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Multi-object tracking in video sequences presents significant challenges due to object variability, 

occlusions, and background clutter. Traditional approaches often fail to effectively model the 

intricate temporal dependencies and spatial interactions in video data. To overcome these 

challenges, this research introduces Multi Object Detection Tracking (MOD-Tracking), a novel 

deep learning framework that combines the strengths of Recurrent Neural Networks (RNN) and 

transformers. The model utilizes RNN to capture short-term temporal dependencies between frames 

and transformers to model long-term dependencies and global spatial context. Additionally, MOD-

Tracking predicts bounding box regressions for precise localization of tracked objects, enhancing 

accuracy and robustness. A dynamic exponential decay learning rate schedule is incorporated to 

improve training efficiency and generalization, with the decay rate adaptively adjusted based on 

model performance. This ensures optimal learning throughout the training process and effective 

handling of complex tracking scenarios. Extensive experiments on challenging video datasets 

demonstrate the proposed model’s superior capability to accurately track multiple objects, even 

amidst occlusions and cluttered backgrounds, setting a new benchmark for multi-object tracking 

tasks.  

Keywords: Multi object tracking, Deep learning, Convolutional neural network, Recurrent 

neural network, Transformer, Dynamic decay learning rate, Bounding box regression, coordinate 

prediction. 

 

 

1. Introduction 

Multi-object tracking (MOT) in video sequences is a fundamental problem in computer vision 

with widespread applications ranging from surveillance systems and autonomous driving to 

sports analysis and robotics. The objective of MOT is to detect and consistently track multiple 

objects in a scene across consecutive frames, while maintaining the identities of these objects 

throughout their movements. This task is inherently challenging due to several factors, 

including object occlusions, varying lighting conditions, complex object dynamics, and the 
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presence of similarly appearing objects. Furthermore, as the number of objects increases or 

the scene becomes more cluttered, the tracking problem becomes significantly more difficult. 

Over the years, several approaches have been proposed to tackle MOT, with a majority relying 

on a combination of object detection and data association methods. Early approaches typically 

involved the application of Kalman filters, particle filters, or optical flow techniques to predict 

object trajectories.  

However, recent advancements in deep learning and computer vision have revolutionized 

MOT by enabling more accurate detection and association of objects across frames. Modern 

methods leverage deep neural networks for robust object detection, appearance modeling, and 

feature extraction, alongside graph-based algorithms for data association, where objects are 

represented as nodes, and potential correspondences between them as edges. The increasing 

demand for real-time applications, such as autonomous navigation and video surveillance, also 

necessitates the development of computationally efficient MOT algorithms capable of 

processing high-resolution video streams with minimal latency. While several state-of-the-art 

methods offer impressive performance on standard benchmarks, they often face trade-offs 

between accuracy, speed, and robustness in real-world environments. 

This research introduces a novel approach to multi-object tracking, leveraging the strengths of 

RNN and transformers to overcome the limitations of traditional methods. The proposed 

hybrid deep learning model focuses on improving the robustness of tracking by capturing both 

short-term temporal dependencies through RNN and long-term dependencies and global 

context with transformers. A dynamic exponential decay learning rate schedule is also 

incorporated to enhance training efficiency, adapting the learning rate based on model 

performance. This ensures the model is optimized to handle challenges such as occlusions, 

background clutter, and complex object interactions. Extensive experimentation demonstrates 

the model's superior ability to accurately track multiple objects in crowded and dynamic 

scenes, minimizing identity switches while maintaining computational efficiency. By 

addressing these key challenges, this research advances the field of multi-object tracking, 

providing more reliable and precise tracking performance for real-world applications. 

 

2. LITERATURE REVIEW 

Wu, D., et al., 2023 introduced a novel task, Referring Multi-Object Tracking (RMOT), 

utilizing language expressions as semantic cues to guide multi-object tracking predictions. 

They presented the Refer-KITTI benchmark with 818 expressions and developed 

TransRMOT, a transformer-based model, which outperformed other approaches. This work 

marked a significant advancement in predicting varying numbers of referent objects in videos. 

Xiao, C., et. al., 2024 presented MotionTrack, an innovative motion-based tracker designed to 

improve object tracking through a learnable motion predictor that relies only on trajectory 

information. By leveraging self-attention and dynamic MLP layers, the method enhanced the 

modeling of temporal dynamics, delivering state-of-the-art performance on challenging 

datasets like Dancetrack and SportsMOT. This approach effectively tackled the difficulties of 

tracking objects with similar appearances and diverse motion patterns. Weng, X., et. al., 2020 

proposed two techniques to improve discriminative feature learning in 3D multi-object 

tracking. They introduced a Graph Neural Network (GNN) to enhance feature interaction 
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across objects and a joint feature extractor to combine 2D and 3D modalities. Their method 

reduced object confusion and improved feature discrimination. Extensive evaluation 

demonstrated state-of-the-art performance on KITTI and nuScenes benchmarks.  

