Oscillation Condition for a System of Non-Linear Differential Equations with Multiple Delays

R. Rama, P. P. Sharmishta

Quaid - E - Millath Govt College for Women, Chennai, India.

In this paper,we provide sufficient conditions for the oscillation of every solution of a non-linear differential equations with multiple delays of the form

$$\dot{x}(t) + \sum_{i=1}^{n} p_i(t) f_i(x(\tau_i(t))) = 0$$

where the coefficients $p_i \in R$ and the delays $\tau_i \in R^+$ for $i=1,2,\ldots n$.

We provide new sufficient conditions for the oscillatory solution of this equation. Our results essentially improve the conditions in the literature.

Keywords: Non-Linear differential equation, Oscillation, Multiple delays.

1. Introduction

In this paper, we consider the first -order non-linear differential equation with multiple delays of the form

$$\dot{x}(t) + \sum_{i=1}^{n} p_i(t) f_i(x(\tau_i(t))) = 0$$
(1.1)

where the coefficients $p_i \in R$ and the delays $\tau_i \in R^+$ for i = 1,2,...n are functions of positive real numbers such that

$$\tau_i(t) < t, t \ge t_0 \text{ and } \lim_{t \to \infty} \tau_i(t) = \infty$$
 (1.2)

By a solution of (1.1) , we mean a function that is continuous for $t \ge T_0$, where

 $T_0 = \min\{\inf\{\tau_i(t): t_0 \le t\}, 1 \le i \le n\}\}$ and differentiable for $t \ge t_0$. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros and otherwise ,it is called non- oscillatory. A solution is called eventually positive if there exists a t_1 such that $x(t) \ge 0$ and eventually negative if x(t) < 0 for $t \ge t_1$.

In [3], Julio Dix, Nurten Kilic and Özkan Öcalan used the following conditions and notations.

$$(H1) \quad \tau_i \in \mathrm{C}(R,R) \ , \ \tau(t) \leq t, \ \lim_{t \, \to \, \infty} \tau_i(t) = \infty \ \mathrm{for} \ i = 1,2,\dots n.$$

$$h_i(t) = \sup\{ \tau_i(s) : t_0 \le s \le t \}, h(t) = \max\{ h_i(t) : 1 \le i \le n \}.$$
 (1.3)

 $(\mathrm{H2}) \ p_i \in \mathrm{C}(\mathsf{t}_0 , \infty), \, \mathrm{R}), \, p_i(\mathsf{t}) \geq 0.$

(H3) $f_i \in C(R,R)$, $x f_i(x) > 0$ for $x \neq 0$ and

$$M_i = \lim_{x \to 0} \sup \frac{x}{f_i(x)}, \quad 0 < M_i < \infty.$$

In (H1), $\tau_i(t)$ are not necessarily monotonic, $\tau_i(t) \le h_i(t) \le h(t) \le t$ and h is non-decreasing.

In 2017,[1] G.E.Chatzarakis and Tongxing Li considered the differential equations generated by several deviating arguments

$$\dot{x}(t) + \sum_{i=1}^{n} p_i(t) x(\tau_i(t)) = 0$$
 (1.4)

Throughout this paper, we use the following notations:

$$\alpha = \lim_{x \to \infty} \inf \int_{\tau(t)}^{t} \sum_{i=1}^{n} p_i(s) \, ds \tag{1.5}$$

$$D(\alpha) = \begin{cases} 0 & \text{if } \omega > 1/e \\ \frac{1 - \omega - \sqrt{1 - 2\omega - \omega^2}}{2} & \text{if } \omega \in [0, 1/e] & \text{if } \omega \in [0, 1/e] \end{cases}$$
 (1.6)

$$\Delta = \lim_{t \to \infty} \sup \int_{\tau(t)}^{t} \sum_{i=1}^{n} p_i(s) ds$$
 (1.7)

where $\tau(t) = \max_{1 \le i \le m} \tau_i(t)$ and $\tau_i(t)$ in (1.2) are non-decreasing, i = 1, 2, ... n.

By Remark 2.7.3 in [7], it is clear that if $\tau_i(t)$, $i=1,2,\ldots n$, are non-decreasing and

$$\Delta > 1$$
, (1.8)

then all solutions of (1.4) are oscillatory. This result is similar to Theorem 2.1.3[7] which is a special case of [5].

In 1978, Ladde [4] and in 1982, Ladas and Stavroulakis [6] proved that if

$$\alpha > 1/e, \tag{1.9}$$

then all solutions of (1.4) are oscillatory.

In 1984, Hunt and Yorke [2] proved that if $\tau_i(t)$ are non-decreasing ,

t-
$$\tau_i(t) \le \tau_0$$
, $1 \le i \le n$ and

$$\lim_{x \to \infty} \inf \sum_{i=1}^{n} p_i(t) (t - \tau_i(t)) > \frac{1}{e},$$
 (1.10)

then all solutions of (1.4) are oscillatory.

Assume that $\tau_i(t)$, i = 1,2,...n, are not necessarily monotone.

Set
$$h_i(t) = \sup_{t_0 \le s \le t} \tau_i(s)$$
 and $h(t) = \max_{1 \le i \le n} h_i(t)$, $i = 1, 2, ... n$. (1.11)

for $t \ge t_0$

Clearly, $h_i(t)$, h(t) are nondecreasing and $\tau_i(t) \le h_i(t) < t$ for all $t \ge t_0$.

2. Preliminary results:

The following Lemmas and Theorems are used to prove the main result.

Lemma 2.1: ([6], Lemma 2.1.1).

If (H1) and $\displaystyle \liminf_{x \to \infty} \int_{\tau(t)}^t \sum_{i=1}^n p_i(s) \, ds$ hold, then

$$\lim_{x \to \infty} \inf \int_{\tau(t)}^{t} \sum_{i=1}^{n} p_i(s) ds = \lim_{x \to \infty} \inf \int_{h(t)}^{t} \sum_{i=1}^{n} p_i(s) ds$$

where $\tau(t) = \max\{ \tau_i(t) : 1 \le i \le n \}.$

Theorem 2.2: ([8,Theorem 2.1, 2.2])

Assume (H1) – (H3), $0 < M_i < \infty$ and one of the following two conditions hold:

$$\lim_{t \to \infty} \inf \int_{\tau(t)}^{t} \sum_{i=1}^{n} p_i(s) \, ds > \frac{M^*}{e}, \tag{2.1}$$

$$\lim_{s \to \infty} \sup \int_{h(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \, ds > M^{*} \,, \tag{2.2}$$

Then, every solution of (1.1) is oscillatory, where $\tau(t) = \max\{ \tau_i(t) : 1 \le i \le n \}$

and $M^* = \max\{M_i: 1 \le i \le n\}$.

From (H3), we can choose M_i for $1 \le i \le n$ such that

$$f_i(x(\tau_i(t)) \ge \frac{1}{M_i} x(\tau_i(t))$$
 (See eq.(8) in [3]).

Thus (1.1) can be rewritten as

$$\dot{\mathbf{x}}(\mathbf{t}) + \sum_{i=1}^{n} \frac{\mathbf{p}_{i}(\mathbf{t})}{\mathbf{M}_{i}} \mathbf{x}(\mathbf{\tau}_{i}(\mathbf{t})) \le 0$$
(2.3)

Lemma 2.3: ([1,lemma 2]

Assume that x is an eventually positive solution of (1.4), h(t) is defined by (1.11) and α by (1.5) with $0 < \alpha \le 1/e$. Then

$$\lim_{t \to \infty} \inf_{x(h(t))} \frac{x(t)}{x(h(t))} \ge D(\alpha). \tag{2.4}$$

Lemma 2.4:([1,lemma 3]

Assume that x is an eventually positive solution of (2.3), h(t) is defined by (1.11) and α by (1.5) with $0 < \alpha \le 1/e$. Then

$$\lim_{t \to \infty} \inf_{x(t)} \frac{x(h(t))}{x(t)} \ge \lambda_0, \tag{2.5}$$

where λ_0 is the smaller root of the transcendental equation $\lambda = e^{\alpha \lambda}$.

