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The rapid adoption of Industrial Internet of Things (IIoT) technologies has transformed industrial 

operations, enhancing efficiency, productivity, and scalability through the interconnection of 

devices, sensors, and systems. However, this digital integration also introduces significant security 

vulnerabilities, as attackers increasingly target these complex networks with advanced and evolving 

cyber threats. Traditional detection systems, such as signature-based methods, are insufficient to 

address the dynamic nature of IIoT environments, often failing to detect zero-day attacks and 

producing high false positive rates. This research addresses these challenges by developing a 

hypertuned machine learning (M L) framework capable of detecting IIoT-specific attacks with high 

accuracy and speed. The proposed model utilizes feature selection techniques like Principal 

Component Analysis (PCA) to reduce dimensionality, alongside ensemble learning techniques, 

including stacking methods, to optimize performance.  Key algorithms such as XGBoost, Random 

Forest, and Logistic Regression form the foundation of the detection system, with LightGBM 

serving as the meta-learner. The model is trained and evaluated using the WUSTL IIoT 2021 

dataset, encompassing various attack scenarios including Denial of Service (DoS), Man-in-the-

Middle (MITM), and unauthorized access. Results show that the hypertuned model achieves near-

perfect accuracy and significantly reduces false positives compared conventional methods, offering 

robust, scalable, and real-time detection of IIoT attacks. This research contributes to the 

advancement of secure IIoT architectures, demonstrating the potential of intelligent machine 

learning solutions to safeguard critical infrastructure.  

Keywords: Ensemble Learning, Anomaly Detection, Industrial Internet of Things, Stacking 

Method, Feature Selection.  

 

 

1. Introduction 

IIoT attacks are malicious actions targeting IIoT(Industrial Internet of Things) systems. The 

IIoT systems consist of interconnected devices and sensors used in industrial processes. The 

IIoT attacks can disrupt operations, compromise data integrity, or damage critical 

infrastructure by exploiting vulnerabilities in the IIoT network. Most of the IIoT systems were 

made up of numerous interconnected devices and sensors, creating a complex attack surface. 

http://www.nano-ntp.com/
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Attackers can exploit vulnerabilities in various ways, making detecting and responding to 

evolving threats essential. The complexity of IIoT systems makes it challenging to detect 

anomalies and potential attacks using traditional methods. Attackers are using advanced 

techniques. These techniques can evade basic security measures. Hypertuned machine learning 

models can adapt to and identify subtle patterns indicative of such advanced threats. IIoT 

systems often require real-time or near real-time detection to prevent damage or disruption as 

they will be used in most real scenarios. Hypertuned ML models can process large volumes of 

datasets quickly and accurately. This advantage of Hypertuned ML enables timely responses 

to potential threats and attacks. Hypertuned ML Models are highly adaptable as they learn 

from new data and adapt to evolving attack methods in agile way by maintaining their 

effectiveness over time. Apart from the above-mentioned issues scalability and automated 

response are also the issues where eve need to look for hyper-tuned ML models for detecting 

IIoT attacks. 

1.1 Different Types of IIoT Attacks Detection: Techniques for detecting IIoT attacks include 

hybrid techniques, machine learning (ML), network-based, device- based, data-based, 

physicalinspection, signature-based, anomaly-based, and machine learning (ML). Benefits 

from these techniques include heightened security, instantaneous threat identification, better 

incident handling, and decreased downtime. They are able to recognize many different types 

of assaults, such as supply chain attacks, malware, malware-in-the-middle, Denial of Service 

(DoS), data manipulation, and illegal access. Nonetheless, several constraints are present, such 

as elevated false positive rates, the necessity for constant observation, reliance on high-quality 

data, susceptibility to intricate attacks, and heightened intricacy. Furthermore, signature-based 

detection is less resilient to zero-day assaults than machine learning (ML)-based detection, 

which demands a large amount of processing power and training data. A multi-layered strategy 

that balances detection techniques to minimize drawbacks and maximize benefits is necessary 

for effective IIoT security. This ensures complete defense against constantly changing threats. 

Figure 1 presents the popular ways of detecting the IIoT Attacks 

 

Figure 1: Types of IIoT Attacks Detection 

1.1.1. Anomaly-Based Detection: Anomaly-based detection approach is used to identify 

attacks in Industrial Internet of Things(IIoT) environments by recognizing unusual behavior 

or deviations from established norms. This technique is particularly used in traditional IIoT 

systems where traditional security methods like signature-based detection struggle due to the 

complexity, diversity, and evolving nature of connected devices. The core concept of anomaly- 
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based detection is that it monitors the typical behavior of IIoT systems and flags any deviations 

as potential threats. The underlying assumption is that IIoT devices and networks usually 

follow predictable patterns in terms of data flows, device behaviors, and interactions. Any 

significant deviation from these patterns might indicate an attack or malfunction. The system 

learns the “normal” behavior of IIoT devices and networks by observing historical data that 

might include data transmission rates, device response times, communication patterns, sensor 

readings, etc.. The system continuously monitors real-time data and compares it to the learned 

baseline. Any deviations from the baseline are flagged as anomalies, which could be indicative 

of potential attacks. If the deviation is significant or sustained, the system triggers an alert for 

further investigation. Various machine learning (M L) and statistical techniques are used to 

implement anomaly- based detection in IIoT systems like Autoencoders, K-Means Clustering, 

Isolation Forests, Support Vector Machines, and alsoTime Series Analysis. 

