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A subset D of the vertex set V(G) of a graph G (V, E) is said to be a dominating
set if every vertex not in D is adjacent to at least one vertex in D. A dominating
set D is said to be an D- eccentric dominating set if for every v € V — D, there
exists at least one D- eccentric vertex u of vin D. If V — D contains a D- eccentric
dominating set D’ of G, then D' is called an inverse D- eccentric dominating set
with respect to D. The minimum of the cardinality of the inverse D- eccentric
dominating set of G is called the inverse D- eccentric domination number

y‘lfd (). In this paper, we obtain some bounds and some theorems stated and

proved related to y‘lfd (®).
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1. Introduction

In 1962 O. Ore [1] proposed a new idea dominating set and domination number. In 1972, F.
Harary [2] proposed the idea about Graph Theory. In 1991, Kulli VR, Sigarkanti SC [3].
Introduced the concept of Inverse domination in graphs. In 1998 T. W. Haynes et al., [4]
Fundamentals of domination in graphs. In 2010, V.R. Kulli [5] introduced the theory of
domination in graphs. In 2010 T. N. Janakiraman et al., [6] illustrated eccentric domination
in graphs. In 2013 L. N. Varma et al., [7] determined D- Distance in graphs. In 2021, Prasanna
A. and N. Mohamedazarudeen [8] initiated the concept of D- Eccentric domination in graph.
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In 2022, Prasanna A. and N. Mohamedazarudeen [9] initiated the concept of Detour D-
Eccentric domination in graph. In 2021, Jahir Hussain and Fathima Begam [10] intiated the
concept inverse eccentric domination in graphs. Prasanna A. and N. Mohamedazarudeen [11]
stated the concept of connected D- Eccentric domination in graphs in 2024.

In this article, the concept of inverse D- eccentric dominating set and its numbers are found.
The bounds for inverse D-eccentric domination numbers are found. Theorems related to
inverse D-eccentric dominating set and its number are stated and proved.

2. Preliminaries

Definition 2.1[1]: For any graph G (V,E),V is the vertex set of G or V(G) and E is the edge set
of G or E(G). The cardinality |V| of the vertex set V is called order of G and the cardinality
|E| of the edge set E is called size of G. Let u, v € V be two vertices of G. The standard or
usual distance d (u, v) between u and v is the length of the shortest u — v path in G.

Definition 2.2[7]: If u ,v are any two vertices of a connected graph G, then the D-length of a
u- v path s is defined as 1°(s) = d(u,v) + deg(u) + deg(v) + Y. deg(w) where sum runs
over all intermediate vertices w of s. The D- distance d®(u,v) = min {1°(s) }, where the
minimum is taken over all u - v paths in G.

Definition 2.3[7]: For a vertex v, each vertex at a D-distance e®(v) from v is a D- eccentric
vertex of v. D-eccentric set of a vertex v is defined as E °(v) ={u e V /d P(v) =e P(v)} or
any vertex u for which d ° (u ,v) = e P(v) is called D-eccentric vertex of v and a vertex u is
said to be D- eccentric vertex of G if it is the D- eccentric vertex of some vertex.

Definition 2.4[8]: The D-eccentricity of a vertex v is defined by eP(v) = max {d °(u,v)/ u €
V}

Definition 2.5[8]: The D- radius, defined and denoted by r°(G) = min { e°(v): v € V }.The D-
diameter, defined and denoted by d°(G) = max { e®(v):ve V }.

Definition 2.6[8]: The vertex v in G is a D- central vertex if r°(G) = eP(v) and the D-center
CP(G) is the set of all central vertices. The D-central sub graph < C P (G) > is induced by the
center.

Definition 2.7[8]: The D- peripheral of G, P°(G) = d°(G) = e®(G). V is a D-peripheral vertex
if e°(v) = d°(G). The D-periphery PP(G) is the set of all peripheral vertices. The D-peripheral
sub graph < PP(G) > is induced by the periphery.

Definition 2.8[5]: A set D € V(G)of vertices in a graph G = (V, E) is called a dominating set
of G if every vertex v € V — D is adjacent to some vertex in D.

Definition 2.9[6] Let D € V (G) of a graph G is dominating set. Then if V—D contains a
dominating set D with respect to D then D’ is called an inverse dominating set of G.

Definition 2.10[6] A set S < V(G) is known as an eccentric point set of G if for every v €
V — S there exist at least one eccentric vertex u in S such thatu € E(v).

Definition 2.11[8] Aset S < V(G) is known as an D- eccentric point set of G if for everyv €
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V — S there exist at least one D-eccentric vertex u in S such thatu € E(v).

Definition 2.12[6] A set D < V(G) is an eccentric dominating set if D is a dominating set of
G and also for every v in V — D there exist at least one eccentric point of v in D.

Definition 2.13[8] In a dominating set D < V of a graph G (V, E) if there exists at least one D-
eccentric vertex u of v in D for every v € V — D then it is called a D- eccentric dominating set.