Brasso, G. et. al., 2020 tackled the challenge of applying learning methods to graph-based 

multiple object tracking within the tracking-by-detection paradigm. They proposed a fully 

differentiable framework based on Message Passing Networks (MPNs) to operate directly on 

the graph domain. Their method allowed for global reasoning over detection sets and applied 

learning to the data association step, beyond just feature extraction. This approach enhanced 

the classical network flow formulation of MOT. Zhang, Y., et. al., 2021 tackled the issue of 

competing tasks in multi-object tracking by introducing FairMOT, which strikes a balance 

between object detection and re-identification (re-ID) in a unified network. They observed that 

prior approaches favored detection at the expense of re-ID, creating a bias. By leveraging the 

anchor-free CenterNet architecture with detailed design optimizations, FairMOT ensured 

strong performance in both tasks, achieving state-of-the-art results and significantly enhancing 

detection and tracking accuracy on public datasets. Yu, Y., et. al., 2020 proposed Deformable 

Siamese Attention Networks (SiamAttn) to enhance visual object tracking. They addressed the 

limitations of traditional Siamese trackers by introducing a novel attention mechanism that 

computes deformable self-attention and cross-attention. This approach allowed for adaptive 

target template updates and rich contextual interdependencies between the template and search 

image. Additionally, a region refinement module improved tracking accuracy. Experiments 

across six benchmarks demonstrated that SiamAttn outperformed the baseline, achieving state-

of-the-art results. 

Wang, Y., et. al., 2021 proposed a joint multi-object tracking framework utilizing graph neural 

networks to optimize object detection and data association concurrently. Their GNN-based 

approach effectively captured spatial and temporal relationships between objects, improving 

feature learning. Comprehensive experiments on MOT15, MOT16, MOT17, and MOT20 

datasets showcased the method’s state-of-the-art performance in both detection and tracking 

tasks. Chu, P., et. al., 2023 introduced TransMOT, a method for multi-object tracking that 

utilizes graph transformers to model spatial-temporal interactions between objects efficiently. 

TransMOT arranges tracked object trajectories and detection candidates as sparse weighted 

graphs and processes them through specialized transformer encoder and decoder layers. This 

approach allows for robust association estimation from loosely filtered detection predictions. 

Evaluated on multiple benchmarks including MOT15, MOT16, MOT17, and MOT20, 

TransMOT achieved state-of-the-art performance across all datasets. Pang, J., et. al., 2021 

introduced Quasi-Dense Similarity Learning to enhance object tracking by densely sampling 

hundreds of region proposals for contrastive learning. Their method, Quasi-Dense Tracking 

(QDTrack), effectively combines this similarity learning with existing detection techniques, 

avoiding the need for displacement regression or motion priors. QDTrack achieved impressive 

results, outperforming existing methods on various benchmarks, including MOT, BDD100K, 

Waymo, and TAO. Notably, it reached 68.7 MOTA at 20.3 FPS on MOT17 without using 

external training data, significantly improving MOTA and reducing ID switches on BDD100K 

and Waymo datasets.  

Li, S., et. al., 2023 addressed the limitations of traditional multiple object tracking benchmarks 

by introducing open-vocabulary MOT, which evaluates tracking beyond predefined 
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categories. They developed OVTrack, an open-vocabulary tracker capable of tracking 

arbitrary object classes. The design of OVTrack incorporates vision-language models for 

classification and association through knowledge distillation, along with a data hallucination 

strategy for robust feature learning using denoising diffusion probabilistic models. This 

approach resulted in a data-efficient tracker that achieved state-of-the-art performance on the 

large-scale TAO benchmark, trained solely on static images. Wang, X., et. al., 2021 introduced 

tracking by natural language specification, focusing on locating objects in videos using 

semantic descriptions instead of bounding boxes. They created the TNL2K benchmark, 

featuring 2,000 annotated video sequences to evaluate this new approach. The benchmark 

includes challenges like adversarial samples and modality switch, along with a strong baseline 

method based on an adaptive local-global search scheme, aimed at enhancing research in 

natural language-guided tracking. Cao, J., et. al., 2023 presented Observation-Centric SORT 

(OC-SORT), an enhancement of traditional Kalman filter methods for multi-object tracking. 

Recognizing that linear motion assumptions can lead to significant errors during prolonged 

occlusions, they proposed using object observations to compute a virtual trajectory that 

mitigates error accumulation. This approach allows for more effective error correction over 

time, improving robustness during occlusion and non-linear motion. OC-SORT maintains 

simplicity and real-time performance, achieving over 700 FPS on a single CPU while setting 

state-of-the-art results on various datasets, including MOT17, MOT20, and DanceTrack.  

Chen, B., et. al., 2022 developed SimTrack, a Simplified Tracking architecture using a 

transformer backbone for efficient joint feature extraction and interaction. By serializing input 

images and employing a foveal window strategy to reduce information loss, they eliminated 

the need for complex interaction modules. SimTrack achieved 2.5% and 2.6% AUC gains on 

the LaSOT and TNL2K benchmarks, showing competitive performance against specialized 

tracking algorithms without intricate designs. Zeng, F., et. al., 2022 introduced MOTR, a 

method for multiple-object tracking that enhances temporal modeling by incorporating a "track 

query" mechanism, which updates tracked instances frame-by-frame. This approach improves 

upon traditional motion and appearance-based heuristics by allowing end-to-end temporal 

exploitation. MOTR achieved a 6.5% improvement over ByteTrack on the HOTA metric and 

outperformed concurrent methods like TrackFormer and TransTrack on the MOT17 dataset, 

positioning it as a strong baseline for future research in transformer-based tracking. Zhang, Y., 

et. al., 2022 introduced ByteTrackV2, a multi-object tracking method that employs a 

hierarchical data association strategy to effectively manage low-score detection boxes, 

reducing object missing and fragmented trajectories. They also implemented a motion 

prediction strategy using a Kalman filter to handle abrupt movements in 3D scenarios. 

