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This paper proposes two DNNs for predicting the relative positions of mobile swarm nodes in 

real-time, utilizing only distance information. The first method simultaneously estimates the 

coordinates of each node using acquired distance information. The second method estimates the 

coordinates by grouping a total of four nodes, including three anchor nodes. To resolve the 

ambiguity of the estimated coordinates, constraints are applied to the nodes playing the role of 

anchor nodes. To compare the performance of the DNN, a grid-based algorithm is adopted as the 

conventional method. Limiting the number of nodes on the coordinate plane to 4 to 8 in simulated 

experiments, the results indicate a degradation in coordinate estimation performance as the 

standard deviation (SD) of noise increases, across all methods. Additionally, except for scenarios 

involving 8 nodes with an SD of 0.02 m, the proposed technique exhibits superior performance in 

all cases. 
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1. Introduction 

A swarm robot system is a system in which multiple robots collaborate to perform intricate 

and diverse tasks with a performance surpassing that of an individual robot (La et al., 2011; 

Blach et al., 1998). By enabling each robot to communicate with neighboring robots and 

maintain a certain distance, a swarm robot system facilitates the execution of tasks that were 

challenging for an individual robot to perform alone (Kang et al., 2022; Oh et al., 2020). 

Integrating machine learning with swarm robot systems enables adaptive, intelligent 

behavior in collective robotics, paving the way for applications in diverse domains such as 
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exploration, disaster response, agriculture, and industrial automation (Rani et al., 2022; Min 

et al., 2024; Na et al., 2024). Continued research and development in this field will drive 

advancements in autonomous robotics and distributed intelligence. 

This type of system is utilized in a variety of application areas, including environmental 

reconnaissance, disaster relief, military operations, and others, as it enables smoother 

handling of high-risk tasks (Nayyar et al., 2018). In cases where multiple robots operate 

within constrained operational areas, precise awareness of each other's positions is vital to 

facilitate seamless collaboration (Heo et al., 2010). Therefore, as a pivotal technology for 

facilitating seamless task execution among robots, relative positioning is garnering 

significant attention. Through this, optimizing interactions among robots, including collision 

avoidance and movement path coordination, enables the maximization of stability and 

efficiency (Wee et al., 2012; Choi et al., 2022). Furthermore, seamless collaboration among 

robots allows for the efficient execution of complex tasks. 

One of the most widely recognized indoor and outdoor relative positioning technologies is 

the Global Positioning System (GPS). GPS is a technology that determines positions based 

on calculated distance information from signals measured by at least four artificial satellites. 

One prominently recognized indoor and outdoor relative positioning technique is the GPS. 

GPS is a technology that employs distance calculations based on signals measured from a 

minimum of four artificial satellites to determine positions. However, when obstacles exist 

between satellites and mobile nodes or discrepancies in transmitter/receiver timing arise, the 

received distance information becomes subject to errors. The errors associated with the 

transmission and reception process between satellites and mobile nodes inherently present 

limitations in achieving complete elimination, and these errors significantly affect the 

accuracy of the data (Jeon et al., 2008). To mitigate the impact of errors on data accuracy, a 

configuration of three or more transmitting satellites and a minimum of one satellite for error 

correction is essential (Kim et al., 2011). 

Technologies for calculating positions based on distance information observed from 

satellites include trilateration and grid-based positioning. Trilateration employs geometric 

triangulation to determine the relative position of a target object between anchor nodes and 

terminal nodes (Sohn et al., 2013). In a 2D coordinate plane, a minimum of three anchor 

nodes is required to accurately determine the relative positions between terminal nodes. 

Grid-based positioning computes the difference between anchor nodes and mobile nodes 

using the Euclidean distance formula (Laitinen et al., 2011). By considering the nearest grid 

point, this technique estimates the node's position as the grid point with the smallest 

difference. The accuracy of this method varies based on the grid spacing, with finer grids 

requiring more complex computations due to increased computational demands (Galčík et 

al., 2016). Both techniques utilize the distance information between anchor nodes, obtained 

from GPS, and terminal nodes to calculate positions. However, a drawback is that if anchor 

nodes move, the positions of all nodes must be re-estimated (Rhim et al., 2009). In scenarios 

where terminal nodes are mobile and lack fixed reference points, both of these methods are 

challenging to apply. Thus, a technology capable of positioning based solely on distance 

information is needed for situations involving mobile swarm nodes with moving reference 
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points. 