Definition 2.14[2]: The neighbourhood N(u) of a vertex u is the set of all vertices adjacent to
uin G. N [v] = N(v) U {v} is called the closed neighbourhood of v.

Definition 2.15[10]: A subgraph that has the same vertex set as G is called linear factor the
degree of all vertices is one.

Definition 2.16 [10]: A spider is a tree on 2n + 1 vertices obtained by subdividing each edge
of astar K; , where n > 3.

In this paper, only non trivial simple connected undirected graphs are considered and for all
the other undefined terms one can refer [1, 2].

3. Inverse D- Eccentric Vertex Set In Graphs

Definition 3.1. Let S € V(G) be a D- eccentric vertex set of a graph G(V,E), then if V—S
contains a D- eccentric vertex set S’ of G, then S’ is called an inverse D- eccentric vertex set
with respect to S. An inverse D- eccentric vertex set S’ of G is called minimal inverse D-
eccentric vertex set, if no proper subset S’ of S’ is an inverse D- eccentric vertex set of G.
The minimum cardinality of a minimal inverse D- eccentric vertex set of D’ is called the
inverse D- eccentric number and is denoted by e~P(G) and simply denoted by e~P. The
maximum cardinality of a minimal inverse D- eccentric vertex set is called the upper inverse
D- eccentric number and is denoted by E~P(G) and simply denoted by E~P.

Note 3.1: The minimum inverse D- eccentric vertex set is denoted by e~P - set.

Example 3.1: Consider the graph given in the figure. 1.

[ L ®
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Figure.1 Inverse D- eccentric vertex set
From the figure. 1 given in example 3.1, the following points are observed.
1. The D- eccentric vertex setis S; = {v,;} and e®(G) = 1.
2. An inverse D- eccentric vertex setisS, €V —S; = {vz} =1ande P(G) = 1.

Remark 3.1: Theset S, € V—S; = {v3} = 1 isalso an upper inverse D- eccentric vertex set
and hence, E™P(G) = 1
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Results 3.1:

(i) For any connected graph G, e 1(G) < e 24(G) < E;Q(G).

(i) Every inverse D- eccentric vertex set is a vertex set but the converse is not true.
(iii) If r °(G) = d P(G), then e 1(G) =e ™ o4(G).

(iv) Every superset of an inverse D- eccentric vertex set is also an inverse D- eccentric
vertex set.

(V) The subset of an inverse D- eccentric vertex set need not be an inverse D- eccentric
vertex set.
(vi) In a tree every inverse D- eccentric vertex set contains at least one pendent vertex.

(vii)  Star graph has no an inverse D- eccentric vertex set.
Observation 3.1:

(i) e P(K,) =1,n>2.

(i) e P(Kym) =2,n,m > 2.

(i) e P(Kyn)=2n=2

(ivy e PW,) =2n=2.

(v) e P(P)=1n=23.

4. Inverse D- Eccentric Dominating Set in Graphs

Definition 4.1: Let D < V(G) be a D- eccentric dominating set of a graph G(V, E), then if V —
D contains a D- eccentric dominating set D' of G, then D' is called an inverse D- eccentric
dominating set with respect to D. An inverse D- eccentric dominating set D’ of G is called
minimal inverse D- eccentric dominating set, if no proper subset D" of D’ is an inverse D-
eccentric dominating set of G. The minimum cardinality of a minimal inverse D -eccentric
dominating set of D’ is called the inverse D- eccentric domination number and is denoted
byy,2(G) and simply denoted by y,2. The maximum cardinality of a minimal inverse D-
eccentric dominating set is called the upper inverse D- eccentric domination number and is
denoted by I';? (6) and simply denoted by I',?

Note 4.1: The minimum inverse D- eccentric dominating set is denoted by y,2 -Set.

Example 4.1 Consider the graph given in the following figure 2.
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Figure.2 Inverse D-eccentric dominating set.
From the graph given in figure 2, the following points are observed.

The D- eccentricity and D- eccentric set of a vertices vq,v,,v3,v4 and v are eP(v,) =
eP(vy) = eP(v3) = (vy) = e’ (ws) = 9 and EP (vy) = (w3}, EP(vp) = {vs}, EP(v3) =
{vy,v5}, EP(vy) = {vy}and EP(vg) = {v,, v} respectively. Hence,

(i) D- Eccentric dominating set is Dy = {vy,v,} and y2,(6) = 2.
(i) Inverse D- Eccentric dominating set is D, = {v3,v4,vs} and y,;2 (G) = 3.
(iiiy  Upper inverse D- Eccentric dominating set is D = {v3,v4,v5} and I';2(6) = 3

Remark 4.1: Let D be a minimum inverse dominating set of a graph G and S be a minimum
D-eccentric vertex set of G. Then clearly D U S is a inverse D-eccentric dominating set of G.

Results 4.1:
(i) For any connected graph G, ¥y 1(G) < ¥ 2,(G) < r_7(6).

(i) Every inverse D- eccentric dominating set is a dominating set but the converse is not
true.

(i) 1fr°G)=dP(G), then y~1(G) =y;2(G).