ByteTrackV2 achieved top rankings on the nuScenes 3D MOT leaderboard, with 56.4% 

AMOTA for camera and 70.1% for LiDAR modalities, and its nonparametric design allows 

easy integration with various detectors for practical applications. Ma, F., et. al., 2022 proposed 

the Unified Transformer Tracker (UTT) to handle both Single Object Tracking (SOT) and 

multiple object tracking within a single framework. UTT uses a track transformer to exploit 

correlations between target and tracking frame features, allowing for effective localization. 

The model supports end-to-end training by alternately optimizing SOT and MOT objectives, 

leveraging large-scale tracking datasets. Experimental results across multiple benchmarks 

showed that UTT successfully addresses tracking challenges for both SOT and MOT tasks. 

Cai, J., et. al., 2022 developed MeMOT, an online tracking algorithm that integrates object 
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detection and data association using a large spatio-temporal memory to link objects over long 

periods. The model comprises three Transformer-based modules: Hypothesis Generation for 

object proposals, memory encoding for extracting relevant information, and memory decoding 

for simultaneous detection and association. MeMOT demonstrated competitive performance 

on standard MOT benchmark datasets.  

Meinhardt, T., et. al., 2022 developed TrackFormer, a multi-object tracking method using an 

encoder-decoder transformer architecture. It formulates tracking as a frame-to-frame set 

prediction problem, employing attention mechanisms to evolve track predictions through 

video sequences. The model simplifies the process by using static and identity-preserving track 

queries, achieving state-of-the-art performance on MOT17 and MOTS20 without complex 

graph optimization. 

Sun, P., et. al., 2020 proposed TransTrack, a transformer-based method for multiple object 

tracking that combines detection and tracking into a single step. It uses object features from 

previous frames as queries and learned object queries for new detections. TransTrack achieved 

MOTA scores of 74.5% on MOT17 and 64.5% on MOT20, demonstrating its efficiency and 

competitiveness in the field. Luo, W., et al., 2021 presented the first comprehensive review of 

multiple object tracking, emphasizing its significance in both academic and commercial 

contexts despite challenges such as sudden appearance changes and severe occlusions. They 

analyzed recent advancements across various facets of MOT, classifying methods, assessing 

fundamental principles, and summarizing experimental results on widely-used datasets for 

detailed comparisons. They also addressed critical issues within the field and suggested 

potential directions for future research, thereby addressing a significant gap in the existing 

literature. 

Existing multi-object tracking methods struggle with integrating multimodal data, limiting 

performance in complex environments. They often rely on predefined categories, reducing 

adaptability to novel objects. Balancing detection and re-identification also remain 

challenging, leading to tracking biases and identity switches, especially during occlusions and 

rapid movements. These limitations underscore the need for more versatile, adaptive models. 

This research aims to address the limitations of existing multi-object tracking methods by 

developing and evaluating a novel hybrid deep learning architecture, the Multi-Object 

Detection and Tracking model (MOD-Tracking), to enhance accuracy and robustness in video-

based tracking. MOD-Tracking leverages the strengths of recurrent neural networks for 

capturing short-term temporal dependencies alongside transformers for modeling long-term 

dependencies and global context. By effectively handling challenges like occlusions, 

background clutter, and tracking biases, this study seeks to demonstrate that MOD-Tracking 

can significantly outperform traditional methods, providing a more adaptive and resilient 

solution for real-world tracking scenarios. The key contributions are:   

• The integration of RNN allows for effective handling of short-term dynamics between 

frames, ensuring smooth and accurate tracking of object movements.   

• The use of Transformers enhances the model’s capability to understand complex interactions 

over extended periods, facilitating better contextual awareness and reducing identity switches.   

• A dynamic learning rate schedule is incorporated, optimizing training efficiency and ensuring 
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the model adapts effectively to the specific challenges of the tracking task. 

This paper is organized into five sections. The introduction outlines the multi-object tracking 

problem, discussing its significance in various applications such as surveillance, autonomous 

driving, and robotics. It presents the MOD-Tracking model as an innovative hybrid deep 

learning architecture developed to enhance tracking accuracy and resilience by effectively 

addressing challenges such as occlusions and background clutter. The literature review 

analyzes recent advancements in multi-object tracking methods, highlighting the limitations 

of traditional approaches and the need for innovative models that can handle complex temporal 

dependencies and interactions. The methodology section details the architecture of MOD-

Tracking, explaining the integration of RNN and transformers, along with the implementation 

of a dynamic learning rate schedule. In the results and analysis section, experimental findings 

are presented, showcasing the model’s superior performance compared to existing methods. 

The analysis discusses the strengths and limitations of the proposed approach, along with 

relevant performance metrics. Finally, the conclusion summarizes the key insights gained, 

assesses the model’s effectiveness, and identifies potential avenues for future research to 

enhance multi-object tracking capabilities further. 

 

3. METHODOLOGY 

The proposed multi-object tracking framework processes input video frames by feeding them 

into a series of convolutional layers to extract spatial features from each frame. These features 

are then passed through a Long Short-Term Memory (LSTM) layer to capture the temporal 

dependencies between frames. The LSTM layer is responsible for tracking objects over time 

by learning the motion patterns and relationships between successive frames. The output of 

the LSTM is then processed by a multi-head self-attention mechanism which enhances the 

model's ability to focus on critical interactions between objects across different frames. This 

self-attention mechanism is followed by an Add & Norm layer to stabilize training and 

maintain effective gradient flow. The temporal and spatial features are then passed through 

additional convolutional layers and max-pooling layers to further refine the extracted 

information. The final output is flattened and passed through fully connected dense layers to 

generate the final predictions for bounding box coordinates and object classifications. 