1.1.2 Network Traffic-Based Detection: Network Traffic-Based Detection is an important 

approach for identifying attacks in Industrial Internet of Things(IIoT) systems which analyses 

the communication patterns, data flows, and packet characteristics within the network. IIoT 

environments often involve a large number of interconnected devices that generate significant 

network traffic. Monitoring this traffic for anomalies, unusual patterns, or known 

attacksignatures can help detect malicious activities. Network Traffic-Based detection focuses 

on analyzing the communication between IIoT devices and other systems to identify attacks. 

This method inspects the packets flowing through the network and looks for anomalies in 

packet content, traffic volume, or unexpected device interactions. Attacks such as Denial-of-

Service (DoS), Man-in-the-Middle(MITM), packet injection, and data exfiltration attempts 

can be effectively detected by this method. Network Traffic-Based Detection models analyze 

features like packet size, traffic volume, source/destination IPs, protocol usage, and connection 

frequency. Unusual traffic spikes, unexpected communication with external servers or large 

and data transfers can be considered as anomalous behavior that will signal potential attacks. 

Machine Learning models suns Random Forest, K-Means clustering, LSTM networks, and 

Autoencoders are often used to classify the traffic as normal traffic or malicious traffic and 

enhance detection accuracy for both known and unknown attacks. Despite these advantages, 

Network Traffic-Based Detection also faces a few challenges. They are managing high-traffic 

volumes, handling encrypted traffic, mitigating false positives, and the scalability of large IIoT 

networks. To address these, a combination of anomaly-based and signature-based methods. 

along with edge analytics and threat intelligence integration, is often used. 

1.1.3 Device Fingerprinting Detection: Device Fingerprinting Detection detects attacks in the 

IIoT environments by identifying the unique characteristics of devices connected to 

theenvironment. This method creates a unique “finger print” for each device by profiling each 

IIoT device based on its hardware, software, and network behavior. It will continuously 

monitor these devices' behavior and compare them with normal device behavior and any 

deviation mayindicate a potential security threat. The fingerprints for the devices will be 

created using unique features of any device such as MAC addresses, CPU types, firmware 

versions, operating systems, and device configurations. These help in identifying the device 

and distinguishing and detecting any unauthorized modifications. Devices in IIoT networks 

often have predictable behavior like communication patterns, data transmission rates, 

protocols used, and communication with specific servers as they are designed for specific tasks 
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and their scope is limited. Any deviation fromthis behavior indicates a compromised device 

or an external attack. Fingerprinting helps prevent attacks where malicious entities attempt to 

impersonate legitimate devices by ensuring that only recognized fingerprints can interact with 

the network. Machine Learning models can enhance fingerprinting by learning device 

behaviors over time and detecting even subtle anomalies, improving the detection of advanced 

attacks. The challenges face by Device Fingerprinting Detection models are IIoT devices may 

change behavior due to legitimate updates or configurations, which can complicate 

fingerprinting. Scalability and false positives are the other challenges. 

 

2. Literature Survey  

V. Piiya et al [1] an effective IIoT attack detection model utilising an ensemble classifier 

methodology. The approach uses a two-step categorisation procedure. To remove duplicate 

and null data, the first step involves normalising the data of three IoT datasets: Bot_IoT, 

N_BaloT, and WUSTL_IIOT-2018. Next, using various cross-validation ratios, the data is 

divided into testing and training sets: the best accuracy is obtained with an 80:20 ratio. Using 

a blending ensemble approach, the first classifying level integrates the SVM, NB, & DT 

classifiers. After combining the output of both models, a RF classifier receives the new training 

set, which it uses to make more predictions. Concurrently, the same data are used to deploy an 

ANN classifier that has been optimisedusing the Adam optimizer. The second level compares 

theresults of the RF and ANN models and chooses the most accurate result as the final guess. 

On the test datasets, this technique performed better than others. 

Mohammed Amine Ferrag et al [2] The Edge- IIoTset project aims to create a complete and 

accurate safety collection for both IoT and IIoT apps. The goal of this dataset is to help intruder 

detection systems learn in both centralised and shared ways. The method has several important 

steps, the first of which is setting up and configuring a complex seven-layer testbed that looks 

and works like an IoT or IIoT environment in the real world. This testbed has many layers. 

some of which are bitcoin, cloud computing, and edge computing. The second phase is threat& 

attack modelling, which identifies and groups fourteen distinct attack scenarios about IoT and 

IIoT communication protocols into five main threats, such as malware and DoS/DDoS 

assaults. After that, tools like Wireshark are used to create and record both regular and attack 

data. Features are then taken from the gathered packet data. Also included in the methodology 

arc data pre-processing stages, including the labelling of features for binary as well as 

multiclass classification, the removal of duplicates, and the standardisation of features. The 

dataset is then tested using different ML models. The outcomes indicate that the dataset is 

useful for making attack detection better in IoT and IIoT settings. 

Abdullah Alsaedi et al [3] Develops and evaluates the new and comprehensive TON_IoT 

Telemetry Dataset for IDSs in IoT and IIoT contexts. Create a realistic & representative 

medium-scale testbed to replicate IoT/IIoT networks with Edge, Fog, and Cloud layers. The 

collection includes telemetry data from sensors and devices, operating system logs, and 

network traffic from the testbed. The dataset simulates nine cyber-attacks, including DDoS, 

ransomware, & injection assaults, to offer varied & realistic data for IDS training and 

evaluation. The technique also labels and normalises data and analyses different ML models, 

notably SVM, decision trees, and DL models like LSTM. This all-inclusive strategy seeks to 
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close the existing gap in IoT/IIoT dataset availability and provide a strong basis for creating 

and evaluating IDSs in these settings. 