In this paper, a deep neural network (DNN) is proposed for estimating the relative 

coordinates of nodes and predicting the formation of nodes when only distance information 

between nodes. The introduced DNN framework consists of two distinct methods. The first 

method involves simultaneously estimating coordinate information for all nodes, referred to 

as the "Simultaneous estimation method.". The second method sequentially estimates the 

nodes on the coordinate plane, including anchor nodes, and is termed the "Group-wise 

estimation method.". Through computer simulations, we assess the performance of each 

method in terms of position estimation. Specifically, we compare the proposed DNN method 

with the grid-based positioning technique among existing localization algorithms. The 

measurement errors between nodes are assumed to be Gaussian noise with a standard 

deviation (SD) ranging from 0.00 m to 0.10 m. In simulated experiments with the number of 

nodes restricted to 4 to 8, the performance of coordinate estimation deteriorates as the 

standard deviation of noise increases across all methods. In most scenarios, except when 8 

nodes are present, the performance of the DNN method surpasses that of the grid-based 

positioning technique. 

Criteria Selection for Relative Positioning 

In relative positioning that predicts locations based solely on distance information between 

nodes, there arises an ambiguity due to the existence of multiple potential solutions. Figure 1 

provides examples of ambiguous scenarios that can occur during relative positioning. 

 

Fig. 1: Ambiguity in Formation 

(a) to (c) in Figure 1 are all the same formations, but due to symmetry or rotation, it can be 

judged to be different formations. To address this ambiguity, three conditions are proposed 

when generating simulated experimental data. Firstly, the first node must be located at the 

origin. Secondly, the second node should lie along an axis. Thirdly, the third node must 

possess a positive value. These three nodes are collectively referred to as "Anchor node.". 

While anchor nodes typically denote nodes with known positions, in this paper, anchor nodes 

are designated within the moving node set without fixed positions, rendering their locations 

variable. Furthermore, no specific constraints are imposed on the remaining nodes apart from 

the anchor nodes. 
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2. Relative-Positioning Algorithms 

2.1 Existing Relative Positioning Algorithms 

Among the conventional algorithms employed for relative positioning, there exists the grid-

based positioning method, which divides the coordinate axes into segments based on the 

specified count within the node's operational range to estimate the most appropriate 

coordinates. In this paper, this method is referred to as the “Grid-based algorithm.” 

Additionally, the designated count of divisions along the coordinate axes is termed the “Grid 

size.” The Grid-based algorithm, in accordance with the criteria defined in this paper, 

systematically explores from the designated anchor nodes. In this process, the first node is 

anchored at the origin, and as the x-value of the second node is 0, it is excluded from the 

estimation procedure. When estimating the coordinates of the second anchor node, utilizing 

the distance information from the first node, it is possible to select the most suitable grid 

among the x-coordinates divided by the grid size. Starting from the third node, the estimation 

of coordinates relies on the distance information from the previous node and the coordinates 

of the preceding nodes, calculated in the earlier steps. 

d̂i(x, y) = √(x − x̂i)
2 + (y − ŷi)

2 (1) 

Equation 1 provides the formula for calculating d, which represents the distance d̂i(x, y) 

between the i-th node and an arbitrary grid point (x, y). Here, x and y denote the coordinates 

of the i-th node estimated in the previous iteration. 

(x̂i, ŷi) = argmin(x,y) ∑|d̂i(x, y) − dj,i|

j−1

i=1

 (2) 

Equation (2) depicts the process of calculating (x̂i, ŷi) when designating the node under 

estimation as j. In this process, candidate coordinates (x, y) for the j-th node are determined. 

This involves selecting coordinates that minimize the sum of discrepancies between actual 

distances and estimated distances from the j-th node to the (j − 1)-th node for a given 

candidate coordinate (x, y). 