A dynamic learning rate schedule is employed to optimize the model, with the learning rate 

adjusted based on performance during training. The model uses L2 loss for bounding box 

regression and categorical cross-entropy for object classification. This combination of 

convolutional layers, LSTM, and self-attention mechanisms enables the model to robustly 

track multiple objects across frames, even under challenging conditions such as occlusions and 

complex backgrounds. Figure 1 illustrates the flow of the proposed MOD-Tracking model, 

demonstrating its systematic approach from object detection to identity tracking. 
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Figure 1: Flow of Proposed MOD-Tracking Model 

3.1 RNN Transformer Encoder 

In the encoder of the model, the input video frame undergoes a series of spatial and temporal 

processing steps to extract important features. The first layers are convolutional and pooling 

layers which focus on capturing spatial patterns and features from the input frame, such as 

edges, textures, and object shapes. These layers work as feature extractors, transforming the 

raw pixel data into a higher-level representation. After spatial features are extracted, the feature 

map is flattened and reshaped into a format that can be fed into the LSTM layer. The LSTM 

is responsible for learning the temporal dependencies across frames in the video sequence, 

understanding how objects move and interact over time. This allows the model to learn the 

motion and trajectory of objects, which is crucial for multi-object tracking. Additionally, a 

multi-head attention mechanism is used after the LSTM to focus on different parts of the 

sequence, allowing the model to consider relationships between frames and effectively track 

multiple objects simultaneously. Layer normalization is applied during this process to stabilize 

the learning and enhance the efficiency of training. By the end of the encoder, the video frames 

are encoded into a temporal representation that includes both the spatial features of objects 

and the motion context over time. 

3.2 CNN Decoder 

In the decoder, the processed information from the encoder is further refined to make the final 

predictions. The output from the encoder, which has encoded both the spatial and temporal 

information, is passed through additional to further refine the spatial features and adapt them 

to a form suitable for predicting the bounding box coordinates. These layers help the model 

learn to understand the relationship between the moving objects and their appearance over 

time. The output is then flattened again and passed through several dense layers, where the 

model applies non-linear transformations to generate the final output. The dense layers 

ultimately predict the bounding box coordinates, which represent the positions of objects in 

the video frames. These coordinates are crucial for tracking the objects as they move across 

the sequence. Through training, the model learns to map the encoded spatial and temporal 

features to the corresponding bounding box coordinates, allowing it to accurately track and 

predict the positions of multiple objects in future frames. 

3.3 Dynamic Decay Learning Rate 

A dynamic decay learning rate is applied during the training process to optimize performance 

and is combined with the Adam optimizer. Using an exponential decay strategy, the learning 

rate starts high for faster convergence during initial training and gradually decreases as training 

progresses. The Adam optimizer adjusts learning rates individually for each parameter based 
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on first and second moments of gradients, ensuring stable and efficient convergence. This 

approach helps fine-tune the model by avoiding overfitting and adapting to complex patterns 

in the data. Performance metrics such as tracking accuracy or loss are monitored to 

dynamically adjust the learning rate and ensure the model continues improving even when 

performance stagnates. This combination of a dynamic decay learning rate and the Adam 

optimizer enhances the model's robustness and consistency in handling complex multi-object 

tracking tasks. The learning rate at each epoch is calculated using the formula: 

ηnew = η0 ⋅ d
(

epoch
s

)
⋅ p                 (1) 

Where, η0 be the initial learning rate, ηnew be the new learning rate, d be the dynamic decay 

rate, p be the performance factor, epoch be the current training epoch, s be the decay steps. 

Here, the decay rate dynamic is given by: 

d =
1

1 + η
                                     (2) 

Where, η be the current learning rate. This introduces a gradual reduction in the learning rate, 

which slows down as training progresses to fine-tune the model. Additionally, the performance 

factor adjusts the learning rate based on the difference between the current validation 

performance and the best observed performance which is given by. 

p = 1 − val_perf − best_val_perf               (3) 

Where, p be the performance factor, val_perf be the validation performance, best_val_perf be 

the best validation performance so far. This factor helps in maintaining a higher learning rate 

when the model is performing well, while reducing it if the model's validation performance 

starts to deviate. The result is an adaptive learning schedule that improves convergence by 

balancing exploration in the early stages of training and careful fine-tuning as the model 

approaches optimal performance. 

Algorithm – Dynamic_decay_learningrate () 

    Update learning rate dynamically: 

decay_rate_dynamic =  
1

1 + learning_rate
 

performancefactor = 1 − |validationperformance − bestvalidationperformance
| 

newlearningrate
= initialleanringrate

× (decayratedynamic
)

epoch
decaysteps × performancefactor 

3.4 Multiple Object Tracking 

The proposed multiple object detection and tracking architecture begins with an input layer 

designed to handle sequences of video frames. The initial processing uses two convolutional 

layers each followed by max-pooling layers to extract spatial features from each frame. These 

layers progressively reduce the spatial dimensions while learning hierarchical patterns critical 

for object detection. The convolutional layers employ the ReLU activation function to capture 
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complex spatial features effectively. After the initial convolutional layers the output is 

flattened and passed through a Long Short-Term Memory (LSTM) layer which captures 

temporal dependencies across frames. The LSTM layer is crucial for tracking objects over 

time by learning the motion patterns and relationships between successive frames. The 

sequence of features from the LSTM is then passed through a multi-head self-attention 

mechanism which enables the model to focus on different parts of the sequence simultaneously 

and enhance the tracking ability. This attention mechanism is paired with an Add & Norm 

layer to apply residual connections and layer normalization stabilizing training and ensuring 

effective gradient flow. 