Imad Tareq AL-Halboosi et al [4] focuses on applying machine learning methods to identify 

IoT network cyber-attacks. The WUSTL-IIOT dataset's Traffic data was analysed by using 

several ML methods, such as SVM, LDA, and QDA. Their method's primary component is 

the utilisation of computing in parallel, which splits the information into smaller pieces and 

analyses each one concurrently. Master prediction and training are made possible by this 

parallelising of computing power. In addition, the methodology employs a parallel voting 

predictor system, which involves the collaboration of multiple classifiers to determine the 

ultimate classification through weighted ballots. This helps the model to have great accuracy 

in spotting assaults like DoS & backdoor intrusions. The highest accuracy among the parallel 

SVM+LDA models turned out to be shown here. This emphasises the need to scale the 

information to maximise speed and eliminate pointless elements through pre-processing. 

Mohammed S. Alshehri et al [5] IoT networks need an SA-DCNN model to find intuitions. 

The model uses a DCNN to analyse significance values assigned by self-attention processes 

and to detect suspicious network behaviors. Data cleansing, feature encoding, & filtering 

among other important phases comprise the approach. Using a label encoder, info is pre-

processed by eliminating duplicate and unknown values and numerically transforming 

category characteristics. Feature filtering uses the mutual information approach to rank 

qualities depending on their effect and remove those having a negative impact. Later, layers 

optimizedfor multi-class classification are added to the SA-DCNN model and trained on the 

loTlD20 and Edge-IIoTset datasets. Models are improved by tuning hyperparameters like 

batch size, layers of convolution, & AF. Validations are used to assess results, therefore 

proving the model's efficacy in highly accurate and efficient intrusion detection. 

Lahcen Idouglid et al [6] modem ML methods are utilised to create an IDS to support the IIoT. 

The process starts with preparing the information, which includes cleaning, transforming, and 

normalising the data to make sure it is consistent and useful for finding anomalies. Subsets of 

the dataset are then separated for testing and training to assess the performance of the model. 

Intruders are accurately found using four ML algorithms: XGBoost, SVM, MLP, and k-NN. 

Gradient-boosting ensemble approach makes XGBoost efficient and accurate. Finding the best 

hyperplane is how SVM improves classification, and k-NN finds local trends that are useful 

for classification tasks. The MLP model can handle complicated nonlinear data structures 

thanks to its multiple neural network design. Using public datasets like CIDDS and Bot-IoT 

to try and fine-tune these algorithms and judge their performance based on validation 

techniques. By combining these methods, the objective is to make monitoring more accurate 

and provide a flexible, scalable way to protect IIoT networks. 

Hong-Yu Chuang et al [7] the method used ML-based detection of harmful activity in IIoT 

systems. The TON_IoT dataset includes many network traffic characteristics. By use of a 

feature selection procedure, the initial 45 features were limited down to 10 core characteristics. 

hence lowering computing complexity. This procedure helps to pinpoint the most important 

features by using the PCC to evaluate feature correlations and create frequency tables 

utilisingJamovi tools. Features not numerical were encoded for ML compatibility. These ten 

key characteristics were used to evaluate four machine learning models: eXtreme Gradient 
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Boosting, KNN, RF, NB, and NB. Training (70%) & testing (30%) sets comprised the dataset; 

each model's performance was assessed using validation criteria. Using these lowered 

characteristics worked well to maintain great precision. 

S. Gopalakrishnan et al [8] implements a hybrid ML predictive maintenance solution for the 

car sector leveraging IIoT. Smart sensors in industrial equipment provide operational data to 

the IIoT platform for continuous machine performance & product quality monitoring. Using 

both controlled and untrained learning models on the collected data helps find problems in the 

production process and machine errors early on. The approach uses feature selection to extract 

crucial data points for anomaly detection and cloud storage for historical data. This makes it 

possible to analyse data in real-time and compare it with historical data to increase the 

prediction system's accuracy. The hybrid model makes machines work better by constantly 

improving datasets using both unsupervised learning for raw data and controlled learning for 

trends in known data. Successful implementation of the system results in improved machine 

efficiency, production precision, proactive maintenance interventions, reduced downtime and 

improved product quality. 

Table 1: Analysis of the Existing Approaches 

Author Algorithm Merits De-merits Accuracy 

V. Priya el al Stackedensemble methods, ANN Has developed two phase 

anomaly identification model. 

Time-complexity 99% 

MohamedAmine Ferrag et 

al 

ML Data analysis was 

accurate. 

Global modelprediction has little 

performancedifferences  compared 
to remaining. 

93% 

AbdullahAlsaedi et al LSTM, & KNN Overcomes the 

IDSs enabled systems issues. 

Baseline methodshas to perform 

more accurately. 

77% 

Imad Tareq AL-Halboosi et 
al 

SVM+LDA By partitioning the 

data and training it parallelly 

the model has acquired good 

performance. 

Reliability has tobe improved. I00% 

Mohammed S.Alshehri et al SA-DCNN Every stage has in 

depth detection which 

increases the performance. 

High cost. 96.5% 

Lahcen Idouglidet al XGBoost Worked on real 

world datasets. 

The model has tobe updated all the 
time which is complex. 

99% 

Hong-YuChuang et al KNN, RF, NB,eXtremeGradient Any kind of attacksare 

determined with good 

efficiency and effectivity. 

Based on featuresprediction time 

complexity is determined. 

96% 

S.Gopalakrishnan et al HML The model isefficient in speed 
and productivity. 

The process maynot fitforall 
models. 

92% 

2.1.1 Research Gaps Identified: 

1. The study is mainly concerned with categorization tasks and conventional attack 

scenarios. Not enough research has been done on the possibilities of anomaly detection, 

especially unsupervised or semi-supervised methods that can detect unknown or zero-day 
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assaults. Enhancing detection accuracy in unexpected contexts may benefit greatly from this 

field of study. 