 

 

Fig. 2: Grid-based Algorithm 

2.2 Existing Relative Positioning Algorithms 



                                   Development Of Relative Positioning Technique …. In-Young Hyun et al. 256 
 

Nanotechnology Perceptions Vol. 20 No.S1 (2024) 

In this paper, Deep Neural Network (DNN) is proposed for estimating relative coordinates 

using only distance information between nodes. The estimation method comprises two 

distinct methods. Both methods adhere to the criteria defined during dataset generation, 

where the values of the first and second anchor nodes, which serve as the origin, are omitted 

from the output data. 

2.2.1 Simultaneous Estimation Method 

The simultaneous estimation method entails feeding the DNN model with distance 

information between all nodes, resulting in the generation of estimated x and y values for 

every node. Consequently, as the count of nodes to be estimated increases, the dimensions of 

both input and output escalate, necessitating the design of distinct models for each case. The 

simultaneous estimation method is illustrated in Figure 3. 

 

Fig. 3: Simultaneous Estimation Method 

The input data for the DNN incorporates distance information between all nodes present in 

the coordinate plane. Through this distance information, simultaneous estimation of all 

coordinates for each node is achieved. When there are N nodes to be estimated, the input 

data consists of C2N
  entries, and the output data comprises (2N − 3) entries. 

2.2.2 Group-wise Estimation Method 

The group-wise estimation method involves sequential estimation of values for all nodes, 

starting from the anchor node, while iteratively estimating coordinates for a total of four 

nodes, including the anchor node and the node intended for estimation. In this method, two 

distinct Deep Neural Networks are employed. When there are N nodes, this method requires 

(N − 2) rounds of coordinate estimation. 

 

Fig. 4: Group-wise Estimation Method 

The process of coordinate estimation is illustrated in Figure 4. Initially, the x-value of the 

second anchor node is determined using distance information from the first node. The first 

Deep Neural Network estimates the coordinates of the third anchor node. For this, the input 
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data comprises distance information between the first and second anchor nodes as well as the 

coordinates of the second anchor node. The second Deep Neural Network sequentially 

estimates coordinates for the remaining nodes excluding the anchor nodes. The input for the 

second network includes distance information between anchor nodes and the nodes intended 

for estimation, along with the coordinates of the third anchor node estimated through the first 

neural network. The group-wise estimation method has the advantage of being able to 

estimate the coordinates of all nodes through two deep neural networks without needing each 

model even if the number of nodes changes. 

3. SIMULATED EXPERIMENTS 

3.1 Simulation Environment 

Data for the simulated experiments is generated using MATLAB, while training and 

performance validation of the DNN are carried out using TensorFlow. The number of nodes 

present on the coordinate plane varies from 4 to 8, and the restricted range for both x and y is 

set at ±10 m. The grid size for the grid-based algorithm is consistently set at 300 for all 

simulation experiments. The simultaneous estimation method is trained with tailored and 

optimized networks corresponding to the specific number of nodes involved. Moreover, the 

group-wise estimation method employs an optimized network designed for scenarios 

involving four nodes on the coordinate plane. 

3.2 DNN Model Training 

The training data used for AI model training consists of 100,000 samples, while the test data 

comprises 25,000 samples. The standard deviation (SD) of the noise σ is randomly generated 

within the range of 0.01 m ≤  σ ≤  0.10 m, following the formula presented in Equation 

(3). Here, d̃m,n represents the distance information between the m-th node and the n-th node. 

z signifies Gaussian noise with a variance of 1, and σ denotes the standard deviation. 

d̃m,n = d̃m,n +  σz (3) 

The hyperparameters required for model training are as follows. The optimizer utilized 

consistently across all models is AdaGrad, with a learning rate of 0.01. For the simultaneous 

estimation method, when there are 4 nodes present, a batch size of 512 and 4500 epochs are 

set for training. For scenarios with 5 to 8 nodes, a batch size of 128 and 2000 epochs are 

used for training. In the case of the group-based estimation method, a previously optimized 

network is employed when 4 nodes are present, with a batch size of 512 and 4500 epochs for 

training. The training objective involves minimizing the Mean Squared Error (MSE), 

represented by the loss function given by Equation (4). 