3. Main Result:

Theorem 3.1:

Assume that h(t) is defined by (1.11) and for some $j \in N$

$$\lim_{\substack{t\to\infty\\(3.1)}}\sup\int_{h(t)}^t(\sum_{i=1}^n\frac{p_i(s)}{M_i})\;exp\;(\int_{\tau(s)}^{h(t)}(\sum_{i=1}^n\frac{p_i(u)}{M_i})exp(\int_{\tau(u)}^uS_j(\;\psi,\epsilon)\;\;d\psi)du)ds > 1,$$

where

$$\begin{split} S_{j}(t,\epsilon) = & (\sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}})[1 + \\ & \int_{\tau(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp\left(\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \ exp\left(\int_{\tau(u)}^{u} S_{j-1}(\psi,\epsilon) \ d\psi\right) \ du\right) \ ds] \end{split}$$
(3.2)

with $S_0 = \left(\sum_{i=1}^n \frac{p_i(t)}{M_i}\right) (\lambda_0 - \epsilon)$ and λ_0 is the smaller root of the transcendental equation $\lambda = e^{\alpha \lambda}$

Then all solutions of (2.3) are Oscillatory.

Proof:

Assume for the sake of contradiction, that there exists a non-oscillatory solution x(t) of (2.3). Since -x(t) is also a solution of (2.3), we can confine our discussion only to the case where the solution x(t) is eventually positive. Then there exists a $t_1 > t_0$,

such that
$$x(t) > 0$$
 and $x(\tau_i(t)) > 0$, $1 \le i \le n$, for all $t \ge t_1$.

Thus from (2.3), we have

$$\dot{\mathbf{x}}(t) = -\sum_{i=1}^{n} \frac{\mathbf{p}_{i}(t)}{\mathbf{M}_{i}} \mathbf{x}(\tau_{i}(t)) \le 0 \quad \text{for all } t \ge t_{1},$$

which means that x(t) is an eventually nonincreasing function of positive integers. Considering $\tau_i(t) \le h(t)$, (2.3) implies that

$$\dot{x}(t) + \ \textstyle \sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}} \, x\big(\ h(t) \big) \ \leq \ \dot{x}(t) + \ \textstyle \sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}} \, x\big(\ \tau_{i}(t) \big) = 0 \quad \text{for all } t \geq \ t_{1},$$

or

$$\dot{\mathbf{x}}(t) + \sum_{i=1}^{n} \frac{p_i(t)}{M_i} \mathbf{x}(\mathbf{h}(t)) \le 0 \text{ for all } t \ge \mathbf{t_1}.$$
(3.3)

Observe that (2.5) implies that ,for each ϵ >0,there exists a t_{ϵ} such that

$$\frac{\mathbf{x}(\mathbf{h}(\mathbf{t}))}{\mathbf{x}(\mathbf{t})} > \lambda_0 - \varepsilon \text{ for all } \mathbf{t} \ge \mathbf{t}_1. \tag{3.4}$$

Combining inequalities (3.3) and (3.4) ,we obtain

$$\dot{\mathbf{x}}(t) + \sum_{i=1}^{n} \frac{\mathbf{p}_{i}(t)}{\mathbf{M}_{i}} \left(\lambda_{0} - \varepsilon \right) \mathbf{x}(t) \le 0 \text{ for all } t \ge \mathbf{t}_{\varepsilon}$$
(3.5)

or

$$\dot{\mathbf{x}}(t) + S_0 \,\mathbf{x}(t) \le 0 \text{ for all } t \ge \,\mathbf{t}_{\mathbf{\epsilon}} \tag{3.6}$$

where
$$S_0 = \sum_{i=1}^n \frac{p_i(t)}{M_i} \left(\lambda_0 - \epsilon \right)$$

Applying Grönwall inequality in (3.5), we conclude that

$$x(s) \ge x(t) \exp\left(\int_{\epsilon}^{t} \mathbf{S}_{\mathbf{0}}(\boldsymbol{\vartheta}, \boldsymbol{\varepsilon}) \, d\boldsymbol{\vartheta}\right), t \ge s \ge t_{\varepsilon}$$
 (3.7)

Now we divide (2.3) by x(t) > 0 and integrate on [s,t],so

$$\begin{split} - & \qquad \int_{s}^{t} \frac{\dot{x}(u)}{x(u)} \, \mathrm{d}u = \int_{s}^{t} \sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}} \, \frac{x(\tau_{i}(u))}{x(u)} \, \mathrm{d}u \\ & \geq \int_{s}^{t} \sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}} \, \frac{x(\tau(u))}{x(u)} \, \mathrm{d}u \end{split}$$

or

$$\ln \frac{x(s)}{x(t)} \ge \int_s^t \sum_{i=1}^n \frac{p_i(u)}{M_i} \frac{x(\tau(u))}{x(u)} du , \quad t \ge s \ge t_{\varepsilon}.$$
 (3.8)

since $\tau_i(u) < \tau(u) < u$, u = t, $s = \tau_i(u)$ in (3.7)

$$x(\tau(\mathbf{u})) \ge x(\mathbf{u}) \exp\left(\int_{s}^{t} \mathbf{S}_{0}(\vartheta, \varepsilon) d\vartheta\right), t \ge s \ge t_{\varepsilon}$$
(3.9)

Combining (3.8) and (3.9), we obtain for sufficiently large t,

$$\textstyle \ln \frac{x(s)}{x(t)} \! \geq \int_{s}^{t} \! (\sum_{i=1}^{n} \! \frac{p_{i}(u)}{M_{i}}) exp \; (\int_{s}^{t} \! S_{0}(\; \vartheta, \epsilon) \; d\vartheta \;) \; \mathrm{d} u,$$

or

$$x(s) \ge x(t) \exp\left(\int_{s}^{t} \left(\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}\right) \exp\left(\int_{s}^{t} S_{0}(\vartheta, \varepsilon) d\vartheta\right) du\right)$$
(3.10)

Hence.

$$x(\tau(s)) \ge x(t) \exp\left(\int_{\tau(s)}^{t} \left(\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}\right) \exp\left(\int_{s}^{t} S_{0}(\vartheta, \varepsilon) d\vartheta\right) du\right)$$
(3.11)

Integrating (2.3) from $\tau(t)$ to t, we have

$$x(t) - x(\tau(t)) + \int_{\tau(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) x(\tau_i(s)) ds \le 0$$

$$x(t) - x(\tau(t)) + \int_{\tau(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}\right) x(\tau(s)) ds \le 0$$
(3.12)

It follows from (3.11) and (3.12) that

$$x(t) - x(\tau(t)) + \ x(t) \ \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp \ (\ \int_{\tau(s)}^t (\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp \ (\int_{\tau(s)}^u S_0(\ \vartheta, \epsilon) \ d\vartheta \) \ du) ds \leq 0.$$