Further convolutional layers are applied to refine the spatial features followed by max-pooling 

layers to progressively downsample the data. These convolutional layers help extract detailed 

and hierarchical spatial features that are important for accurate object detection. After the final 

convolutional layers the output is flattened again and passed through a series of fully connected 

dense layers with 256 128 and 64 units to further process the features and generate predictions 

the model predicts the bounding box coordinates [x_min, y_min, x_max, y_max] and class 

probabilities for each detected object. The model is trained using the Adam optimizer with a 

dynamic decay learning rate that adjusts based on performance during training. L2 loss is used 

for bounding box regression to ensure precise localization while categorical cross-entropy is 

used for object classification. The training process spans 50 epochs allowing the model to learn 

both temporal features from the LSTM and spatial features from the convolutional layers. 

These combined capabilities enable efficient and accurate multiple object detection and 

tracking. Table 1 showcase the output coordinates obtained for few sample frames and figure 

2 shows the architecture design for the MOD-Tracking model  

Table 1: Results of few samples frames 

Image Frame id Object id Object coordinates Predicted coordinates 

 

1 1 [287,300,220,100] [290,310,225,104] 

 

1 2 [128,300,300,120] [132,314,302,122] 

 

2 1 [330,273,220,100] [336,281,227,109] 

 

2 2 [146,275,300,120] [151,278,304,124] 
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Figure 2: The architecture diagram of the multiple object tracking 

Algorithm – MOD_Tracking () 

1. Preprocessing  

1.1. Frame Resizing: 

Resize each input frame It to a fixed size (224, 224): 

It,resized = resize(It, (244,244)) 

2. Model Architecture 

2.1 Input Layer:   

   Input sequence of frames XϵRT×224×224×3, where T is the number of frames. 

2.2. Convolutional Layers:   

Apply the first two convolutional layers followed by max-pooling to extract spatial features 

from the frames.   

Hconv1 = ReLU(Conv2D(X, 64, (3,3))) 

LSTM 

Multi Head 

Attention 

Add & Norm 

Conv 2D 

Maxpool 

Conv 2D 

Maxpool 

Conv 2D 

Maxpool 

Conv 2D 

Maxpool 

Flatten 

Dense 

Dense 

Dense 

Bounding Box 

Coordinates 

 

Input Video 

E
n

co
d

er
 D

eco
d

er 

[456, 230, 50, 
120] 

Flatten 

Reshape 



1857 G. S. Gowri et al. Synergizing RNN and Transformers with Exponential...                                                                                             
 

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

Hpool1 = MaxPool(Hconv1, (2,2)) 

Hconv2 = ReLU(Conv2D(X, 128, (3,3))) 

Hpool2 = MaxPool(Hconv2, (2,2)) 

2.3. Flatten Layer:   

Flatten the output from the last pooling layer.   

Hflat1 = Flatten(Hpool2) 

2.4. LSTM Layer:   

Apply LSTM with 128 units to capture temporal dependencies across frames.   

HLSTM = LSTM(Hflat1) 

2.5. Multi-Head Self-Attention:   

Apply multi-head self-attention with 8 heads and a key dimension of 64 to learn relationships 

between frames.   

Hatt = MultiHeadAttention(HLSTM, HLSTM) 

2.6. Add & Norm Layer:   

Add a residual connection and apply layer normalization.   

Hadd1 = LayerNorm(HLSTM + Hatt) 

2.7. Convolutional Layers:   

Apply further convolutional layers and max-pooling to refine the extracted spatial features.   

Hconv3 = ReLU(Conv2D(X, 256, (3,3))) 

Hpool3 = MaxPool(Hconv3, (2,2)) 

Hconv4 = ReLU(Conv2D(X, 512, (3,3))) 

Hpool4 = MaxPool(Hconv4, (2,2)) 

2.8. Flatten Layer:   

Flatten the output from the final convolutional layer to prepare for dense layer input.   

Hflat2 = Flatten(Hpool4) 

2.9. Fully Connected Layers:   

Apply a series of dense layers to make the final prediction.   

First Dense Layer:   

Hdense1 = ReLU(Wdense1Hflat2 + bdense1) 

Second Dense Layer:   



                            Synergizing RNN and Transformers with Exponential… G. S. Gowri et al. 1858  
   

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

Hdense2 = ReLU(Wdense2Hdense1 + bdense2) 

Output Layer:   

Hdense3 = ReLU(Wdense3Hdense3 + bdense3) 

   The output consists of bounding box coordinates [xmin, ymin, xmax, ymax] and class 

probabilities for each detected object. 