MSE =
1

N
∑(ki − k̂i)

2

N

i=1

, ki = (xi, yi) (4) 

Through Figure 5, it can be observed that after rapid convergence, a gradual decrease in the 

loss function occurs. 
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Fig. 5: Learning Curve of DNN 

3.3 Simulation Results 

The performance evaluation metric for the simulated experiments is the Root Mean Squared 

Error (RMSE), as defined in equation (5). 

RMSE = √
1

N
∑(ki − k̂i)

2
N

i=1

 , ki = (xi, yi) (5) 

3.3.1 Performance Variation with Standard Deviations of Noise 

Figure 6 illustrates the performance with respect to different noise standard deviations for 

each algorithm. Subfigures (a), (b), and (c) represent the grid-based algorithm, simultaneous 

estimation method, and group-wise estimation method, respectively. The 𝑥-axis of the graph 

represents the standard deviation of noise, and the 𝑦-axis represents the performance metric. 

In the graph, red circles (○) correspond to scenarios with 4 nodes, green triangles (△) to 5 

nodes, blue diamonds (◇) to 6 nodes, yellow crosses (X) to 7 nodes, and brown squares (□) 

to 8 nodes. 

 

Fig. 6: Performance Variation with Standard Deviation of Noise 

Based on the results of the simulation experiments, it is evident that the estimation error 

increases as the standard deviation of the noise grows, across all methodologies. Moreover, 

better estimation performance is achieved when the number of nodes present in the 
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coordinate plane is lower. 

3.3.2 Performance Variation with Number of Nodes 

Figure 7 depicts the performance of algorithms based on the number of nodes. Subplots (a) 

and (b) in Figure 7 illustrate performance variations with number of nodes for SD of 0.02 m 

and 0.08 m, respectively. In the graphs, the red (○) markers represent the grid-based 

algorithm's performance, the green (△) markers denote the simultaneous estimation method, 

and the blue (◇) markers indicate the performance of the group-wise estimation method. 

 

Fig. 6: Performance Variation with Number of Nodes 

In the scenario with a noise standard deviation of 0.02 m, it is observed that the performance 

of the simultaneous estimation method is directly proportional to the number of nodes, 

regardless of the noise standard deviation. Additionally, the performance of the simultaneous 

estimation method is superior to the grid-based algorithm for all node counts except when 

there are 8 nodes based on the RMSE criterion. Moreover, among the three methods, the 

group-wise estimation method exhibits the highest performance. In the case of a noise 

standard deviation of 0.08 m, simultaneous estimation method performs best for scenarios 

with 6 or fewer nodes, while the group-wise estimation method outperforms for scenarios 

with 7 to 8 nodes. 

4. CONCLUSION AND FUTURE WORK 

In this paper, we propose two deep neural network-based methods for predicting the 

positions of nodes in a network solely based on distance information among nodes. The first 

method is the simultaneous Estimation method, which simultaneously outputs coordinate 

information for all nodes. The second method is the group-wise estimation method, which 

sequentially estimates the coordinates of nodes grouped in sets of four, including anchor 

nodes. Through simulation experiments conducted in environments with 4 to 8 nodes on a 

2D coordinate plane, we found that both the proposed methods and conventional relative 

positioning algorithms exhibit improved localization performance as the number of nodes 

decreases on the coordinate plane. Additionally, across all methods, increasing noise 

standard deviation is observed to degrade the coordinate estimation performance. By 

employing the proposed relative positioning algorithms, it is expected that operating swarm 

robots would be more convenient due to accurate relative positioning between swarm robots. 

Future research will focus on predicting the future positions of nodes that change over time 



                                   Development Of Relative Positioning Technique …. In-Young Hyun et al. 260 
 

Nanotechnology Perceptions Vol. 20 No.S1 (2024) 

at regular intervals and studying scenarios involving partial updates of distance information. 
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