2. Predictive maintenance models often operate as "black boxes," especially when using 

complex ML algorithms. The study does not focus on the explainability of the predictions, 

which is crucial for decision-makers in industrial settings. Future research could focus on 

explainable Al (XAI) techniques to provide insights into how the model detects faults or 

anomalies. 

 

3. Proposed Methodology:  

The proposed model initial analyses the relation between the features using the two-way 

ANOVA test using degrees of freedom approach because it helps in analysis of network traffic, 

sensor data and security evaluation. The model then selects the best features using the PCA 

and applies intelligent stacking approach as shown in the figure 2 

 

Figure 2: Block Diagram for the Proposed Model 

3.1 Working of PCA for Best Feature Selection: Large datasets can be made less dimensional 

by using a statistical approach called principal component analysis, or PCA. It creates a new 
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set of attributes known as principle components from the features (columns) of a dataset. The 

basic features are combined linearly to form these fundamental components. In machine 

learning, features that are redundant or multicollinear can lead to problems like overfitting and 

extended training durations, particularly when working with high-dimensional datasets. To 

overcome these difficulties, dimensionality reduction methods like Principal Component 

Analysis (PCA) are widely utilized. It transforms the data reduces it into a lower-dimensional 

space and preserves as much variance as possible. By transforming correlated features into 

uncorrelated principal components, PCA removes multicollinearity, which helpsimprove 

model performance. Reducing the number of dimensions (features) improves training speed 

reduces memory consumption and discards irrelevant or noisy features thus helping to create 

a more generalizable model. Columns that are not relevant to the analysis were removed 

(StartTime, LastTime, SrcAddr, and DstAddr), simplifying the dataset. The Traffic column 

(categorical) was label encoded to convert it into a numeric format, which is necessary for 

models that cannot process categorical variables directly. The features (X) were separated 

from the target columns, (y) where X contained all the predictor variables, and y held the target 

class. 

The data was split into training (80%) and testing (20%) subsets to evaluate model 

performance on unseen data. Since the dataset was imbalanced, RandomOverSampler was 

used to balance the training data by increasing the representation of the minority class, 

ensuring that the model is not biased towards the majority class. To begin with, the covariance 

matrix of the pre-processed data is computed rising PCA. The covariance matrix captures how 

features are correlated with each other. Covariance quantifies how two variablechange 

together. If two features are positively correlated, PCA aims to combine them in a way that 

reduces the redundancy (similarity) between them. After computing the covariance matrix, 

PCA calculates the eigenvalues and eigenvectors. Eigenvectors determine the direction of the 

new feature axes(called principal components), and eigenvalues correspond to the amount of 

variance each principal component captures from the data. The first principle component 

absorbs the largest variation, while each successive component captures less, with the principal 

components arranged in decreasing order of eigenvalue. Following the identification of the 

primary components, the original data is projected onto this new axis system. The pre-

processed data was converted into a Twenty-dimensional space for features (instead of the 

original higher- dimensional space) by means of a PCA model that chose 20 primary 

components. The initial features are combined linearly to create the new features (principal 

components). A more condensed version of the data that keeps the Majority of the variance is 

produced by this transformation. 

3.2 Intelligent Stacking Approach: The proposed model in the base level tunes and combines 

the three algorithms namely logistic regression, random forest and XGBOOST. The process 

of tuning the base models is explained in the below section 

3.2.1 Tuning and Working of XGBoost: Extreme Gradient Boosting or in simple terms 

XGBoost, is an optimized and simplified implementation of the Gradient Boosting algorithm, 

designed to reduce the complexity and increase the performance, accuracy, and efficiency. In 

order to build a powerful model, it employs ensemble learning, which combines several novice 

learners (decision trees). Every new tree in XGBoost minimizes a differentiable loss function 

(such as log loss for classification) in order to fix the faults of the preceding ones. The 
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algorithm builds trees sequentially to reduce the error step-by-step. XGBoost is highly 

efficient because it parallelizes the tree construction process, making it much faster than other 

implementations of gradient boosting. In both the SelectKBest and PCA cases, XGBoost was 

one of the base models. Atler applying SelectKBest, the top 20 features were selected based 

on their correlation with the target variable. These features were passed to the XGBoost model. 

The selected features were scaled using StandardScaler to standardize the feature values, 

which is important for models sensitive to the scale of input data. XGBoost was trained on the 

scaled featuresX_train_kbest_scaled to learn the patterns in the data. During training, it used 

its gradient boosting mechanism to iteratively minimize the classification error(logarithmic 

loss). The XGBoost model's predictions(probabilities for class 1) were used as meta-features 

for thestacking model. These were combined with predictions from other base models(Logistic 

Regression and Random Forest) to train the LightGBM classifier as the meta-model. The 

working process is shown in figure 3. 

 

Figure 3: Working of Tuned XGBoost 

In PCA case the dimensionality of the data was reduced to 20 components.  These elements, 

which capture the mostuncertainty in the data, are the linear amalgamation of the original 

features. The PCA-transformed features were passed to the XGBoost model. While these 

features are not the original raw features. XGBoost still worked by building decision trees that 

partition the transformed feature space. Similar to the SelectKBest case, XGBoost was trained 

on the PCA-transformed data and the predicted probabilities we used as meta-features for the 

stacking model, contributing to the final prediction through the LightGBM meta-model. 