3. Training 

   3.1. Loss Function:   

Bounding Box Regression Loss: Measures the error in predicted bounding box coordinates 

ybbox compared to ground truth bounding box coordinates y^bbox. It uses the squared L2 

norm: 

Lbbox =∥ ybbox − y^bbox ∥2
2  

Classification Loss: A Cross-Entropy loss comparing the predicted class probabilities yclass 

with the ground truth class labels ŷclass: 

Lclass = CrossEntropy(yclass, ŷclass) 

   3.2. Learning Rate Update: 

    Dynamic_decay_learningrate () 

   3.3. Optimization:   

   Update model parameters using the Adam optimizer: 

θnew = θ − newlearningrate
∇θL 

   where ∇θL is the gradient of the loss with respect to the model parameters θ. 

   3.4. Iteration:   

   Repeat training for a specified number of epochs (e.g., 50 epochs). 

4. Evaluation 

   4.1. Prediction on Test Data:   

   Predict bounding boxes and class labels for test frames: 

ŷtest = Predict(Xtest, θ) 

   4.2. Performance Assessment:   

   Assess model performance using metrics such as MOTA, IDF1, Precision, Recall. 

 

4. EXPERIMENT RESULT AND ANALYSIS 

4.1 Dataset Description 

The MOT17 dataset is a comprehensive benchmark designed for evaluating multi-object 
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tracking algorithms, specifically targeting pedestrian tracking in real-world environments. It 

contains 14 video sequences filmed in diverse urban settings, capturing challenging scenarios 

such as crowded areas, frequent occlusions, camera motion, and varying lighting conditions. 

Each sequence is provided at two resolutions, and multiple detection results (from DPM, SDP, 

and FRCNN detectors) are also available for each. The dataset includes detailed ground truth 

annotations, where each frame is labelled with bounding boxes that indicate the location of 

pedestrians, along with unique object IDs that maintain consistent identities across frames. 

The ground truth data also includes visibility scores to account for occlusions and the 

proportion of the object visible in each frame. These annotations are stored in a structured 

format, listing frame number, object ID, bounding box coordinates (x, y, width, height), class 

label (pedestrian), and object visibility. With its rich diversity of scenes and precise ground 

truth labels, MOT17 serves as an essential resource for evaluating the robustness and accuracy 

of MOT systems in complex, real-world scenarios. 

The VOT2016 dataset is a benchmark designed to evaluate object tracking algorithms 

accuracy and robustness across diverse challenges. It includes 60 annotated video sequences 

with various objects undergoing occlusions, scale changes, rotations, and illumination 

variations, providing a rigorous testbed for tracking models. Each frame in the sequences has 

precise rotated bounding box ground truth annotations, which capture the object's position and 

orientation, allowing detailed evaluation of localization performance. The dataset includes an 

evaluation protocol measuring both tracking accuracy (intersection over union with the ground 

truth) and robustness (failure counts, where the tracker loses the object). VOT2016 is widely 

used to benchmark and advance tracking algorithms in real-world scenarios, promoting the 

development of models capable of handling complex tracking conditions. 

4.2 Experiment Setup 

The experiments were conducted on a high-performance workstation equipped with an Intel 

Core i7-12700K processor clocked at 3.60 GHz with 32 GB of RAM and a 64-bit operating 

system using x64-based architecture running Windows 11. The implementation was 

performed using the Python programming language within the Anaconda integrated 

development environment. The TensorFlow and Keras libraries were utilized for model 

development and training while additional libraries such as NumPy, Pandas and Matplotlib 

were employed for data preprocessing and visualization. GPU acceleration was enabled using 

an NVIDIA GeForce RTX 3080 with 10 GB of VRAM to optimize training time and meet the 

computational demands of the MOD-Tracking framework. Both the proposed MOD-Tracking 

model and the comparison works were implemented and evaluated in this environment to 

ensure consistent and fair performance analysis. 

4.3 Result Analysis 

The proposed MOD-Tracking model combines RNN, a Transformer encoder, and a CNN-

based decoder to capture both short- and long-term temporal dependencies for spatial object 

trajectory generation. Using a dynamic decay learning rate with exponential decay, it adapts 

based on tracking performance, ensuring resilient tracking under challenging conditions like 

occlusions and complex backgrounds. Performance of proposed MOD-Tracking model is 

compared with three existing work includes, work of Bai, H., et. al., 2021, Xu, Y., et. al., 2019 

and Bochinski, E., et. al., 2018. Bai, H., et. al., 2021 made significant progress in Generic 



                            Synergizing RNN and Transformers with Exponential… G. S. Gowri et al. 1860  
   

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

Multiple Object Tracking (GMOT) by introducing GMOT-40, the first dense dataset for 

GMOT, consisting of 40 sequences across 10 object categories. They developed baseline 

algorithms and evaluated them alongside modified versions of popular MOT methods. The 

GMOT-40 benchmark is a valuable resource for future research in the field. Xu, Y., et. al., 

2019 reviewed leading deep learning-based multi-object tracking methods, classifying them 

into three categories: feature enhancement, network embedding and end-to-end approaches. 

The authors demonstrated the effectiveness and robustness of these methods through 

benchmark comparisons, while also highlighting their limitations and proposing future 

research directions. Bochinski, E., et. al., 2018 tackled the problem of ID switches and 

fragmentations in multi-object tracking by incorporating visual single-object tracking when 

detections were absent. This strategy notably enhanced tracking performance while 

maintaining high speeds, outperforming state-of-the-art methods on the UA-DETRAC and 

VisDrone datasets. In multi-object tracking key metrics like MOTP, MOTA, IDF1, MT, and 

ML are used to assess tracking performance. These metrics evaluate the accuracy and 

reliability of tracking multiple objects over time. 

