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Effective inventory management is required for businesses to meet customer demands and reduce 

expenses. Traditional inventory models frequently struggle to account for uncertainties and 

nonlinear dynamics, resulting in decisions that are suboptimal. This research paper presents a novel 

method for estimating and optimizing total inventory costs that combines the adaptability of fuzzy 

logic with the power of deep learning techniques, specifically Deep Fuzzy Sets (DFS). The 

objective is to leverage the benefits of DFS to capture complex relationships and improve inventory 

management precision. The methodology includes three primary steps. Initially, uncertain 

inventory parameters such as demand, lead time, and costs are represented by DFS, which uses 

deep neural networks to capture intricate dependencies and nonlinear patterns. Second, a Deep 

Fuzzy Inventory Model is created, incorporating DFS to simulate the inventory system behavior. 

This model employs deep learning techniques for demand forecasting, determining the optimal 

reorder point, and optimizing inventory control policy. Last but not least, Deep Fuzzy Optimization 

is used to determine the inventory policy that minimizes total cost, taking into account fuzzy inputs 

and constraints. The proposed method is evaluated using actual inventory information. Analyses 

demonstrate that the Deep Fuzzy Inventory Model outperforms conventional approaches in terms 

of precision and cost optimization. Analyses of sensitivity verify the robustness of a model under 

varying scenarios and parameter settings. This research contributes to the field of inventory 

management by introducing the integration of Deep Fuzzy Sets, which enables decision-makers to 

more effectively manage uncertainty and non-linear dynamics. The findings have practical 

implications for inventory managers who seek to improve decision-making processes and reduce 

costs in uncertain and dynamic environments.                 

Keywords: V Inventory management, Total cost optimization, Deep Fuzzy Sets, Demand 

forecasting. 

 

 

1. Introduction 

For businesses to strike a balance between satisfying customer needs and minimizing 

expenses, efficient inventory management is essential [1]. Traditional inventory models 

frequently struggle to account for the inherent uncertainties and nonlinear dynamics of real-

world inventory systems, resulting in suboptimal decision-making [2]. 

In recent years, there has been an increase in interest in integrating fuzzy logic and deep 

learning techniques to enhance inventory management [3]. This research paper presents a 
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novel method for estimating and optimizing total inventory costs that combines the 

adaptability of fuzzy logic with the power of deep learning, specifically Deep Fuzzy Sets 

(DFS) [4]. Utilizing the benefits of DFS, decision-makers can capture complex relationships 

and improve inventory management accuracy [5]. 

The inherent uncertainties and nonlinear dynamics of factors such as demand variability, lead 

time fluctuations, and imprecise cost parameters present obstacles in inventory management 

[6]. Traditional inventory models frequently rely on deterministic assumptions, which fail to 

adequately represent and manage uncertainty [7]. In addition, the inventory system non-linear 

relationships present additional challenges that cannot be effectively addressed using 

conventional methods [8]. These obstacles contribute to suboptimal decision-making, which 

may result in increased costs [9, 10]. 

The primary concern of this research paper is the suboptimal estimation and optimization of 

total inventory costs using conventional methods. The inability of deterministic models to 

account for uncertainty and nonlinear dynamics impedes the ability to make precise and 

effective inventory management decisions.  

This research is innovative due to the incorporation of Deep Fuzzy Sets, which combine the 

adaptability of fuzzy logic with the potent learning abilities of deep neural networks. This 

integration permits the capture of complex dependencies and nonlinear patterns, thereby 

improving the precision of demand forecasting, optimal reorder point determination, and 

inventory control policy optimization.  

This research contributes a comprehensive framework that utilizes Deep Fuzzy Sets to address 

the challenges of inventory management and enable decision-makers to make more informed 

and optimal decisions, ultimately resulting in enhanced cost management and inventory 

performance. 

 

2. Related Works 

In [11], the authors provide a comprehensive overview of the application of fuzzy set theory 

to inventory control. It includes demand forecasting, order quantity determination, and reorder 

point optimization, among other fuzzy inventory models. The paper highlights the benefits of 

fuzzy logic in inventory management for handling uncertainties and imprecise data. 

In [12], the authors focused on fuzzy optimization models and techniques applied specifically 

to supply chain management and inventory control. It discusses the application of fuzzy sets 

and fuzzy optimization techniques to address uncertainty and enhance supply chain decision-

making. This paper examines the application of fuzzy logic to inventory cost optimization 

within the context of supply chain management. 

In [13], the authors examine the evolution and applications of fuzzy logic. It provides a 

conceptual understanding of fuzzy logic and highlights its benefits in dealing with uncertainty, 

fuzziness, and imprecision in a variety of domains, including inventory management. This 

paper lays the groundwork for optimizing inventory costs using fuzzy logic principles. 