XGBoost builds decision trees in a sequential order, where the results of the previous tree will 

be passed to the next tree and the current processing tree will focus on minimizing and 

correcting the mistakes made by the previous tree. The trees are constructed by partitioning 

the feature space into regions that best separate the target classes. Each tree is a weak learner(a 
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decision tree with limited depth) that is built to minimize a differentiable loss function(log 

loss- mgloss), which is commonly used for classification problems. Instead of updating the 

model weights as in classical gradient descent, XGBoost fits the new tree to the 

residuals(errors) of the previous trees. Each new tree aims to predict the gradient(or direction 

of error) to improve the model's predictions. XGBoost uses the gradients to update the model 

iteratively. During training, XGBoost transformed the data by learning the splits in the 

decision trees that best separated the target classes. These splits were based on the gradients 

computed from the loss function. For eachinput sample, XGBoost assigns it to a region of the 

feature space defined by the tree structure. The final prediction is a combination of the 

predictions from all trees, adjusted based on the learning rate and gradient information. After 

training, when new data is passed to the model, XGBoost applies the learned trees to make 

predictions, combining the outputs of all trees to generate a probability score for each class. 

Table 2 presents the tuning parameters and their best values of the XGBoost. 

Table 2: Parameters of the XGBoost 

S.No Name Description PossibleandBest Values 

1 Evaluation 

Metric 

Inordertodeterminethe performance 

measure that will be used to assess the model both during training and 

validation, the eval metric in XGBoost (XGB) classifiers is important. 

This measure makes ensuring the model optimizes for the appropriate 
goal given the current situation and aids intracking its learning process. 

Possible: logloss, 

auc, mlogloss, merror 

 

Best: mlogloss 

2 Sub Sample Itrepresentsthefractionamount toconstructthetreefromthetraining data Possible: any value 

between 0 to 1 

Best: 0.6 

3 Colsample_bytree It represents the fraction of features fortree construction based on sub 

samples 

Possible: any value 

between0to1 

Best: 0.6 

3.2.2 Tuning & Working of Random Forest: As part of an ensemble learning technique, the 

Random Forest (RF) classifier constructs several decision trees during training and then 

combines the output to increase precision and avoid overfitting. A random subset of the data, 

including samples and characteristics, is used to train each tree in the forest.  Predictions are 

then formed by averaging or voting on the outputs of these trees. As part of an ensemble 

learning technique, the Random Forest (RF) classifier constructs several decision trees during 

training and then combines the output to increase precision and avoid overfitting. A random 

subset of the data, including samples and characteristics, is used to train each tree in the forest. 

Predictions are then formed by averaging or voting on the outputs of these trees. Random 

Forest is used as one of the base models in the stacking process. It operates by aggregating 

decisions from multiple trees to generate its final predictions. The SeleckKBest method selects 

the top 20 features based on their relationship with the target variable. These 20 features are 

chosen using statistical tests which help identify which features are most informative. After 

scaling the best featurethe data is standardized using StandardScaler. The pre-processed data 

is then passed into the Random  Forest model. The model creates several decision trees, each 

of which receives a portion of the samples and data. The final prediction is calculated by 

averaging the outcomes of all the trees. Instead of feature selection, PCA (Principal 
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Component Analysis) reduces the dimensionality of the data by transforming it into 20 

uncorrelated components. These components are linear combinations of the original features, 

capturing as much variance as possible with fewer dimensions. Once PCA transforms the data, 

these 20 components (rather than the original features) are passed into the Random Forest 

model. Unlike SelectKBest, PCA provides components that may not directly correspond to the 

original features but represent a combination of them, aimed at maximizing variance. After 

applying PCA, the Random Forest model is trained on the transformed data. Since PCA 

components are orthogonal, the model gets input features that are statistically uncorrelated, 

which might enhance its performance in certain scenarios. Figure 4 presents the working of 

the tuned random forest. 

 

Figure 4: Working of Tuned Random Forest 

Random Forest doesn’t apply an explicit transformation to the data itself but learns patterns 

from the data during the training phase. In the SelectKBest approach, Random Forest receives 

the top 20 original features after selection. It splits the data at different points based on those 

features and their importance, constructing multiple decision trees. Each tree's decision-

making process varies slightly because they receive different subsets of the data. The ensemble 

of trees works together to classify or predict based on the majority vote or average outcome of 

all trees. In the PCA approach, Random Forest works with the 20 components generated by 

PCA. The components generated are derived from the linear combinations of thedata we are 

passing. Even though this input data is in the new structure, Random Forest still follows the 

same tree-building mechanism. It splits the data along the component axes rather than the 

original features, aggregating decisions from multiple trees to output a final prediction. 
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Random Forest is trained on either the scaled original features (SelectKBest) or PCA 

components, learning from the training data to classify the target variable. After training, 

Random Forest is used to generate meta-features for the stacking model. Specifically, itoutputs 

class probabilities for each instance in the training set. These probabilities are then used as 

input to the meta-model (LightGBM), forming one-third part of the feature set used to train 

the meta-model and predict the final results. The dataset is randomly divided into subsets and 

the decision trees will be trained on each subset. This randomness helps avoid overfitting by 

introducing variation between trees. Each tree makes splits based on feature importance, using 

criteria like Gini impurity or entropy  to decide where to split the data. for classification, each 

tree outputs a class label, and the final prediction is determined by majority voting 

(classification) or averaging (regression). Table 3 presents the tuning parameters and their best 

values of the Random Forest 

Table 3: Parameters of the Random Forest 

S.No Name Description PossibleandBest Values 

1 Criterion It determines the best way to split thefree Best: Entropy 

2 n_estimators Itdeterminesthenumberoftrees tocombine Anyinteger value Best:t 

3.2.3 Working & Tuning logistic Regression: Although it sounds like a regression procedure, 

logistic regression is a supervised method of machine learning that is used for binary or 

multiclass classification applicationsModeling the likelihood that a given input belongs to a 

specific class is the main concept. Logistic Regression uses a logistic function (sigmoid 

function) to model the probability of a binary outcome (0 or 1). Any real number can be 

transformed by this function to a value between 0 and 1, which is the probability of the positive 

class. Py=1X=11+e-(0+1x1 +2x2+…..+nxn). The formula uses a linear combination of input 

features (the X's) and their corresponding weights(β’s) to compute the probability that the 

instance belongs to the positive class. Once the probability is computed, a threshold (usually 

