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A subset 𝐷 of the vertex set 𝑉(𝐺) of a graph 𝐺(𝑉, 𝐸) is said to be a dominating 

set if every vertex not in 𝐷 is adjacent to at least one vertex in  𝐷. A dominating 

set 𝐷 is said to be an 𝐷- eccentric dominating set if for every   𝑣 ∈ 𝑉 − 𝐷, there 

exists at least one 𝐷- eccentric vertex 𝑢 of 𝑣 in 𝐷. If 𝑉 − 𝐷 contains a 𝐷- eccentric 

dominating set 𝐷′ of 𝐺, then 𝐷′ is called an inverse 𝐷- eccentric dominating set 

with respect to 𝐷.  The minimum of the cardinality of the inverse 𝐷- eccentric 

dominating set of 𝐺 is called the inverse 𝐷- eccentric domination number 

𝛾−1
ed 

𝐷
(𝐺). In this paper, we obtain some bounds and some theorems stated and 

proved  related to 𝛾−1
ed 

𝐷
(𝐺). 

Keywords: Dominating set, Eccentric dominating set, D- Eccentric dominating 

set, D- Eccentric domination number, inverse dominating set, inverse D- 

eccentric dominating set and its number.  

 

 

1. Introduction 

In 1962 O. Ore [1] proposed a new idea dominating set and domination number. In 1972, F. 

Harary [2] proposed the idea about Graph Theory. In 1991, Kulli VR, Sigarkanti SC [3]. 

Introduced the concept of Inverse domination in graphs.  In 1998 T. W. Haynes et al., [4] 

Fundamentals of domination in graphs. In 2010, V.R. Kulli [5] introduced the theory of 

domination in graphs.  In 2010 T. N. Janakiraman et al., [6] illustrated eccentric domination 

in graphs. In 2013 L. N. Varma et al., [7] determined D- Distance in graphs. In 2021, Prasanna 

A. and N. Mohamedazarudeen [8] initiated the concept of D- Eccentric domination in graph.  
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In 2022, Prasanna A. and N. Mohamedazarudeen [9]  initiated the concept of Detour D- 

Eccentric domination in graph. In 2021, Jahir Hussain and Fathima Begam [10] intiated the 

concept inverse eccentric domination in graphs.  Prasanna A. and N. Mohamedazarudeen [11] 

stated the concept of connected D- Eccentric domination in graphs in 2024. 

In this article, the concept of inverse  D- eccentric dominating set and its numbers are found. 

The bounds for inverse D-eccentric domination numbers are found. Theorems related to 

inverse D-eccentric dominating set and its number are stated and proved. 

 

2. Preliminaries 

Definition 2.1[1]: For any graph G (V, E),V is the vertex set of G or V(G) and E is the edge set 

of G or E(G).  The cardinality |V| of the vertex set V is called order of G and the cardinality 
|E| of the edge set E is called size of G. Let u, v ∈ V be two vertices of G.  The standard or 

usual distance d (u, v) between u and v is the length of the shortest u – v path in G. 

Definition 2.2[7]: If u ,v are any two vertices of a connected graph G, then the D-length of a 

u – v path s is defined as  lD(s) = d(u , v) + deg(u) + deg(v) + ∑ deg(w) where sum runs 

over all intermediate vertices w of s. The D- distance dD(u, v)  =  min { lD(s) }, where the 

minimum is taken over all u – v paths in G. 

Definition 2.3[7]: For a vertex v, each vertex at a D-distance eD(v) from v is a D- eccentric 

vertex of v.  D-eccentric set of a vertex v is defined as E D(v) ={ u ∈ V / d D(v) = e D(v )} or 

any vertex u for which d D (u ,v) = e D(v) is called D-eccentric vertex of v and a vertex u is 

said to be D- eccentric vertex of G if it is the D- eccentric vertex of some vertex.  