• Multiple 

Object Tracking Precision (MOTP) measures the precision of predicted bounding boxes by 

calculating the average overlap between the predicted and ground truth boxes across all frames 

and objects. It is given by:  

MOTP =
∑ IoUi,ti,t

∑ ctt
 

where IoUi,t is the Intersection over Union for object i at time t, and ct is the number of 

correctly tracked objects at time t. 

• Multiple 

Object Tracking Accuracy (MOTA) reflects the overall tracking accuracy by considering 

missed detections (false negatives), false positives, and identity switches. It is defined as: 

MOTA = 1 −
∑ (FNt + FPt + IDst)t

∑ GTtt
 

Where FNt is the number of false negatives, FPt is the number of false positives, IDst is the 

number of identity switches, and GTt is the number of ground truth objects at time t. 

• ID F1 

Score (IDF1) evaluates the accuracy of identity preservation across frames, computed as the 

harmonic mean of ID precision and ID recall: 

IDF1 = 2 × IDTP + IDFP + IDFN2 × IDTP 

where IDTP, IDFP and IDFN are the true positives, false positives, and false negatives in terms 

of identity matching. 

• Mostly 

Tracked (MT) denotes the percentage of ground truth objects tracked for at least 80% of their 

lifespan: 
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MT =
Number of mostly tracked objects

Total number of ground truth objects
× 100 

Higher MT indicates more successful tracking. 

• Mostly 

Lost (ML) represents the percentage of objects tracked for less than 20% of their lifespan: 

ML =
Number of mostly lost objects

Total number of ground truth objects
× 100 

Lower ML suggests fewer objects are being lost during tracking. 

The metrics discussed above MOTP, MOTA, IDF1, MT, and ML are used to compare MOD-

Tracking with existing methods. 

Table 2: Comparison of MOD-Tracking performance with and without proposed decay 

learning rate 

Learning rate MOTP MOTA IDF1 MT ML 

Static default learning rate 73.93% 78.24% 79.16% 15.82% 26.59% 

Proposed decay learning rate 76.2% 80.7% 80.1% 17.42% 24.8% 

Table 2 shows that applying the proposed decay learning rate improves MOD-Tracking 

performance, especially under occlusions and complex backgrounds. Without decay learning 

rate the tracking accuracy gradually declines, underscoring the decay rate's impact on model 

robustness. 

 

Figure 3: Graphical representation of proposed MOD-Tracking performance with and 

without proposed decay learning rate 

Figure 3 shows that the proposed decay learning rate enhances MOD-Tracking accuracy, 

especially under challenging conditions. Without decay learning rate, accuracy declines over 

time, emphasizing the decay rate's stabilizing effect. 
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Table 3: Comparison of Proposed MOD-Tracking Performance Metrics with Existing 

Methods using MOT17 dataset 

Methods MOTP MOTA IDF1 MT ML 

Proposed MOD-Tracking 76.2% 80.7% 80.1% 17.42% 24.8% 

Bai, H., et. al., 2021. 75.16% 80.60% 79.30% 16.12% 25.18% 

Xu, Y., et. al., 2019 75.8% 47.17% 46.3% 15.96% 26.77% 

Bochinski, E., et. al., 2018 75.8 % 42.6% 58.0 % 14.82% 25.9% 

The table 3 presents a comparison of multiple object tracking performance across proposed 

MOD-Tracking and existing methods using MOT17 dataset based on three key metrics: 

MOTP, MOTA, IDF1, MT and ML. The proposed MOD-Tracking method achieved the 

highest scores across all metrics, with 76.2% MOTP, 80.7% MOTA, 80.1% IDF1, MT 17.42% 

and ML 24.8% indicating superior precision, overall accuracy, and strong identity 

preservation. This highlights the proposed MOD-Tracking method’s effectiveness in 

maintaining both tracking accuracy and identity consistency compared to existing approaches. 

 

Figure 4: Graphical Representation of Proposed MOD-Tracking Performance Metrics with 

Existing Methods using MOT17 dataset 

The figure 4 show the graphical representation of the proposed MOD-Tracking performance 

metrics alongside existing methods using MOT17 dataset provides a clear visual comparison 

of tracking effectiveness across different approaches. The graph showcases key metrics such 

as MOTP, MOTA, IDF1, MT and ML illustrating how the proposed method outperforms 

existing ones in all categories. 
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Table 4: Comparison of Proposed MOD-Tracking Performance Metrics with Existing 

Methods using VOT16 dataset 

Methods MOTP MOTA IDF1 MT ML 

Proposed MOD-Tracking 75.30% 80.10% 79.29% 16.02% 23.86% 

Bai, H., et. al., 2021. 74.12% 79.80% 78.40% 15.90% 24.06% 

Xu, Y., et. al., 2019 74.70% 45.15% 45.80% 14.12% 25.50% 

Bochinski, E., et. al., 2018 74.10% 41.00% 57.30% 13.03% 24.16% 

Table 4 presents a comparison of the proposed MOD-Tracking method against existing multi-

object tracking approaches using the VOT16 dataset, showcasing its superior performance 

across key metrics such as MOTA, MOTP, and ID F1 score. The method's enhanced resilience 

to challenges like occlusions and rapid object movements highlights its effectiveness in 

maintaining tracking continuity and reducing identity switches. These findings establish 

MOD-Tracking as a leading solution in the field of multi-object tracking, raising the standards 

for real-world applications. 