0.5) is applied to decide the final classification. If Py= 1X>0.5 the prediction is class 1: 

otherwise, it is class 0. Logistic Regression is sensitive to feature scaling because it relies on 

gradient-based optimization algorithms(such as gradient descent). In the code, for the PCA 

case, the data didn't get scaled but SelectKBest-selected are scaled using StandardScaler before 

being passed into the Logistic Regression model. This ensures that all features contribute 

equally to the model and improves convergence during training. In the SelectKBest approach, 

the dimensionality of the data was reduced by selecting the 20 most significant features. 

Logistic Regression will use these top features to compute the linear combination used in the 

logistic function. This process simplifies the data and improves interpretability and 

computational efficiency. Figure 5 presents the working of logistic regression 



1785 S Gouri Kiran Kumar et al. Intelligent Detection of IIOT Cyber Threats...                                                                                             
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

 

Figure 5: Working of Logistic Regression 

In the PCA approach, the input data is transformed into 20 principal components. These 

components represent a linear combination of the original features, capturing the most 

variance in the data. Logistic Regression works on these transformed features, learning the 

relationships between the principal components and the target variable. Logistic Regression is 

used as one of the base models in stacking ensembles. It learns to predict the target variable(the 

class labels) based on either the top 20 features selected by SelectKBest in the first approach 

or the 20 principal components generated by PCA in the second approach. In the SelectKBest 

approach, the features are raw, domain-specific features chosen for their strong individual 

predictive power. Twenty principal components, which are linearly transformed versions of 

the initial attributes and indicate the major trends in the data but may not have an obvious 

meaning in terms of the original characteristics, were fed into the PCA method model. Logistic 

regression is a relatively simple model that performs well when the data is linearly separable. 

It provided a fast and reliable baseline for making predictions. The probabilities predicted by 

the logistic regression model (for both SelectKBest and PCA cases) are used as meta-features. 

These probabilities are combined with the outputs from the XGBoost and Random Forest 

models to form the input to the final LightGBM meta-model. Logistic regression's output helps 

LightGBM differentiate between classes by providing an additional viewpoint on the data. 

Table 4 presents the parameters that are tuned in logistic regression. 

Table 4: Tuned Components of Logistic Regression 

S.No Name Description possible and Best Values 

1 Solver It finds the best co-efficients for eachfeature Best:liblinear 

2 Max Iterations It controls the convergence speed Any integer value 

Best:1000 

 



                           Intelligent Detection of IIOT Cyber Threats… S Gouri Kiran Kumar et al. 1786  
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

3.2.4 Working of LightGBM: In this research, the LightGBM classifier serves as the meta- 

model in the stacking ensemble. It is trained on the data which is a combination of predictions 

from base models (XGBoost, Logistic Regression, and Random Forest) as new input features, 

rather than getting trained on the original features directly. The base models are trained on the 

original dataset, and their predictions are used as training and test sets. For each data point, the 

predictions of base models become the features for the training of the meta-model i.e. 

LightGBM. These are referred to as meta-features. So there are three new features in the meta- 

data which are the predicted probabilities of the base models stacked together as a feature 

vector. This feature vector is then fed into the LightGBM classifier, the meta-model. 

LightGBM finds the optimal combination of these meta-features to make the final prediction. 

LightGBM learns how to combine these best to make the final classification decision. It will 

build an ensemble of decision trees to minimize the prediction error(classification error) as it 

is a gradient-boosting algorithm. It learns the relationship between meta-features and true 

labels. After training it made final predictions on the test set. These predictions are more 

accurate than any of the individual base models as LightGBM can capture patterns or 

dependencies in the predictions that individual models might have missed. LightGBM is 

efficient in handling the large datasets. The meta-features are larger as they were generated 

from a large IIoT dataset. The dimensionality of meta-features in high and LightGBM helped 

in handling that and achieved good accuracy in both cases. The working of LightGBM is 

shown in figure 6 

 

Figure 6: Working of Tuned LightGBM 



1787 S Gouri Kiran Kumar et al. Intelligent Detection of IIOT Cyber Threats...                                                                                             
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

The meta-features passed to the LightGBM model in the two scenarios vary not in terms of 

shape and size but in terms of values. The meta-model, LightGBM, receives the predictions 

from these base models, and these predictions are based on the transformed features from 

either PCA or SelectKBest. In the SelectKBest scenario, the base models were trained on a 

part of the data consisting of the most important original features. In the PCA scenario, the 

base models are trained on transformed features known as principal components. These 

principal components are derived from original features and their linear combinations. So, the 

meta-features for LightGBM are different in both cases because the base models are trained 

on different representations of the data, leading to other predictions. In case 1 where we used 

SelectKBest for selecting the 20 best features, the cross-validation scores remain perfect, it‘s 

crucial to be cautious when interpreting such results, as they might not hold up in real-work 

scenarios with slightly different data distributions. The PCA approach introduced a smaller 

number of errors, resulting in slightly better generalization compared to the previous approach. 

This resulted in a slight accuracy fall in the LightGBM classifier from the PCA approach. 

