, but 

it also makes it possible to react in real time to shifting attack strategies. The incorporation of 

these technologies that protect individuals' privacy results in an increase in the level of trust 

that exists between businesses. This, in turn, promotes a greater level of participation in 

systems that provide collective defense against cyber assaults. However, in order to fully 

exploit the potential of this strategy, further research will need to find solutions to difficulties 

such as regulating scalability, preserving computational efficiency, and dealing with any 

adversarial attacks. In the long term, this innovative design has the potential to pave the way 

for enhanced intrusion detection systems (IDS) that are capable of protecting vital 

infrastructure in a range of different environments. 
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