Multiplying the last inequality by $\sum_{i=1}^{n} \frac{p_i(t)}{M_i}$, we get

$$(\sum_{i=1}^n \frac{p_i(t)}{M_i})$$
x(t) - $(\sum_{i=1}^n \frac{p_i(t)}{M_i})$ x($\tau(t)$

$$+ \left(\sum_{i=1}^{n} \frac{p_i(t)}{M_i} \right) x(t) \int_{\tau(t)}^{t} (\sum_{i=1}^{n} \frac{p_i(s)}{M_i}) \ exp \ (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_i(u)}{M_i}) \ exp \ (\int_{\tau(s)}^{u} S_0(\ \vartheta, \epsilon) \ d\vartheta \) du) \ ds \leq 0$$
 . (3.13)

Furthermore,

as
$$\dot{x}(t) \le -\sum_{i=1}^{n} \frac{p_i(t)}{M_i} x(\tau_i(t))$$

$$\dot{\mathbf{x}}(t) \leq - \sum_{i=1}^{n} \frac{\mathbf{p}_{i}(t)}{\mathbf{M}_{i}} \qquad \mathbf{x}(\tau_{i}(t)) \leq - \sum_{i=1}^{n} \frac{\mathbf{p}_{i}(t)}{\mathbf{M}_{i}} \mathbf{x}(\tau(t), (3.14))$$

Combining inequalities (3.13) and (3.14), we have

$$(\sum_{i=1}^{n} \frac{p_i(t)}{M_i}) x(t) + \dot{x}(t) +$$

$$(\sum_{i=1}^n \frac{p_i(t)}{M_i}) \ x(t) \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp \left(\int_{\tau(s)}^t \sum_{i=1}^n \frac{p_i(u)}{M_i} exp \left(\int_{\tau(s)}^u S_0(\ \vartheta, \epsilon \right) d\vartheta \ \right) du \) \ ds \leq \quad 0.$$

That is,

$$\dot{\boldsymbol{x}}(t) + \bigl(\textstyle\sum_{i=1}^{n}\frac{p_{i}(t)}{M_{i}}\bigr)\boldsymbol{x}(t) +$$

$$(\sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}}) \stackrel{\cdot}{x(t)} \int_{\tau(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) exp \; (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \; exp \; (\int_{\tau(s)}^{u} S_{0}(\; \vartheta, \epsilon) \; d\vartheta \;) \; du \;) \; ds \leq 0 \; .$$

Hence,

$$\dot{x}(t)+\left(\sum_{i=1}^{n}\frac{p_{i}(t)}{M_{i}}\right)\left[\ 1\ +$$

$$\dot{\mathbf{x}}(t) + \mathbf{S}_{1}(\mathbf{t}, \boldsymbol{\varepsilon}) \ \mathbf{x}(t) \le 0 \tag{3.16}$$

where

$$\begin{array}{lll} S_1(\ t,\epsilon) & = & (\sum_{i=1}^n \frac{p_i(s)}{M_i})\ [\ 1+ \\ \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i})\ exp\ (\int_{\tau(s)}^t (\sum_{i=1}^n \frac{p_i(u)}{M_i})\ exp\ (\int_{\tau(s)}^u S_0(\ \vartheta,\epsilon)\ d\vartheta\)\ du\ ds] \end{array}$$

Integrating (3.16) on [s,t] leads to

$$x(s) \ge x(t) \exp(\int_{s}^{t} S_{1}(\psi, \varepsilon) d\psi$$
 (3.17)

We notice from (3.6) to (3.11) that x satisfies the inequality

$$x(\tau(u)) \ge x(u) \exp(\int_{s}^{t} \mathbf{S}_{1}(\boldsymbol{\psi}, \boldsymbol{\varepsilon}) d\boldsymbol{\psi}$$
 (3.18)

Combining now (3.8) and (3.18) ,we obtain

$$\textbf{x}(\textbf{s}) \geq \textbf{x}(\textbf{t}) \; \text{exp} \; (\textstyle \int_{\textbf{s}}^{\textbf{t}} (\textstyle \sum_{i=1}^{n} \frac{p_{i}(\textbf{u})}{M_{i}} \,) \text{exp}(\; \textstyle \int_{\tau(\textbf{u})}^{\textbf{u}} \textbf{S}_{\textbf{1}}(\; \boldsymbol{\psi}, \boldsymbol{\epsilon}) \; d\boldsymbol{\psi}) \; d\textbf{u}),$$

from which we take

$$x(\tau(s)) \ge x(t) \exp\left(\int_{\tau(s)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(u)}{M_i}\right) \exp\left(\int_{\tau(u)}^{u} S_1(\psi, \varepsilon) d\psi\right) du\right). \tag{3.19}$$

By (3.12) and (3.19), we have

$$x(t) - x(\ \tau(t)) + x(t) \int_{\tau(t)}^{t} \sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}} \ exp \ (\int_{\tau(s)}^{t} \sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}} \ exp(\ \int_{\tau(u)}^{u} S_{1}(\ \psi, \epsilon) \ d\psi) \ du) \ ds \leq 0,$$

Multiplying the last equation by $\sum_{i=1}^{n} \frac{p_i(t)}{M_i}$, we find

$$\begin{array}{lll} x(t) (& \sum_{i=1}^n \frac{p_i(t)}{M_i}) & - & x (& \tau(t)) (& \sum_{i=1}^n \frac{p_i(t)}{M_i} &) + \\ x(t) (\sum_{i=1}^n \frac{p_i(t)}{M_i}) \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) exp \left(\int_{\tau(s)}^t (\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp (\int_{\tau(u)}^u S_1(~\psi, \epsilon) ~d\psi \right) du \right) ds \leq 0. \end{array}$$

As $\tau_i(t) < \tau(t)$,

Furthurmore.

$$\begin{array}{lll} x(t) (& \sum_{i=1}^n \frac{p_i(t)}{M_i} \) - & x(\tau_i & (t)) (& \sum_{i=1}^n \frac{p_i(t)}{M_i}) \ + & x(t) (\\ \sum_{i=1}^n \frac{p_i(t)}{M_i}) \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp \ (\int_{\tau(s)}^t (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \ exp \ (\int_{\tau(u)}^u S_1(\ \psi, \epsilon) \ d\psi) \ du) \ ds \leq 0, \end{array}$$

$$(\sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}}) \int_{\tau(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp \ (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) exp (\int_{\tau(u)}^{u} S_{1}(\ \psi, \epsilon) \ d\psi) \ du) \ ds \leq 0,$$

$$\begin{split} \dot{x}(t) + & \left(\sum_{i=1}^{n} \frac{p_{i}(t)}{M_{i}}\right) \left[\ 1 \ + \right. \\ & \left. \int_{T(t)}^{t} & \left(\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}\right) \ exp \ \left(\int_{T(s)}^{t} & \left(\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}\right) \ exp \ \left(\int_{T(u)}^{u} S_{1}(\ \psi, \epsilon) \ d\psi \ \right) \ du \ ds \right] \\ x(t) \leq 0. \end{split}$$

Therefore, for sufficiently large t,

$$\dot{\mathbf{x}}(t) + \mathbf{S}_2(t, \varepsilon)\mathbf{x}(t) \le \mathbf{0},$$
 (3.20) where,

$$\begin{split} S_2(\ t,\epsilon\) &= (\textstyle \sum_{i=1}^n \frac{p_i(t)}{M_i}) \ [\ 1 \ + \\ \int_{\tau(t)}^t (\textstyle \sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp\ (\int_{\tau(s)}^t (\textstyle \sum_{i=1}^n \frac{p_i(u)}{M_i}) \ exp\ (\int_{\tau(u)}^u S_1(\ \psi,\epsilon) \ d\psi\) \ du) \ ds] \end{split}$$