 

Figure 5: Graphical Representation of Proposed MOD-Tracking Performance Metrics with 

Existing Methods using VOT16 dataset 

Figure 5 illustrates the performance metrics of the proposed MOD-Tracking method in 

comparison to existing multi-object tracking approaches using the VOT16 dataset. The 

graphical representation highlights MOD-Tracking’s superior results across key metrics, such 

as MOTA, MOTP, and ID F1 score, effectively demonstrating its enhanced tracking 

capabilities. This visual comparison emphasizes the method's robustness and effectiveness in 

challenging tracking scenarios. 

 

 

0%

20%

40%

60%

80%

MOTP MOTA IDF1 MT ML

P
er

fo
rm

an
ce

 V
al

u
es

Proposed MOD-Tracking Bai, H., et. al., 2021.

Xu, Y., et. al., 2019 Bochinski, E., et. al., 2018



                            Synergizing RNN and Transformers with Exponential… G. S. Gowri et al. 1864  
   

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

Table 5: Comparison of MOD-Tracking Performance Metrics for Different Datasets 

Dataset MOTP MOTA IDF1 MT ML 

MOT17 76.2% 80.7% 80.1% 17.42% 24.8% 

VOT16 75.99% 80.1% 79.8% 16.92% 25.1% 

Table 5 shows the comparison between MOD-tracking performance metrics across different 

datasets reveals variations in tracking precision, accuracy, and identity preservation. Metrics 

such as MOTA, MOTP, IDF1, MT, and ML provide insights into how well each tracker 

performs under different conditions, including object density, occlusions, and motion 

complexity. 

 

Figure 6: Graphical representation of MOD-Tracking Performance Metrics for Different 

Datasets 

Figure 6 provides a visual overview of the MOD-Tracking model’s performance metrics 

across various datasets, illustrating its effectiveness in handling diverse tracking challenges. 

The graphical representation highlights the model's accuracy, robustness, and adaptability, 

particularly in scenarios involving occlusions and background clutter. 

Discussion 

The proposed MOD-Tracking method effectively addresses the limitations of existing multi-

object tracking approaches, demonstrating significant advancements in tracking performance, 

particularly with the MOT17 dataset where it achieved notable scores, including 76.2% for 

MOTP, 80.7% for MOTA, and 80.1% for IDF1. The MOD-Tracking model outperformed 

existing methods due to its innovative hybrid architecture that effectively combines RNN, 

Transformer encoders, and CNN-based decoders. This unique integration allows the model to 

simultaneously capture short-term temporal dependencies and long-term spatial relationships, 

addressing limitations in traditional approaches. By leveraging RNNs, the model learns motion 

patterns and temporal continuity, while the Transformer encoders enhance its ability to focus 

on critical regions and objects in a sequence, even in the presence of occlusions or similar 

object appearances. The CNN-based decoder further refines spatial feature extraction, 

enabling accurate localization and classification of objects. A key contribution of the MOD-
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Tracking method is its novel decay learning rate designed to adapt the training process 

dynamically. The exact purpose of this learning rate mechanism is to ensure stable and 

effective training, particularly in challenging scenarios such as rapid object movements, 

frequent occlusions, and highly dynamic backgrounds. By gradually reducing the learning rate 

as training progresses, the model avoids overfitting to noisy or less informative patterns while 

fine-tuning its parameters for precision in later stages. This approach significantly enhances 

the model's ability to generalize across complex tracking scenarios, where abrupt learning rate 

adjustments might otherwise destabilize the training process. The significant application of 

this learning rate strategy lies in maintaining the model's robustness in real-world 

environments where tracking conditions are highly variable. For instance, in dense object 

interactions or scenes with objects exhibiting similar appearances, the dynamic decay learning 

rate ensures that the model continues to learn nuanced motion and spatial features without 

overreacting to transient tracking errors. Additionally, the mechanism prevents premature 

convergence, allowing the model to refine its understanding of intricate object trajectories over 

time. This contributes to superior metrics across critical performance indicators, not only 

improving tracking precision but also significantly reducing identity switches and 

fragmentations—common issues in current techniques. 

These enhancements are especially crucial in real-world applications, where occlusions, rapid 

object movements, and complex environments often lead to tracking errors. By addressing 

these challenges, the MOD-Tracking method provides a more robust and reliable solution for 

accurate multi-object tracking, making it well-suited for complex scenarios such as traffic 

monitoring, surveillance systems, and sports analytics. 

 

5. CONCLUSION 

In conclusion, the MOD-Tracking model demonstrates a significant improvement in multiple 

object tracking performance by effectively addressing key challenges such as identity 

preservation and tracking accuracy. With its superior metrics in MOTP, MOTA, and IDF1, 

the proposed model not only outperforms existing methods but also showcases its robustness 

in maintaining consistent object identities even in complex scenarios. The findings highlight 

the model's potential for practical applications in various fields, such as surveillance and 

autonomous systems, where reliable object tracking is critical. Furthermore, the encouraging 

results suggest opportunities for future enhancements and adaptations of the MOD-Tracking 

model to tackle even more intricate tracking environments. Overall, this research contributes 

valuable insights to the evolving landscape of multi-object tracking and sets the stage for 

ongoing advancements in the field. 
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