Definition 2.4[8]: The D-eccentricity of a  vertex  v is defined by eD(v) = max {d D(u,v)/ u ∈ 

V} 

Definition 2.5[8]: The D- radius, defined and denoted by rD(G) = min { eD(v): v ∈ V }.The D-

diameter, defined and denoted by dD(G) = max { eD(v): v ∈ V }. 

Definition 2.6[8]: The vertex v in G is a D- central vertex if  rD(G) =  eD(v) and the D-center 

CD(G) is the set of all central vertices. The D-central sub graph < C D (G) > is induced by the 

center. 

Definition 2.7[8]: The D- peripheral of G, PD(G) = dD(G) = eD(G). V is a D-peripheral vertex 

if eD(v) = dD(G). The D-periphery PD(G) is the set of all peripheral vertices. The D-peripheral 

sub graph  < PD(G) > is induced by the periphery. 

Definition 2.8[5]: A set D ⊆ V(G)of vertices in a graph G = (V, E) is called a dominating set 

of G if  every vertex v ∈ V − D is adjacent to some vertex in D.  

Definition 2.9[6] Let  D ⊆  V (G) of a graph G is dominating set. Then if  V − D  contains a 

dominating set D′ with respect to D then D′ is called an inverse dominating set of G. 

Definition 2.10[6] A set S ⊆  V(G) is known as an eccentric point set of G if for every v ∈
 V − S there exist at least one eccentric vertex u in S such that u ∈  E(v). 

Definition 2.11[8] A set S ⊆  V(G) is known as an D- eccentric point set of G if for every v ∈
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 V − S there exist at least one D-eccentric vertex u in S such that u ∈  E(v). 

Definition 2.12[6] A set D ⊆  V(G) is an eccentric dominating set if D is a dominating set of 

G and also for every v in V − D there exist at least one eccentric point of v in D. 

Definition 2.13[8] In a dominating set D ⊆ V of a graph G (V, E) if there exists at least one D-

eccentric vertex u of v in D for every v ∈ V − D then it is called a D- eccentric dominating set.  

Definition 2.14[2]: The neighbourhood N(u) of a vertex u is the set of all vertices adjacent to 

u in G. N [v] = N(v) ∪ {v} is called the closed neighbourhood of v. 

Definition 2.15[10]: A subgraph that has the same vertex set as G is called linear factor the 

degree of all vertices is one. 

Definition 2.16 [10]: A spider is a tree on 2n + 1 vertices obtained by subdividing each edge 

of a star K1,n where n ≥ 3. 

In this paper, only non trivial simple connected undirected graphs are considered and for all 

the other undefined terms one can refer [1, 2]. 

 

3. Inverse 𝐃- Eccentric Vertex Set In Graphs 

Definition 3.1. Let S ⊆ V(G) be a D- eccentric vertex set  of a graph G(V, E), then if V − S 

contains a D- eccentric vertex set S′ of G, then S′ is called an inverse D- eccentric vertex set 

with respect to S.  An inverse D- eccentric vertex set S′ of G is called minimal inverse  D- 

eccentric vertex set, if no proper subset S′′ of S′ is an inverse  D- eccentric vertex  set of G. 

The minimum cardinality of a minimal inverse D- eccentric vertex  set of D′ is called the 

inverse  D- eccentric number and is denoted by  e−D(G) and simply denoted by e−D. The 

maximum cardinality of a minimal inverse  D- eccentric vertex set is called the  upper inverse  

D- eccentric number and is denoted by  E−D(G) and simply denoted by  E−D.   

Note 3.1: The minimum inverse D- eccentric vertex set is denoted by e−D - set.  

Example 3.1: Consider the graph given in the figure. 1. 

 

 

Figure.1 Inverse D- eccentric vertex set 

From the figure. 1 given in example 3.1, the following points are observed. 