Repeating the above procedure, it follows by induction that for sufficiently large t

$$\dot{\mathbf{x}}(t) + \mathbf{S}_{\mathbf{j}}(t, \boldsymbol{\varepsilon})\mathbf{x}(t) \leq \mathbf{0}, \ \ j \in \mathbf{N}$$

where

$$\begin{split} S_j(\ t,\epsilon\) = & (\sum_{i=1}^n \frac{p_i(t)}{M_i})[\ 1 + \\ & \int_{\tau(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp\ (\int_{\tau(s)}^t (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \ exp\ (\int_{\tau(u)}^u S_{j-1}(\ \psi,\epsilon) \ d\psi\) \ du \ ds]\ . \end{split}$$

Moreover, since $\tau(s) \le h(s) \le h(t)$, we have

$$x(\tau(s)) \ge x(h(t)) \exp\left(\int_{\tau(s)}^{h(t)} \left(\sum_{i=1}^{n} \frac{p_i(u)}{M_i}\right) \exp\left(\int_{\tau(u)}^{u} S_j(\psi, \epsilon) d\psi\right) du\right). \tag{3.21}$$

Integrating (2.3) from h(t) to t and using (3.21), we obtain

$$0 \ge x(t) - x(h(t)) + \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) x(\tau_i(s)) ds$$

$$\ge x(t) - x(h(t)) + \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) x(\tau(s)) ds$$

$$\geq \qquad \qquad x(t) \qquad - \qquad \qquad x(h(t)) \qquad + \qquad \qquad x(h(t)) \\ \int_{h(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \; exp \; (\int_{\tau(s)}^{h(t)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \; exp \; (\int_{\tau(u)}^u S_j(\; \psi, \epsilon) \; \; d\psi) du) ds.$$

That is,

The strict inequality is valid if we omit x(t) > 0 on the left-hand side. Therefore,

$$x(\textbf{h}(t)) \ [\int_{\textbf{h}(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) exp \ (\int_{\tau(s)}^{\textbf{h}(t)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \ exp \ (\int_{\tau(u)}^{u} S_{j}(\ \psi, \epsilon) \ d\psi) du) ds \ \text{-1}] < 0,$$

or

$$\textstyle \int_{h(t)}^{t} [(\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp \ (\int_{\tau(s)}^{h(t)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \ exp \ (\int_{\tau(u)}^{u} S_{j}(\ \psi, \epsilon) \ d\psi) du) ds \ -1] < 0.$$

Taking the limit as $t \to \infty$, we have

$$\underset{t\to\infty}{lim}\sup\int_{h(t)}^{t}(\sum_{i=1}^{n}\frac{p_{i}(s)}{M_{i}})\;exp\;(\int_{\tau(s)}^{h(t)}(\sum_{i=1}^{n}\frac{p_{i}(u)}{M_{i}})\;exp(\;\int_{\tau(u)}^{u}S_{j}(\;\psi,\epsilon)\;\;d\psi)du)ds<1.$$

Since ε may be taken arbitrarily small, this inequality contradicts (3.1) . This completes the proof.

Theorem 3.2:

Assume that α defined by (1.5) with $0 < \alpha \le 1/e$ and h(t) by (1.3). If for some $j \in N$,

$$\lim_{\substack{t \to \infty \\ (3.23)}} \sup \int_{h(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \; exp \; (\int_{\tau(s)}^{h(t)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \; exp \; (\int_{\tau(u)}^u S_j(\; \psi, \epsilon) \; \; d\psi) du) ds > 1 - \operatorname{D}(\alpha).$$

where S_i is defined by (3.2), then all solutions of (2.3) are oscillatory.

Proof:

Let x be an eventually positive solution of (2.3) .Then , by Theorem 3.2, inequality (3.22) is satisfied.

That is,

$$\begin{split} & x(t) & - & x(h(t)) & + & x(h(t)) \\ & \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \, exp \, \big(\int_{\tau(s)}^{h(t)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) exp \big(\int_{\tau(u)}^{u} S_{j}(\; \psi, \epsilon) \; d\psi \big) du \big) ds \leq 0 \\ & \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) exp \, \big(\int_{\tau(s)}^{h(t)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) exp \big(\int_{\tau(u)}^{u} S_{j}(\; \psi, \epsilon) \; d\psi \big) du \big) ds \leq 1 - \frac{x(t)}{x(h(t))} \,, \end{split}$$

$$\begin{split} \lim_{t \to \infty} \sup \int_{h(t)}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \, exp \, (\int_{\tau(s)}^{h(t)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \, exp \, (\int_{\tau(u)}^u S_j(\psi, \epsilon) \, d\psi) du) ds \\ & \leq 1 - \lim_{t \to \infty} \frac{x(t)}{x(h(t))}. \end{split} \tag{3.24}$$

By Lemma 2.3,

$$\underset{t\to\infty}{lim} \sup_{t\to\infty} \int_{h(t)}^t (\textstyle\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp \ (\textstyle\int_{\tau(s)}^{h(t)} (\textstyle\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp (\int_{\tau(u)}^u S_j(\ \psi,\epsilon) \ d\psi) du) ds \ \leq \ 1 - \lim_{t\to\infty} D(\ \alpha).$$

Since ε may be taken arbitrarily small, this inequality contradicts (3.23).

The proof of the theorem is complete.

Theorem 3.3:

Assume that α is defined by (1.5) with $0 < \alpha \le 1/e$ and h(t) by (1.11). If for some $j \in N$

$$\lim_{\substack{t \to \infty \\ t \ (3.25)}} \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp \ (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) exp (\int_{\tau(u)}^{u} S_{j}(\ \psi, \epsilon) \ d\psi) du) ds > \frac{1}{D(\ \alpha)} - 1, \ \ (3.25)$$

where S_i is defined by (3.2), then all solutions of (2.3) are oscillatory.

Proof:

Assume for the sake of contradiction, that there exists a non-oscillatory solution x of (2.3) and that x is eventually positive. Then , as in the proof of Theorem 3.1,(3.21) is satisfied, which yields

$$x(\tau(s)) \geq x(h(t)) \ exp \ (\int_{\tau(s)}^{h(t)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp(\ \int_{\tau(u)}^u S_j(\ \psi, \epsilon) \ d\psi) \ du).$$

Integrating (2.3) from h(t) to t,we have

$$x(t) - x(h(t)) + \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) x(\tau_i(s)) ds \le 0$$

or

$$x(t) - x(h(t)) + \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) x(\tau(s)) ds \le 0.$$

Thus by (3.21), the last inequality gives

$$\begin{split} x(t) - x(h(t)) + \int_{h(t)}^t \bigl(\textstyle\sum_{i=1}^n \frac{p_i(s)}{M_i}\bigr) \; x(t) \; exp \; \bigl(\textstyle\int_{\tau(s)}^t \bigl(\textstyle\sum_{i=1}^n \frac{p_i(u)}{M_i}\bigr) \; exp \bigl(\textstyle\int_{\tau(u)}^u S_j(\; \psi, \epsilon) \; \; d\psi \bigr) \; du \bigr) \\ ds & \leq 0. \end{split}$$

or

$$\begin{array}{l} x(t)-x(h(t))+x(t)\int_{h(t)}^t(\sum_{i=1}^n\frac{p_i(s)}{M_i})\ exp\left(\int_{\tau(s)}^t(\sum_{i=1}^n\frac{p_i(u)}{M_i}\right)exp\left(\int_{\tau(u)}^uS_j(\ \psi,\epsilon)\ d\psi\right)du)\\ ds\leq 0. \end{array}$$

Thus, for all sufficiently large t, it holds

$$\textstyle \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp \ (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \ exp \ (\int_{\tau(u)}^{u} S_{j}(\ \psi, \epsilon) \ d\psi) \ du) \ ds \leq \frac{x(h(t))}{x(t)} - 1.$$

Letting $t \to \infty$, we take

$$\underset{t \to \infty}{\underset{t \to \infty}{lim}} \sup_{\substack{t \to \infty \\ h(t)}} \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_i(s)}{M_i}) exp\left(\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_i(u)}{M_i}) exp\left(\int_{\tau(u)}^{u} S_j(\psi, \epsilon) \ d\psi\right) du\right) ds \\ = \lim_{t \to \infty} \frac{x(h(t))}{x(t)} - 1,$$

which, in view of (2.4) gives

$$\underset{t \rightarrow \infty}{lim} \sup \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \ exp \ (\int_{\tau(s)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \ exp \ (\int_{\tau(u)}^{u} S_{j}(\ \psi, \epsilon) \ d\psi) du) ds \leq \frac{1}{D(\ \alpha)} - 1.$$

Since ε is arbitrary small, this inequality contradicts (3.25).