Pseudocode for Classification with SeIectKBest, PCA, and Model Stacking: 

1. Data Preprocessing: 

o Load the dataset. 

o Drop unnecessary columns: 'StartTime', 'LastTime', 'SrcAddr', and 'DstAddr'. 

o Encode the ‘Traffic’ column using LabelEncoder. 

o Separate the features X and target y. 

o Split the dataset into training and testing sets: 

Xtrain,Xtest,Ytrain,Ytest = train_test_split(X, y, testsize = 0.2) 

2. Balancing the Data: 

o Handle class imbalance using RandomoverSampler: 

Xresampled,Xresampled, = Random_Over_Sampler. fit_resample(Xtrain,Ytrain,) 

3. Feature Selection and Dimensionality Reduction: 

o SeIectKBest: 

▪ Apply SelectKBest to select the top 20 features. 

▪ Formula used in SelectKBest 

X2 = Σ(
(Oi − Ei)2

Ei
) 

Where Oi is the observed frequency, and Ei is the expected frequency. 

o StandardScaler: Standardize features by removing the mean and scaling to unit 

variance: 

z =
x − μ

σ
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Where x is a feature value, µ is the mean, and σ is the standard deviation. 

o PCA (Principal Component Analysis}: 

▪ PCA reduces the dimensionality by identifying the directions (principal components) 

that maximize variance in the data. 

▪ Covariance Matrix: 

C =
XT ⋅ X

n − 1
 

▪ Eigen Decomposition 

Where v are the eigenvectors (principal components), and λ are the eigenvalues. 

C ⋅ ϑ = λ ⋅ ϑ 

 

▪ Transform data into the new coordinates (principal components): 

XPCA = X. VT 

VT Where is the matrix of eigenvectors, and X is the original datamatrix. 

4. Model Building: 

o Initialize models: XGBoost, LogisticRegression, RandoinForestClassifier. 

o Train base models on SelectKBest features 

model.fit(Xtrain_selectKBest, yresampled) 

o Train base models on PCA-reduced features 

model.fit(Xtrain_PCA, yresampled) 

5. Model for Stacking: 

o Initialize a meta-model (e.g., Logistic Regression) to combine the predictions of the 

base models. 

o Gather predictions from the base models as new features for the meta-model 

Xmeta_train=[predictions of base models] 

o Train the meta-model on the gathered predictions 

meta model. fit(Xmeta_train, yresampled) 

6. Model Evaluation: 

o Predict on the test set using the trained base models and meta-model 

Ypred=meta_model.predict(Xtest) 

o Evaluate model performance using accuracy, precision, recall, and F1-score. 
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4. Results & Discussions: 

4.1 Dataset Overview 

The WUSTL IIoT 2021 dataset is a comprehensive collection of traffic data from simulated 

industrial control systems, designed for evaluating intrusion detection systems (IDS) in IIoT 

environments. It includes both normal operations and various attack scenarios like Man-in-

the- Middle (MitM), Denial of Service (DoS), and unauthorized access. Key features include 

Timestamp, Source IP, Destination IP, Protocol Type, and Packet Size. The dataset supports 

training machine learning models for IDS development by providing diverse classes of benign 

and malicious activities. It serves as a valuable resource for building effective detection 

algorithms for complex IIoT systems. Available on Kaggle. 

4.2 Numerical Features Summary 

The WUSTL IIoT 2021 dataset provides rich numerical features crucial for detecting 

anomalies in IIoT traffic. Key elements include source (Sport) and destination (Dport) ports, 

with a wide range of port utilization reflected by a mean source port value of ~54,452 and a 

standard deviation of 12,008. Packet transmission features show a higher average of source 

packets (166.56) compared to destination packets (16.88), typical of device-to-cloud 

communication. Source bytes (19,380) outweigh destination bytes (7,602), highlighting data 

asymmetry. Features like source load, application bytes, and jitter reveal significant 

variability, suggesting diverse traffic patterns. Connection durations and jitter values provide 

insight into device communication behavior, indicating possible network congestion or 

irregular activities 

Table 5: Statistical Approach Analysis on the Dataset 

Feature Count Mean Std Mi

n 

25% 50% 75% Max 

Sport 1.194464e+

06 

5.445253e+

04 

1.200834e+

04 

0 5.221800e+

04 

5.663500e+

04 

6.104300e+

04 

2.765721e+

06 

Dport 1.194464e+

06 

7.907604e+

02 

3.299492e+

03 

0 502 502 502 6.552200e+

04 

SrePkts 1.194464e+

06 

1.665579e+

02 

5.266192e+

04 

0 10 10 10 2.773967e+

07 

DstPkts 1.194464e+

06 

1.688389e+

01 

1.137763e+

03 

0 8 8 8 3.092160e+

05 

TotPkts 1.194464e+

06 

1.756631e+

02 

5.266221e+

04 

0 18 18 18 2.773967e+

07 

SrcBytes 1.194464e+

06 

1.938043e+

04 

4.730229e+

06 

0 644 644 644 2.108646e+

09 

DstBytes 1.194464e+

06 

7.601579e+

03 

7.508699e+

05 

0 508 508 508 2.108646e+

09 

TotByes 1.194464e+

06 

2.779692e+

05 

1.918939e+

07 

0 1152 1152 1152 2.143725e+

09 

SrcLoad 1.194464e+

06 

1.571207e+

07 

8.339078e+

07 

0 8.514543e+

04 

8.818777e+

04 

8.968784e+

04 

1.156000e+

09 
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SAppByte

s 

1.194464e+

06 

2.192527e+

02 

2.852114e+

03 

0 24 24 24 9.979300e+

04 

DAppByte

s 

1.194464e+

06 

7.051507e+

03 

7.445876e+

05 

0 20 20 20 8.182314e+

07 

TotAppBy

tes 

1.194464e+

06 

6.581117e+

05 

4.167380e+

07 

0 44 44 44 4.293700e+

09 

RunTime 1.194464e+

06 

1.994698e-

01 

7.966454e-

01 

0 5.134900e-

02 

5.206700e-

02 

5.324900e-

02 

5.103213e+

00 

SrcJitAct 1.194464e+

06 

6.189383e+

01 

4.143742e+

02 

0 0 0 0 4.999440e+

03 

DstJitAct 1.194464e+

06 

2.653724e-

01 

5.001929e+

00 

0 0 0 0 7.695150e+

02 

4.3 Statistical Analysis (ANOVA Tests) 

In Figure 7, ANOVA z as used to analyze the relationship between numerical features and the 

target variable (benign vs. malicious traffic). Features like total packets (TotPkts), total bytes 