1. The D- eccentric vertex set is S1 = {v1} and eD(G) = 1. 

2. An inverse D- eccentric vertex set is S2 ⊆ V − S1 = {v3} = 1 and e−D(G) = 1. 

Remark 3.1: The set  S2 ⊆ V − S1 = {v3} = 1 is also an upper  inverse D- eccentric vertex set 

and hence, E−D(G) = 1 
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Results 3.1: 

(i) For any connected graph G, e−1(G) ≤  e−
ed
D (G) ≤   Eed

−D(G). 

(ii) Every inverse D- eccentric vertex set is a vertex set but the converse is not true. 

(iii)  If r D(G) = d D(G), then e−1(G) =e−
ed
D (G).  

(iv)  Every superset of an inverse D- eccentric vertex set is also an inverse D- eccentric 

vertex set. 

(v)  The subset of an inverse D- eccentric vertex set need not be an inverse D- eccentric 

vertex set. 

(vi)  In a tree every inverse D- eccentric vertex set contains at least one pendent vertex. 

(vii) Star graph has no an inverse D- eccentric vertex set. 

Observation 3.1: 

(i) e−D(Kn) = 1, n ≥ 2. 

(ii)  e−D(Kn,m) = 2, n, m ≥ 2. 

(iii)  e−D(K1,n) = 2, n ≥ 2. 

(iv) e−D(Wn) = 2, n ≥ 2. 

(v) e−D(Pn) = 1, n = 2, 3. 

 

4. Inverse 𝑫- Eccentric Dominating Set in Graphs 

Definition 4.1: Let 𝑫 ⊆ 𝑽(G) be a 𝑫- eccentric dominating set of a graph 𝑮(𝑽, 𝑬), then if 𝑽 −
𝑫 contains a 𝑫- eccentric dominating set 𝑫′ of 𝑮, then 𝑫′ is called an inverse 𝑫- eccentric 

dominating set with respect to 𝑫.  An inverse D- eccentric dominating set 𝑫′ of G is called 

minimal inverse  D- eccentric dominating set, if no proper subset 𝑫′′ of 𝑫′ is an inverse  D- 

eccentric dominating set of G. The minimum cardinality of a minimal inverse D -eccentric 

dominating set of 𝑫′ is called the inverse  D- eccentric domination number and is denoted 

by𝜸𝒆𝒅
−𝑫(𝑮) and simply denoted by 𝜸𝒆𝒅

−𝑫. The maximum cardinality of a minimal inverse  D- 

eccentric dominating set is called the  upper inverse  D- eccentric domination number and is 

denoted by 𝜞𝒆𝒅
−𝑫(𝑮) and simply denoted by 𝜞𝒆𝒅

−𝑫 

Note 4.1: The minimum inverse 𝑫- eccentric dominating set is denoted by 𝜸𝒆𝒅
−𝑫 -Set. 

Example 4.1 Consider the graph given in the following figure 𝟐. 
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Figure.𝟐 Inverse 𝑫-eccentric dominating set. 

From the graph given in figure 𝟐, the following points are observed. 

The 𝑫- eccentricity and 𝑫- eccentric set  of a vertices 𝒗𝟏, 𝒗𝟐, 𝒗𝟑, 𝒗𝟒 and 𝒗𝟓 are 𝒆𝑫(𝒗𝟏) =
 𝒆𝑫(𝒗𝟐) =  𝒆𝑫(𝒗𝟑) = (𝒗𝟒) = 𝒆𝑫(𝒗𝟓) = 𝟗 and 𝑬𝑫(𝒗𝟏) = {𝒗𝟑},  𝑬𝑫(𝒗𝟐) = {𝒗𝟓 },  𝑬𝑫(𝒗𝟑) =
{𝒗𝟏, 𝒗𝟓 },  𝑬𝑫(𝒗𝟒) = {𝒗𝟏} and  𝑬𝑫(𝒗𝟓) = {𝒗𝟐, 𝒗𝟑} respectively.  Hence,  

(i) 𝑫- Eccentric dominating set is 𝑫𝟏 = {𝒗𝟏, 𝒗𝟐} and 𝜸𝒆𝒅
𝑫 (𝑮) = 𝟐.  