The proof of the theorem is complete.

Theorem 3.4:

Assume that α is defined by (1.5) with $0 < \alpha \le 1/e$ and h(t) by (1.11). If for some $j \in N$

$$\underset{t\to\infty}{lim} \sup_{h(t)} \int_{h(t)}^t (\textstyle \sum_{i=1}^n \frac{p_i(s)}{M_i}) exp\left(\int_{\tau(s)}^t (\textstyle \sum_{i=1}^n \frac{p_i(u)}{M_i}) exp\left(\int_{\tau(u)}^u S_j(\psi,\epsilon) \ d\psi\right) du\right) ds > \frac{1+\ln\lambda_0}{\lambda_0} - D(\alpha), (3.26)$$

where S_j is defined by (3.2) and λ_0 is the smaller root of the transcendental equation $\lambda = e^{\alpha \lambda}$.

then all solutions of (2.3) are oscillatory.

Proof:

Assume ,for the sake of contradiction, that there exists a non-oscillatory solution x of (2.3) and that x is eventually positive. Then ,as in Theorem 3.1 ,(3.21) is satisfied. By (2.5), for each $\epsilon > 0$, there exists a t_ϵ , such that

$$\lambda_0 - \varepsilon < \frac{x(h(t))}{x(t)} \text{ for all } t \ge t_\varepsilon,$$
 (3.27)

Since $\frac{x(h(t))}{x(s)}$ is non increasing in s, we have

$$1 = \ \frac{x(h(t))}{x(h(t))} \leq \ \frac{x(h(t))}{x(s)} \leq \frac{x(h(t))}{x(t)} \ , \ t_\epsilon \leq h(t) \leq s \leq t,$$

In particular for $\varepsilon \in (0, \lambda_0 - 1)$, by continuity there exists a $t^* \in (h(t), t]$ such that

$$1 < \lambda_0 - \varepsilon = \frac{\mathbf{x}(\mathbf{h}(\mathbf{t}))}{\mathbf{x}(\mathbf{t}^*)}. \tag{3.28}$$

By (3.2), we have

$$x(\tau(s)) \ge x(h(s)) \exp\left(\int_{\tau(s)}^{h(s)} \left(\sum_{i=1}^{n} \frac{p_i(u)}{M_i}\right) \exp\left(\int_{\tau(u)}^{u} S_j(\psi, \epsilon) d\psi\right) du\right). \tag{3.29}$$

Integrating (2.3) from t* to t,we have

$$x(t) - x(t^*) + \int_{t^*}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ x(\tau(s)) \ ds \le 0,$$

By using (3.29) along with $h(s) \le h(t)$ in combination with the non increasingness of x ,we have

$$x(t) - x(t^*) + x(h(t)) \int_{t^*}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \exp(\int_{\tau(s)}^{h(s)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \exp(\int_{\tau(u)}^u S_j(\psi, \epsilon) \, d\psi) \, du)) \, ds \leq 0.$$

or

In view of (3.28) and Lemma 2.3 for the ε considered, there exists a $\mathbf{t}_{\varepsilon}' \geq t_{\varepsilon}$, such that

for
$$t \ge \mathbf{t}_{\mathbf{s}}$$
.

Dividing (2.3) by x(t) and integrating from h(t) to t *, we find

$$\int_{h(t)}^{t*} \bigl(\textstyle \sum_{i=1}^n \frac{p_i(t)}{M_i} \, \bigr) \, \, \frac{x(\tau(s))}{x(s)} \stackrel{\leq}{-} \, \int_{h(t)}^{t*} \frac{\dot{x}(s)}{x(s)} \, ds,$$

And using (3.29), we get

By (3.26), for
$$s \ge h(t) \ge t_{\varepsilon}$$
, we have $\frac{x(h(s))}{x(s)} > \lambda_0 - \varepsilon$, so from (3.31) we get

$$\begin{array}{l} (\lambda_0 - \epsilon) \int_{h(t)}^{t*} (\sum_{i=1}^n \frac{p_i(t)}{M_i} \,) \ exp \ \left(\int_{\tau(s)}^{h(s)} (\sum_{i=1}^n \frac{p_i(u)}{M_i} \,) exp \left(\int_{\tau(u)}^u S_j(\ \psi, \epsilon) \ d\psi \right) du \right) ds < - \int_{h(t)}^{t*} \frac{\dot{x}(s)}{x(s)} ds \ . \end{array}$$

Hence for sufficiently large t, we have

$$\begin{split} \int_{h(t)}^{t^*} & (\sum_{i=1}^n \frac{p_i(t)}{M_i} \) \ exp \ \left(\int_{\tau(s)}^{h(s)} & (\sum_{i=1}^n \frac{p_i(u)}{M_i}) \ exp \left(\int_{\tau(u)}^u S_j(\ \psi, \epsilon) \ d\psi \right) du \right) ds \\ & < - \frac{1}{(\lambda_0 - \epsilon)} \int_{h(t)}^{t^*} \frac{\dot{x}(s)}{x(s)} \ ds \\ & = \frac{1}{(\lambda_0 - \epsilon)} \ln \frac{x(h(t))}{x(t^*)} \\ & = \frac{\ln(\lambda_0 - \epsilon)}{(\lambda_0 - \epsilon)} \end{split}$$

(3.32)

Adding (3.30) and (3.32), and then taking the limit as $t \to \infty$, we have

$$\underset{t \rightarrow \infty}{lim} \sup \int_{h(t)}^{t} (\textstyle \sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \; exp \; (\textstyle \int_{\tau(s)}^{t} (\textstyle \sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \; exp (\; \textstyle \int_{\tau(u)}^{u} S_{j}(\; \psi, \epsilon) \; \; d\psi) du) ds$$

$$\leq \frac{1 + ln(\lambda_0 - \epsilon)}{(\lambda_0 - \epsilon)} - D(\alpha) + \epsilon.$$

Since ε may be taken arbitrarily small, this inequality contradicts (3.26).

The proof of the theorem is complete.

Theorem 3.5:

Assume that h(t) is defined by (1.3) and for $j \in N$

$$\lim_{t\to\infty}\inf_{\infty}\int_{h(t)}^t (\textstyle\sum_{i=1}^n\frac{p_i(s)}{M_i}) exp\left(\textstyle\int_{\tau(s)}^{h(s)} (\textstyle\sum_{i=1}^n\frac{p_i(u)}{M_i}) \right. \\ \left. exp(\textstyle\int_{\tau(u)}^u S_j(\psi,\epsilon) \ d\psi) du\right) ds > \frac{1}{e},$$

where S_i is defined by (3.2) .Then all solutions of (2.3) are oscillatory.