In [14], the authors present a fuzzy inventory model for deteriorating items that takes into an 

account stock-dependent demand rate and fuzzy backorder rate. It employs fuzzy sets to 
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account for uncertainty and imprecision in demand and backorder rates, thereby enhancing the 

precision of inventory control decisions. This paper contributes to the application of fuzzy 

logic in inventory management, particularly for items that are deteriorating. 

In [15], the authors proposed a hybrid fuzzy logic model for inventory control that combines 

fuzzy set theory with demand forecast updates. It combines historical data, expert knowledge, 

and real-time demand information to enhance the accuracy of demand forecasting. The model 

considers both linguistic and numerical data, thereby enhancing inventory control decision-

making. This paper demonstrates the efficacy of fuzzy logic in dynamically adjusting 

inventory levels in response to revised demand forecasts. 

These related works highlight the use of fuzzy logic, fuzzy sets, and optimization techniques 

in inventory management to address uncertainty, imprecision, and nonlinear dynamics. They 

discuss the advantages and strategies for estimating and optimizing inventory costs utilizing 

fuzzy sets. 

 

3. Methodology 

This section comprises several key steps to estimate and optimize total inventory costs using 

Deep Fuzzy Sets (DFS) as in Figure 1: 

 

Figure 1: Proposed Process Flow 

In the first step, uncertain parameters of the inventory system, such as demand, lead time, and 
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costs, are modeled using DFS. DFS leverage deep neural networks to capture complex 

dependencies and non-linear relationships within the fuzzy parameters. Demand is represented 

as Deep Fuzzy Sets, allowing for more accurate and flexible demand forecasting. Similarly, 

lead time uncertainty and imprecise cost parameters are modeled using appropriate DFS 

techniques. 

Next, a Deep Fuzzy Inventory Model is developed to simulate the behavior of the inventory 

system. The model incorporates deep learning techniques to improve demand forecasting 

accuracy, determine optimal reorder points, and optimize inventory control policies. The 

integration of DFS enables the model to handle uncertainties and non-linear dynamics more 

effectively, leading to more informed and optimal inventory decisions. 

To minimize the total cost, Deep Fuzzy Optimization is applied in the third step. The inventory 

policy that minimizes the cost is identified by considering the fuzzy inputs and constraints. 

Deep Fuzzy Optimization algorithms are utilized to solve the optimization problem, leveraging 

the capabilities of DFS and deep learning techniques. 

3.1 Modeling Uncertain Parameters with Deep Fuzzy Sets 

Deep Fuzzy Sets (DFS) extend traditional fuzzy sets by leveraging deep learning techniques 

to capture complex relationships and non-linear patterns within uncertain parameters. DFS 

utilize deep neural networks to represent fuzzy membership functions, enabling the modeling 

of intricate dependencies in inventory management. 

To model demand as a Deep Fuzzy Set, we employ a deep neural network to learn the fuzzy 

membership function. Let D(x) denote the demand at time x, and D̂(x) represent the estimated 

demand. The fuzzy membership degree, denoted as μ(D(x)), is computed by the deep neural 

network based on historical demand data and other relevant factors. The fuzzy membership 

function captures the uncertainty and non-linearities in demand patterns, providing a more 

accurate representation. 

Lead time uncertainty is a critical factor in inventory management. To model lead time as a 

Deep Fuzzy Set, we utilize a deep neural network to learn the fuzzy membership function. Let 

LT(x) represent the lead time at time x, and LT̂(x) denote the estimated lead time. The fuzzy 

membership degree, denoted as μ(LT(x)), is computed by the deep neural network based on 

historical lead time data and relevant variables. The deep neural network captures the complex 

relationships and non-linear dynamics in lead time uncertainty, enabling accurate 

representation within the Deep Fuzzy Sets framework. 

Deep Fuzzy Sets for Capturing Imprecise Cost Parameters 

Imprecise cost parameters, such as holding costs, ordering costs, and shortage costs, can 

significantly impact inventory costs. Deep Fuzzy Sets provide a means to capture and model 

the imprecision in these cost parameters. Let C(x) represent the cost at time x, and Ĉ(x) denote 

the estimated cost. The deep neural network learns the fuzzy membership function, μ(C(x)), 

based on historical cost data and other relevant factors. The fuzzy membership degree 

represents the uncertainty and non-linear relationships in cost parameters, facilitating accurate 

modeling within the Deep Fuzzy Sets framework. 

By employing deep neural networks to learn the fuzzy membership functions, the Deep Fuzzy 
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Sets approach enables the modeling of uncertain parameters in inventory management. These 

Deep Fuzzy Sets capture complex relationships, non-linear dynamics, and imprecisions in 

demand, lead time, and cost parameters, enhancing the accuracy and effectiveness of inventory 

cost estimation and optimization. 