(ii) Inverse 𝑫- Eccentric dominating set is 𝑫𝟐 = {𝒗𝟑, 𝒗𝟒, 𝒗𝟓} and 𝜸𝒆𝒅
−𝑫(𝑮) = 𝟑.   

(iii) Upper inverse 𝑫- Eccentric dominating set is 𝑫 = {𝒗𝟑, 𝒗𝟒, 𝒗𝟓} and 𝜞𝒆𝒅
−𝑫(𝑮) = 𝟑 

Remark 4.1: Let D be a minimum inverse dominating set of a graph G and S be a minimum 

D-eccentric vertex set of G. Then clearly D ∪ S is a inverse D-eccentric dominating set of G. 

Results 4.1: 

(i) For any connected graph G, 𝜸−𝟏(G) ≤  𝜸−
𝒆𝒅
𝑫 (G) ≤   𝜞𝒆𝒅

−𝑫(𝑮). 

(ii) Every inverse D- eccentric dominating set is a dominating set but the converse is not 

true. 

(iii)  If r D(G) = d D(G), then 𝜸−𝟏(G) =𝜸𝒆𝒅
−𝑫(G).  

(iv)  Every superset of an inverse D- eccentric dominating set is also an inverse D- 

eccentric dominating set. 

(v) The subset of a inverse D- eccentric dominating set need not be an inverse D- eccentric 

dominating set. 

(vi)  In a tree every inverse D- eccentric dominating set contains at least one pendent 

vertex. 

(vii) Path and Star graph has no an inverse 𝑫-eccentric dominating set. 

Theorem 4.1  𝜸𝒆𝒅
−𝑫(𝑲𝒏)  =  𝟏, 𝒏 ≥ 𝟐. 

Proof. Let 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏 be the vertices of 𝑲𝒏 where 𝒏 ≥ 𝟐. We know that 𝜸𝒆𝒅
𝑫 (𝑲𝒏) = 𝟏. 

Let 𝑫 = {𝒗𝟏} be the minimum 𝑫- eccentric dominating set of 𝑲𝒏.  Any vertex 𝒗𝒊 in 𝑽 − 𝑫 is 

a minimum inverse 𝑫- eccentric dominating set. That is 𝑫′ = {𝒗𝒊 ∈ 𝑽 − {𝒗𝟏}} and anyone 𝒗𝒊 
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in 𝑫′ is a minimum inverse 𝑫- eccentric dominating set with respect to 𝑫.  Then  𝜸𝒆𝒅
−𝐃(𝐊𝐧)  =

 𝟏, 𝐧 ≥ 𝟐.  

Theorem 4.2  𝛄𝐞𝐝
−𝐃(𝐊𝐧,𝐦) =  𝟐,   𝐧, 𝐦 ≥ 𝟐. 

Proof. Let 𝐆 = 𝐊𝐦,𝐧. Then 𝐕(𝐆) = V1 ∪ V2 ⋅ |v1| = m and |V2| = n where m ≥ 2 and n ≥ 2. 

We know that γed
D (Km,n) = 2. 

Let D = {u1, v1} where u1 ∈ V1 and v1 ∈ V2 is a minimum D- eccentric dominating set. Then 

any vertex ui ∈ V1 − {u1} dominates all the vertices of v2 and it is a D-eccentric vertex of all 

the vertices in v1 − {ui}. Similarly for v2 − {v1}. 

Let D′ = {ui, vi} where ui ∈ V1 − {u1} and vi ∈ V2 − {v1}. Then any two vertices {ui, vi} ⊆
D′ where ui ∈ V1 − {u1} and vi ∈ V2 − {v1} is a minimum inverse D- eccentric dominating set 

of G with respect to D. Therefore, γed
−D(Km,n) = 2 for all m ≥ 2 and n ≥ 2. 