Proof:

Assume for the sake of contradiction, that there exists a non-oscillatory solution x(t) of (2.3).

Since -x(t) is also a solution of (2.3),we can confine our discussion only to the case where the solution x(t) is eventually positive. Then there exists a $t_1 > t_0$ such that x(t) >0 and x($\tau_i(t)$) > 0,

 $1 \le i \le m$ for all $t \ge t_1$. Thus, from (2.3) we have

$$\dot{x}(t) = -\left(\sum_{i=1}^{n} \frac{p_i(t)}{M_i}\right) x(\tau_i(t)) \le 0 \text{ for all } t \ge t_1,$$

which means that x(t) is an eventually non-increasing function of positive numbers. Moreover, as in previous theorem, (3.29) is satisfied.

Dividing (2.3) by x(t) and integrating from h(t) to t, for some $t_2 \ge t_1$, we get

$$\ln\left(\frac{x(t)}{x(h(t))}\right) + \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}\right) \frac{x(\tau_{i}(s))}{x(s)} ds \le 0$$

$$\ln\left(\frac{x(h(t))}{x(t)}\right) \ge \int_{h(t)}^{t} \left(\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}\right) \frac{x(\tau(s))}{x(s)} ds$$
(3.34)

Combining inequalities (3.29) and (3.34), we obtain

$$\ln(\,\frac{x(h(t))}{x(t)}\,) \geq \int_{h(t)}^{t} (\,\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}\,)\,\,\frac{x(h(s))}{x(s)}\,\,exp\,\,(\int_{\tau(s)}^{h(s)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}})\,\,exp(\,\int_{\tau(u)}^{u} S_{j}(\,\psi,\epsilon)\,\,d\psi)\,\,du)\,ds.$$

Taking into account that x is non-increasing and h(s) < s, the last inequality becomes

$$\ln(\ \frac{x(h(t))}{x(t)}\) \geq \int_{h(t)}^t (\ \textstyle \sum_{i=1}^n \frac{p_i(s)}{M_i}\) \ \ exp\ (\int_{\tau(s)}^{h(s)} (\textstyle \sum_{i=1}^n \frac{p_i(u)}{M_i}) \ exp(\ \int_{\tau(u)}^u S_j(\ \psi, \epsilon) \ d\psi) \ du) \ ds. \eqno(3.35)$$

From (3.33), it follows that there exists a constant c > 0 such that for sufficiently large t

$$\textstyle \int_{h(t)}^{t} (\sum_{i=1}^{n} \frac{p_{i}(s)}{M_{i}}) \; exp \; (\int_{\tau(s)}^{h(s)} (\sum_{i=1}^{n} \frac{p_{i}(u)}{M_{i}}) \; exp (\; \int_{\tau(u)}^{u} S_{j}(\; \psi, \epsilon) \; \; d\psi) du) ds \geq c > \frac{1}{e} \; ,$$

Choose \mathbf{c}' such that $c > \mathbf{c}' > \frac{1}{e}$. For every $\epsilon > 0$ such that $c - \epsilon > \mathbf{c}'$, we have

Combining inequalities (3.35) and (3.36), we obtain

$$\ln\left(\frac{\mathbf{x}(\mathbf{h}(\mathbf{t}))}{\mathbf{x}(\mathbf{t})}\right) \geq \mathbf{c}', \ \mathbf{t} \geq \mathbf{t}_3.$$

Thus

$$(\frac{x(h(t))}{x(t)}) \ge e^{c'} \ge ec' > 1,$$

which gives ,for some $t \ge t_4 \ge t_3$,

$$x(h(t)) \ge (e\mathbf{c}') \mathbf{x}(\mathbf{t}).$$

Repeating the above procedure, it follows by induction that for any positive integer k,

$$\frac{x(h(t))}{x(t)} \geq (ec^{'})^{k}$$
 for sufficiently large t.

Since $e\mathbf{c}' > 1$, there is a $k \in N$ satisfying k > 2 $(\frac{(\ln(2) - \ln(\mathbf{c}')}{1 + \ln(\mathbf{c}')})$ such that for t sufficiently large

$$\frac{x(h(t))}{x(t)} \ge (ec')^k > (\frac{2}{c'})^2 \tag{3.37}$$

Next we split the integral in (3.36) into two integrals ,each integral being no less than $\frac{c}{2}$.

Integrating (2.3) from $\mathbf{t_n}$ to t, we deduce that

$$\mathbf{x}(t) - \mathbf{x}(t_n) + \int_{t_n}^{t} \left(\sum_{i=1}^{n} \frac{p_i(s)}{M_i}\right) \mathbf{x}(\tau_i(s)) ds = 0$$

or

$$x(t) - x(\boldsymbol{t_n}) + \int_{t_n}^t \! \left(\sum_{i=1}^n \frac{p_i(s)}{M_i} \right) x(\boldsymbol{\tau(s)}) \mathrm{d}s \leq 0.$$

which in view of (3.29), gives

$$\begin{array}{l} x(t) - x(t_n) + x(h(t)) \int_{t_n}^t (\sum_{i=1}^n \frac{p_i(s)}{M_i}) \ exp \ (\int_{\tau(s)}^{h(s)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp (\ \int_{\tau(u)}^u S_j(\ \psi, \epsilon) \ d\psi) \ du) \ \mathrm{d}s \\ \leq 0. \end{array}$$

The strict inequality is valid if we omit x(t) > 0 on the left-hand side.

$$-\,x(t_n) + x(h(t)) \int_{t_n}^t \bigl(\textstyle \sum_{i=1}^n \frac{p_i(s)}{M_i}\,\bigr) \,\,exp\,\,\bigl(\textstyle \int_{\tau(s)}^{h(s)} \bigl(\textstyle \sum_{i=1}^n \frac{p_i(u)}{M_i}\bigr) \,\,\,exp\bigl(\,\int_{\tau(u)}^u S_j(\,\psi,\epsilon) \,\,\,d\psi\bigr) \,\,du\bigr) \,\,\mathrm{d}s < 0.$$

Using the inequality in (3.39), we conclude that

$$\mathbf{x}(\mathbf{t_n}) > \frac{\mathbf{c'}}{2} \mathbf{x}(\mathbf{h}(\mathbf{t})). \tag{3.40}$$

Similarly, integrating (2.3) between h(t) to $\mathbf{t_n}$ with the later application of (3.29) leads to

$$x(t_n) - x(h(t)) +$$

$$x(h(t_n)) \int_{h(t)}^{t_n} (\sum_{i=1}^n \frac{p_i(s)}{M_i}) exp\left(\int_{\tau(s)}^{h(s)} (\sum_{i=1}^n \frac{p_i(u)}{M_i}) exp\left(\int_{\tau(u)}^u S_j(\psi, \epsilon) \, d\psi \right) du \right) \mathrm{d}s \leq 0.$$

The strict inequality is valid if we omit $\mathbf{x}(\mathbf{t_n}) > 0$ on the left-hand side.

$$x(h(t)) > \frac{c'}{2}x(h(t_n)). \tag{3.41}$$

Combining inequalities (3.40) and (3.41), we obtain

$$\label{eq:continuous_state} \text{$x(h(t_n))$} \, < \, \frac{2}{\overrightarrow{c}} \, \, x(h(t)) < \, (\frac{2}{\overrightarrow{c'}})^2 \, \, x(t_n) \; ,$$

which contradicts (3.37) .

Thus the proof of the theorem is completed.