(TotBytes). source load (SrcLoad), and connection duration (RunTime) showed significant p-

values, indicating their discriminatory power in distinguishing between normal and malicious 

traffic. Malicious traffic often exhibits higher packet volumes and prolonged connection 

durations, potentially pointing to attack patterns like DDoS. Features like source jitter 

(SrcJitAct) and destination jitter (DstJitAct) also showed significant differences, suggesting 

that irregular packet timing can help detect network anomalies or congestion. 

 

Fig 7: Hypothesis Testing for important features 

4.4 Machine Learning Models: Stacking Ensemble Approach 

Figure 8 represents an ensemble stacking strategy was used with K-Nearest Neighbors (KNN), 

Random Forest (RF), and Extreme Gradient Boosting (XGBoost) as foundational models and 

LightGBM as the meta-learner to improve anomaly identification in the WUSTL IIoT 2021 

dataset. When SelectKBest was first employed for feature selection, it achieved 100% 

accuracy, which suggested that overfitting might have occurred. Principal Component 
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Analysis (PCA), which reduces dimensionality while maintaining important data features, 

took the place of SelectKBest to address this. Following retraining, the model demonstrated 

enhanced generalization and decreased overfitting, reaching a more realistic accuracy of 99%. 

This demonstrates how well PCA handles IIoT datasets in conjunction with ensemble stacking, 

improving anomaly identification without compromising accuracy. 

 

Figure 8: Stacking Base Models 

4.5 Base Models Performance (SelectKBest V/S PCA) 

Principal Component Analysis (PCA) and SelectKBest were applied assess machine learning 

models like XGBoost, Logistic Regression, and Random Forest on the WUSTL IIoT 2021 

dataset.  Using SelectKBest, all models achieved perfect accuracy (1.0000) in both training 

and cross-validation, indicating significant overfitting.  To mitigate this, PCA was introduced 

to reduce dimensionality while preserving key features.  XGBoost and Random Forest with 

PCA showed slight decreases in accuracy (0.9999) but maintained strong cross-validation 

scores (1.0000), suggesting improved generalizability.  Logistic Regression with PCA saw a 

more notable accuracy drop to 0.9700.  While SelectKBest led to overfitting, PCA provided a 

more balanced approach, reducing overfitting and maintaining high performance, though with 

slightly lower accuracy.   
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Figure 9: Base Model Accuracies 

4. 6 Meta-Model Performance (LightGBM) 

The stacking ensemble's meta-model, LightGBM, merged predictions from XGBoost, 

Random forest, and Logistic Regression.  It obtained perfect accuracy (1.0000) and AUC-

ROC (1.0000) using SelectKBest; however, this suggested overfitting. PCA was included to 

increase generalizability; as a result. LightGBM's accuracy was somewhat decreased to 

0.9999, but its cross-validation accuracy remained at 1.0000 and its AUC-ROC was nearly 

perfect at 0.9925. PCA maintained strong performance while reducing overfitting in spite of 

small misclassifications. LightGBM validated the efficacy of stacking ensembles by showing 

overall strong prediction power and generalizabiliiy across both approaches. 

 

Fig 10a: LightGBM Scores for SelectKBest Approach 
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Fig 10b: LightGBM Scores for PCA Approach 

 

5. Conclusion 

This research successfully demonstrates the effectiveness of a hypertuned machine learning 

model in addressing the growing security concerns within IIoT systems. By combining 

advanced machine learning techniques such as PCA for feature selection and an ensemble-

based stacking approach, the proposed model significantly enhances detection accuracy while 

minimizing false positives and false negatives. The model‘s ability to process large-scale IIoT  

data in real-time makes it well-suited for industrial applications where timely threat detectionis 

critical to maintaining operational integrity and minimizing downtime. Additionally, the 

integration of algorithms such as XGBoost, Random Forest, and Logistic Regression, followed 

by meta-learning with LightGBM, provides a layered defense mechanism capable of detecting 

both known and unknown attack vectors. Despite the model's outstanding performance, 

particularly when tested on the WUSTL IIoT 2021 dataset, some limitations persist. for 

instance, while PCA and other dimensionality reduction techniques improved computational 

efficiency and addressed overfitting, the model's reliance on high-quality, labeled datasets still 

poses a challenge in real-world scenarios where data may be incomplete or noisy. 

Furthermore, the issue of explainability in machine learning models for critical industrial 

systems remains an open area for further exploration. Decision-makers require transparency 

and insight into model predictions to ensure trust and regulatory compliance, which could be 

addressed through the integration of Explainable AI (XAI) techniques. In conclusion, the 

proposed hypertuned machine learning framework provides a scalable, adaptive, and highly 

accurate solution for securing IIoT environments against evolving cyber threats. Future 

research should focus on extending this approach to unsupervised or semi-supervised models 

to improve detection of zero-day attacks and incorporating XAI methodologies to enhance the 

transparency and trustworthiness of the system. By doing so, this research paves the way for 

more secure and resilient IIoT infrastructures, which are crucial for the continued digital 

transformation of industrial processes. 
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