Theorem 4.3 

 (i)  γed
−D(W4) = 1  

(ii) γed
−D(W5) = 2  

(iv) γed
−D(W6) = 3 

 (iv) γed
−D(W7) = 2   

Proof. 

(i) Let G = W4 = K4. Hence by theorem 4.1,      γed
−D(W4) = 1. 

(ii) Let G = W5. We know that γed
D (W5) = 2. 

Let D = {u1, u2} is a minimum D- eccentric dominating set. Then D′ = V − D = {u3, u4, v} 

where v is the D- central vertex of W4. Consider D′′ = {u3, u4} ⊆ D′ which is a minimum 

inverse D-eccentric dominating set of G with respect to D. Therefore, γed
−D(W5) = 2. 

(iii) Let G = W6. We know that γed
D (W6) = 3 

Let D = {u1, u2, v} where u1 and u2 are adjacent non-D- central vertices and v is a D-central 

vertex. Consider D′ = V − D = {u3, u4, u5} which is a minimum inverse D- eccentric 

dominating set. Therefore, γed
−D(W6) = 3  

(iv) Let G = W7. We know that γed
D (W7) = 2. 

Let D = {u1, u4} is a minimum D- eccentric dominating set. Then D′ = V − D =
{u2, u3, u5, u6, v} where v is the D- central vertex. Consider D′′ = {u2, u5} where u2 dominates 

u1, u3, v and u5 dominates u6, u4, v and also where u2 is an eccentric point of u6, u4, v and u5 

is an D- eccentric point of u1, u3, v. Therefore, D′′ is the minimum inverse D- eccentric 

dominating set of G with respect to D. Hence γed
−D(W7) = 2.  

Results 4.2: For a wheel graph Wn,  

(i)  γed
−1D

(Wn) = ⌈
n

3
⌉ n ≥ 8 and n ≠ 3m + 1 where m ≥ 3. 
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(ii) γed
−1D

(Wn) =
(n−1)

3
n ≥ 8 and n = 3m + 1 where m ≥ 3. 

Theorem4.4. For a spider graph T, γed
−1D

(T) = n − Δ(T) − 1 when n = 2k + 1 ≥ 9 is the 

number of vertices of T. 

Proof. 

Le T be a spider graph with n = 2k + 1 ≥ 9. Then rD(T) = 2 and diamD(T) = 4. 

We know that γed
D (T) = n − Δ(T) − 1 = k = |N(u)| where u is the D- central vertex of T. 

Let D be a minimum D- eccentric dominating set containing k − 2 vertices of N(u) and 2 

pendent vertices of T which are not adjacent to the vertex which we have selected from N(u) 

to form D. Then D′ = V − D contains remaining k − 2 pendent vertices, and 2 vertices from 

N(u) and the D-central vertex u. 

Let D′′ be the subset of D′ containing k − 2 pendent vertices and 2 vertices of N(u). Then D′′ 

is the minimum inverse D- eccentric dominating set of T with respect to D.  Therefore, 

γed
−D(T) = |D′′| = k − 2 + 2 = k = n − Δ(T) − 1. 

Results 4.3: 

(i) Let π denote the family of minimum dominating sets of G. If for every minimum 

dominating set D ∈ π, V − D is independent, then  γed
D (G) + γed

−D(G) = p. 

(ii) Let T be a tree such that every nonend vertex is adjacent to at least one end vertex. 

Then  γed
D (G) +  γed

−D(G) = p 

 

5. Conclusion 

Here, the study of inverse D- eccentric domination in graphs are discussed. Theorems related 

to inverse D- eccentric dominating set and its number are stated and proved. Also, some bounds 

for inverse D- eccentric domination number of a graph are studied. Exact value of a inverse D- 

eccentric domination number for some standard graphs are found. 
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