Example 1:

Consider the non-linear delay differential equation

$$\begin{split} \dot{x}(t) + & \frac{71}{50} \, \mathrm{x}(\tau_1(t)) \, \left(\, \left| x(\tau_1(t)) \right| + \frac{1}{5} \, \right) + \frac{63}{50} \, \mathrm{x}(\tau_2(t)) \, \left(\, \left| x(\tau_2(t)) \right| + \frac{1}{4} \, \right) + \frac{56}{50} \, \mathrm{x}(\tau_3(t)) \, \left(\, \left| x(\tau_3(t)) \right| + \frac{1}{2} \, \right) \\ & + \frac{1}{2} \, \right) = 0, \, t \geq 0, \end{split}$$

with
$$(3.42)$$

$$\begin{array}{c} -t + 12 \ k - 2 & \text{if } t \in [6k \, , \, 6k \, + 1] \\ 4t - 18 \ k - 7 & \text{if } t \in [6k + 1 \, , \, 6k \, + 2] \\ -t + 12 \ k + 3 & \text{if } t \in [6k + 2 \, , \, 6k \, + 3] & \text{and } \boldsymbol{\tau_2(t)} = \boldsymbol{\tau_1(t)} - \boldsymbol{\tau_1(t)} = \boldsymbol{\tau_1(t)} - \boldsymbol{\tau_2(t)} = \boldsymbol{\tau_1(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_2(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_2(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_2(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_2(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} - \boldsymbol{\tau_3(t)} = \boldsymbol{\tau_3(t)}$$

where $k \in N_0$ and N_0 is the set of non negative integers.

By (1.11), we see that

$$\mathbf{h_1(t)} = \begin{bmatrix} 6k - 2, & \text{if } t \in [6k, 6k + 1.25], \\ 4t - 18k - 7, & \text{if } t \in [6k + 1.25, 6k + 2], \\ 6k + 1, & \text{if } t \in [6k + 2, 6k + 5.4], \\ 5t - 24k - 26 & \text{if } t \in [6k + 5.4, 6k + 6], \end{bmatrix}$$
 and $\mathbf{h_2(t)} = \mathbf{h_1(t)} - \mathbf{0} \cdot \mathbf{1}$,

and consequently,

$$h(t) = \max_{1 \leq i \leq 3} h_i(t) \ = h_1(t) \ and \quad \tau(t) = \max_{1 \leq i \leq 3} \tau_i(t) \ = \tau_1(t) \ .$$

Also we have

$$\alpha = \liminf_{x \to \infty} \int_{\tau(t)}^{t} \sum_{i=1}^{3} p_{i}(s) \ ds = \lim_{x \to \infty} \inf \int_{6k+1}^{6k+2} 3.8 \ ds = 3.8$$

and therefore ,the smaller root of $e^{3.8\lambda} = \lambda$ is $\lambda_0 = -0.357$.

By (H3),

$$\begin{aligned} \mathbf{M_{i}} &= \lim_{x \to 0} \sup \frac{x}{f_{i}(x)}, & 0 < \mathbf{M_{i}} < \infty. \\ \mathbf{M_{1}} &= \lim_{x \to 0} \sup \frac{x}{f_{1}(x)} = \lim_{x \to 0} \sup \frac{x}{x \left(|x(\tau_{1}(t))| + \frac{1}{5} \right)} = 5, \\ \mathbf{M_{1}} &= \lim_{x \to 0} \sup \frac{x}{f_{1}(x)} = \lim_{x \to 0} \sup \frac{x}{x \left(|x(\tau_{1}(t))| + \frac{1}{5} \right)} = 4. \end{aligned}$$

$$M_2 = \underset{x \to 0}{lim} \, sup \, \frac{x}{f_2(x)} = \underset{x \to 0}{lim} \, sup \, \frac{x}{x \, (\, |x(\tau_1(t))| \, + \, \frac{1}{4} \,)} = 4,$$

$$M_3 = \lim_{x \to 0} sup \frac{x}{f_2(x)} = \lim_{x \to 0} sup \frac{x}{x \left(\left| x(\tau_1(t)) \right| + \frac{1}{2} \right)} = 2.$$

Thus
$$\sum_{i=1}^{3} \frac{p_i(t)}{M_i} = \frac{p_1(t)}{M_1} + \frac{p_2(t)}{M_2} + \frac{p_3(t)}{M_3} = \frac{1.42}{5} + \frac{1.26}{4} + \frac{1.12}{2} = 1.159.$$

Let us prove that the solutions of (3.42) is oscillatory by showing (3.1) of Theorem 3.1 holds.

The function $F_j = \int_{h(t)}^t (\sum_{i=1}^3 \frac{p_i(s)}{M_i}) exp \left(\int_{\tau(s)}^{h(t)} (\sum_{i=1}^3 \frac{p_i(u)}{M_i}) exp \left(\int_{\tau(u)}^u S_j(\psi, \epsilon) \ d\psi \right) du \right) ds$ attains its maximum at t = 6k + 5.4, $k \in N_0$, for every $j \geq 1$. Specifically,

$$\begin{array}{l} F_1(\ t=6k+5.4) \\ \int_{6k+1}^{6k+5.4} (\sum_{i=1}^3 \frac{p_i(s)}{M_i}) \ exp\ (\int_{\tau(s)}^{6k+1} (\sum_{i=1}^3 \frac{p_i(u)}{M_i}) exp\ (\int_{\tau(u)}^u S_1(\ \psi, \epsilon) \ d\psi) du) ds \end{array}$$

with

$$\begin{split} S_1(\ t,\epsilon\) = & (\sum_{i=1}^3 \frac{p_i(t)}{M_i})[\ 1 + \\ & \int_{\tau(\epsilon)}^\epsilon & (\sum_{i=1}^3 \frac{p_i(s)}{M_i}) \ exp\ (\int_{\tau(v)}^\epsilon & (\sum_{i=1}^3 \frac{p_i(w)}{M_i}) \ exp\ (\int_{\tau(w)}^w \lambda_0\ (\sum_{i=1}^n \frac{p_i(z)}{M_i}) \ dz\) \ dw\) dv\]\ . \end{split}$$

We obtain

$$\begin{array}{c} S_1(\ t,\epsilon\) \! = \! 1.\,159\ [\ 1 \ + \\ \int_{6k+1}^{6k+5.4} \ 1.\,159 \ exp\ (\int_{6k+1}^{6k+5.4} 1.\,159 \ exp\ (\int_{6k+1}^{6k+5.4} (-\ 0.\,357)(1.\,159) \ dz\)\, dw\) dv] \\ S_1 = 11.36. \end{array}$$

Thus,

$$\begin{array}{l} F_1(\;t=6k+5.4)\;=\int_{6k+1}^{6k+5.4}\;1.\,159\;exp\;(\int_{6k+1}^{6k+1}1.\,159\;exp(\;\int_{\tau(u)}^{u}\;\;(11.\,36)d\psi)du)ds \end{array}$$

$$F_1(t = 6k + 5.4) \approx 5.09$$
 and so

 $\lim_{t\to\infty} \sup F_1(t) \approx 5.09 > 1$, thus satisfying condition (3.1) of Theorem 3.1 is for j=1, and therefore all solutions of (3.42) are oscillatory.