(iv) Every superset of an inverse D- eccentric dominating set is also an inverse D-
eccentric dominating set.

(v) The subset of a inverse D- eccentric dominating set need not be an inverse D- eccentric
dominating set.

(vi) In a tree every inverse D- eccentric dominating set contains at least one pendent
vertex.

(vii)  Path and Star graph has no an inverse D-eccentric dominating set.

Theorem 4.1 y;2(K,) = 1,n > 2.

Proof. Let vq, v, ..., U, be the vertices of K,, where n > 2. We know that y2,(K,) = 1.
Let D = {v4} be the minimum D- eccentric dominating set of K,,. Any vertex v; inV — D is
a minimum inverse D- eccentric dominating set. Thatis D' = {v; € V — {v,}} and anyone v;
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in D’ is a minimum inverse D- eccentric dominating set with respect to D. Then y,2(K,) =
1,n=> 2.

Theorem 4.2 yo¢ (Kpm) = 2, n,m > 2.
Proof. Let G = Ky, . ThenV(G) =V, UV, - [v4| = mand |[V,| = nwherem > 2and n > 2.
We know that ygy(Kmn) = 2.

Let D = {u,,v;} where u; € V; and v; € V, is a minimum D- eccentric dominating set. Then
any vertex u; € V; — {u;} dominates all the vertices of v, and it is a D-eccentric vertex of all
the vertices in vy — {u;}. Similarly for v, — {v,}.

Let D' = {u;,v;} where u; € V; — {u;} and v; € V, — {v;}. Then any two vertices {u;,v;}
D’ where u; € V; — {u;}and v; € V, — {v,} isa minimum inverse D- eccentric dominating set
of G with respect to D. Therefore, yz7 (Kmnn) = 2 forallm > 2 and n > 2.

Theorem 4.3

(i) ved (W) =1
(i) Yad (Ws) = 2
(iv)  Yed (We) =3
(iv) e (W7) = 2

Proof.
(i) Let G = W, = K,. Hence by theorem 4.1,  y;2(W,) = 1.

(i) Let G = W5. We know that y2, (Ws) = 2.

Let D = {u;,u,} is a minimum D- eccentric dominating set. Then D' =V — D = {us, uy, v}
where v is the D- central vertex of W,. Consider D" = {us,u,} € D’ which is a minimum
inverse D-eccentric dominating set of G with respect to D. Therefore, y;2(Ws) = 2.
(iii) Let G = Wy. We know that y2, (W) = 3

Let D = {uy,u,, v} where u, and u, are adjacent non-D- central vertices and v is a D-central

vertex. Consider D' =V — D = {u3,u,,us} which is a minimum inverse D- eccentric
dominating set. Therefore, yo2 (W) = 3

(iv) Let G = W,. We know that yD,(W;) = 2.

Let D ={uy,u,} is a minimum D- eccentric dominating set. Then D'=V—-D =
{u,, us, us, ug, v} where v is the D- central vertex. Consider D" = {u,, us} where u, dominates
u,, uz, v and us dominates ug, uy, v and also where u, is an eccentric point of ug, u,, vand us
is an D- eccentric point of uy,us,v. Therefore, D" is the minimum inverse D- eccentric
dominating set of G with respect to D. Hence y50 (W) = 2.

Results 4.2: For a wheel graph W,

(i) ye_(}D(Wn) = E] n=>8andn # 3m+ 1 wherem > 3.
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(i) y;jD(Wn) = (n3;1)n =>8andn = 3m+ 1 where m > 3.

Theorem4.4. For a spider graph T,ye‘(}D(T) =n—A(T)—1 whenn=2k+12>9 is the
number of vertices of T.

Proof.
Le T be a spider graph with n = 2k + 1 > 9. Then rP(T) = 2 and diamP(T) = 4.

We know that y2,(T) = n — A(T) — 1 = k = [N(u)| where u is the D- central vertex of T.

Let D be a minimum D- eccentric dominating set containing k — 2 vertices of N(u) and 2
pendent vertices of T which are not adjacent to the vertex which we have selected from N(u)
to form D. Then D’ = V — D contains remaining k — 2 pendent vertices, and 2 vertices from
N(u) and the D-central vertex u.

Let D" be the subset of D’ containing k — 2 pendent vertices and 2 vertices of N(u). Then D"
is the minimum inverse D- eccentric dominating set of T with respect to D. Therefore,
Yed(T) = [D"|=k—2+2=k=n—A(T) — 1.

Results 4.3;

(i) Let 1 denote the family of minimum dominating sets of G. If for every minimum
dominating set D € m, V — D is independent, then y24(G) + yz2(G) = p.

(i) Let T be a tree such that every nonend vertex is adjacent to at least one end vertex.
Then v24(®) + veq (G) = p

5. Conclusion

Here, the study of inverse D- eccentric domination in graphs are discussed. Theorems related
to inverse D- eccentric dominating set and its number are stated and proved. Also, some bounds
for inverse D- eccentric domination number of a graph are studied. Exact value of a inverse D-
eccentric domination number for some standard graphs are found.
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