Example 2:

We consider the following first order non-linear delay differential equation

$$\dot{x}(t) + \frac{93}{100} x(\tau_1(t)) (|x(\tau_1(t))| + \frac{1}{e}) + \frac{99}{100} x(\tau_2(t)) (|x(\tau_2(t))| + \frac{2}{e}) = 0, t \ge 0,$$
 (3.43)

where

With
$$\tau_{1}(t) = \begin{bmatrix} t - 1 & \text{if } t \in [3k, 3k + 1] \\ -3t + 12k + 3 & \text{if } t \in [3k + 1, 3k + 2] \\ 5t - 12k - 13 & \text{if } t \in [3k + 2, 3k + 3] , k \in \mathbb{N}_{0} \text{ and } \tau_{2}(t) = \tau_{1}(t) - 2, \end{bmatrix}$$

Also,

$$h_1(t) = \begin{cases} & t - 1 & \text{if } t \in [3k , 3k + 1] \\ & -3k & \text{if } t \in [3k + 1 , 3k + 2.6] \\ & 5t - 12k - 13 & \text{if } t \in [3k + 2.6 , 3k + 3] \text{ and } h_2(t) = h_1(t) - 2, \end{cases}$$

$$h(t) = \max_{1 \le i \le 2} h_i(t) = h_1(t) \text{ and } \tau(t) = \max_{1 \le i \le 2} \tau_i(t) = \tau_1(t) .$$

Also we have

$$\alpha = \lim_{x \to \infty} \inf \int_{\tau(t)}^t (\sum_{i=1}^2 p_i(s)) ds$$
 .

$$\sum_{i=1}^{2} p_i(s) = 0.93 + 0.99 = 1.92$$
.

Therefore, $\alpha = \lim_{x \to \infty} \inf \int_{\tau(t)}^t (\sum_{i=1}^2 p_i(s)) ds = \lim_{x \to \infty} \inf \int_{t-1}^t \sum_{i=1}^2 p_i(s) ds = 1.92.$

and the smaller root of $e^{1.92\lambda} = \lambda$ is $\lambda_0 = -1.086$.

$$M_i = \lim_{x \to 0} sup \frac{x}{f_i(x)} \,, \quad 0 < M_i < \infty.$$

$$M_1 = \lim_{x \to 0} sup \frac{x}{f_1(x)} = \lim_{x \to 0} sup \frac{x}{x (|x(\tau_1(t))| + \frac{1}{e})} = 2.71,$$

$$M_2 = \lim_{x \to 0} \sup \frac{x}{f_2(x)} = \lim_{x \to 0} \sup \frac{x}{x(|x(\tau_2(t))| + \frac{2}{n})} = 1.35.$$

Also
$$\sum_{i=1}^{2} \frac{p_i(t)}{M_i} = \frac{P_1(t)}{M_1} + \frac{P_2(t)}{M_2} = 1.076$$
.

Let us prove that the solutions of (3.43) is oscillatory by showing (3.23) of Theorem 3.2 holds.

To show that,

$$\lim_{t\to\infty}\sup\int_{h(t)}^t \textstyle\sum_{i=1}^2 \frac{p_i(s)}{M_i} \, \exp\big(\textstyle\int_{\tau(s)}^{h(t)} \textstyle\sum_{i=1}^2 \frac{p_i(u)}{M_i} \, \exp\big(\textstyle\int_{\tau(u)}^u S_1(\,\psi,\epsilon) \, \, d\psi\big) du\big) ds > 1 - D(\,\alpha)$$

where

$$\begin{split} S_1(\,\psi,\epsilon) &= \\ \int_{\tau(t)}^t \sum_{i=1}^2 \frac{p_i(s)}{M_i} \, \exp\big(\int_{\tau(s)}^t \sum_{i=1}^2 \frac{p_i(u)}{M_i} \, \exp\big(\int_{\tau(u)}^u S_0(\,\psi,\epsilon) \, d\psi\,\big) \, du \, \, ds \end{split}$$
 and

$$S_0 = \sum_{i=1}^2 \frac{p_i(t)}{M_i} (\lambda_0 - \varepsilon) .$$

Hence.

$$\begin{split} S_0 &= (\frac{p_1(t)}{M_1} + \frac{p_2(t)}{M_2}) \left(\lambda_0 - \epsilon\right) = (1.076) \left(-1.086\right) = -1.168 \,, \\ S_1 &= 1.076 \, \left[1 + \int_{t-1}^t 1.076 \, \exp\left(\int_{(s-1)}^t 1.076 \, \exp\left(\int_{u-1}^u -1.168 \, d\psi\right) \, du \, ds \right. \\ &= 37.54. \end{split}$$

Therefore.

$$\begin{split} & \lim_{t \to \infty} \sup \int_{h(t)}^t \sum_{i=1}^2 \frac{p_i(s)}{M_i} \, \exp \big(\int_{\tau(s)}^{h(t)} \sum_{i=1}^2 \frac{p_i(u)}{M_i} \, \exp \big(\int_{\tau(u)}^u S_1(\, \psi, \epsilon) \, \, d\psi \big) du \big) ds \\ & = \lim_{t \to \infty} \sup \int_{t-1}^t \sum_{i=1}^2 \frac{p_i(s)}{M_i} \, \exp \big(\int_{s-1}^{t-1} \sum_{i=1}^2 \frac{p_i(u)}{M_i} \, \exp \big(\int_{u-1}^u S_1(\, \psi, \epsilon) \, \, d\psi \big) du \big) ds \\ & = \lim_{t \to \infty} \sup \int_{t-1}^t 1.076 \, \exp \big(\int_{s-1}^{t-1} 1.076 \, \exp \big(\int_{u-1}^u 37.54 \, \, d\psi \big) du \big) ds \\ & = 1.076 \, . \end{split}$$

Also,

as
$$\alpha = 1.92 > \frac{1}{e}$$
, by (1.6),

$$D(\alpha) = 0$$
.

1-
$$D(\alpha) = 1-0=1$$
.

Thus proving

$$\begin{split} \lim_{t \to \infty} \sup_{\delta} \int_{h(t)}^t \sum_{i=1}^2 \frac{p_i(s)}{M_i} \, exp \, \big(\int_{\tau(s)}^{h(t)} \sum_{i=1}^2 \frac{p_i(u)}{M_i} \, exp \big(\int_{\tau(u)}^u S_1(\, \psi, \epsilon) \, \, d\psi \big) du \big) ds = 1.076 \\ & > 1 - D(\alpha) \\ & = 1 \end{split}$$

Thus proving the inequality (3.22). Hence the solutions of (3.43) are oscillatory.

References

- [1]. Chatzarakis and Li Oscillations of differential equations generated by several deviating arguments, Advances in Difference Equations (2017) 2017:292.
- [2]. Hunt, BR, Yorke, JA: When all solutions of $x_{t} = -qi(t)x(t Ti(t))$ oscillate. J. Differ. Equ. 53(2), 139-145 (1984)
- [3]. Julio G. Dix, Nurten Kılıc Özkan Öcalan, Oscillation Criteria for First-Order Nonlinear Differential Equations with Several Delays, Filomat 36:16 (2022), 5665–5675
- [4]. Ladde, GS: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 63(5), 351-359 (1977).
- [5]. Ladas, G, Lakshmikantham, V, Papadakis, JS: Oscillations of higher-order retarded differential equations generated by the retarded argument. In: Delay and Functional Differential Equations and Their Applications, pp. 219-231. Academic Press, New York (1972)
- [6]. Ladas, G, Stavroulakis, IP: Oscillations caused by several retarded and advanced arguments. J. Differ. Equ. 44(1), 134-152 (1982)
- [7]. Ladde, GS, Lakshmikantham, V, Zhang, BG: Oscillation Theory of Differential Equations with Deviating Arguments. Monographs and Textbooks in Pure and Applied Mathematics, vol. 110. Dekker, New York (1987)
- [8]. Zhou, D: On some problems on oscillation of functional differential equations of first order. J. Shandong Univ. Nat. Sci. 25(4), 434-442 (1990)