3.2 Development of the Deep Fuzzy Inventory Model 

The development of the Deep Fuzzy Inventory Model involves integrating Deep Fuzzy Sets 

(DFS) with deep learning techniques to simulate the behavior of the inventory system and 

optimize inventory control decisions. This section outlines the key components and steps 

involved in developing the model. 

3.2.1 Deep Fuzzy Inventory Model 

The Deep Fuzzy Inventory Model combines the principles of fuzzy logic and deep learning to 

improve accuracy and effectiveness in inventory management. The model considers uncertain 

parameters represented by Deep Fuzzy Sets, including demand, lead time, and cost. It 

incorporates deep learning techniques to enhance demand forecasting, determine optimal 

reorder points, and optimize inventory control policies. It consists of several key components, 

each contributing to the accuracy and effectiveness of the model. The following overview 

provides a high-level description of the model's components and their integration. 

Deep learning models, such as recurrent neural networks (RNNs) or long short-term memory 

(LSTM) networks, are employed to enhance demand forecasting within the Deep Fuzzy 

Inventory Model. The model leverages the temporal dependencies and non-linear patterns 

captured by these techniques to generate accurate demand forecasts. The deep learning model 

can be represented as: 

D̂(x) = F(𝐱) 

where D̂(x) represents the estimated demand at time x, 𝐱 denotes the input features, and F(𝐱) 

represents the deep learning model's output. 

Reorder Point Determination using Deep Fuzzy Sets: 

The Deep Fuzzy Inventory Model utilizes Deep Fuzzy Sets to represent and model uncertain 

parameters, such as demand and lead time, in determining the optimal reorder point. The Deep 

Fuzzy Sets capture the uncertainties and non-linearities in these parameters. The reorder point 

can be calculated using a fuzzy logic-based approach: 

Reorder Point = g(μ(D(x)), μ(LT(x))) 

where μ(D(x)) and μ(LT(x)) represent the membership degrees of the demand and lead time 

in their respective Deep Fuzzy Sets, and g() represents the fuzzy logic function. 

Inventory Control Policy Optimization: 

The Deep Fuzzy Inventory Model aims to optimize inventory control policies, such as dynamic 

reorder points, safety stock levels, and order quantities, to minimize total inventory costs. The 

optimization process considers the uncertain parameters represented by Deep Fuzzy Sets and 

aims to find the policy that minimizes the total cost function: 

Total Cost = f(Inventory Policy) 
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where f() represents the cost function that incorporates factors such as holding costs, ordering 

costs, and shortage costs. 

By integrating these components, the Deep Fuzzy Inventory Model provides a comprehensive 

framework for accurate demand forecasting, optimal reorder point determination, and 

inventory control policy optimization. The model combines the strengths of deep learning 

techniques and fuzzy logic, enabling more effective decision-making in inventory 

management. 

Total Cost Minimization 

Deep Fuzzy Optimization is employed within the Deep Fuzzy Inventory Model to identify the 

inventory policy that minimizes the total cost. This optimization process considers the 

uncertain parameters represented by Deep Fuzzy Sets and aims to find the optimal policy that 

achieves cost minimization. The following elaboration provides a closer look at the Deep 

Fuzzy Optimization process, including relevant equations. 

Deep Fuzzy Optimization combines the principles of optimization algorithms with the 

flexibility of Deep Fuzzy Sets to handle uncertainties and non-linearities. It explores the search 

space of inventory control policies, seeking the policy that results in the minimum total cost. 

Deep Fuzzy Optimization employs techniques such as genetic algorithms, particle swarm 

optimization, or evolutionary algorithms to perform the search. 

Formulation of the Cost Minimization Problem 

The cost minimization problem within the Deep Fuzzy Optimization framework can be 

formulated as follows: 

Minimize: Total Cost = f(Inventory Policy) 

Subject to: Constraints on inventory policy variables 

The objective function, Total Cost, represents the overall cost incurred by the inventory 

system, which includes components such as holding costs, ordering costs, and shortage costs. 

The specific formulation of the objective function, f(), will depend on the characteristics and 

requirements of the inventory system being analyzed. 

Constraints are imposed on the inventory policy variables to ensure feasibility and adherence 

to operational requirements. These constraints may include inventory level constraints, service 

level requirements, or limitations on order quantities. 

In the context of Deep Fuzzy Optimization, recurrent neural networks (RNNs) can be 

employed as a deep learning technique to enhance the accuracy of demand forecasting. RNNs 

are particularly effective in capturing temporal dependencies and non-linear patterns in 

sequential data, making them well-suited for modeling and predicting demand in inventory 

management. Here are some equations that demonstrate the usage of RNNs in the Deep Fuzzy 

Optimization algorithm: 

Demand Forecasting with RNN: 

RNNs process sequential data by maintaining a hidden state that captures information from 

previous time steps. Let D(x) represent the demand at time x, and D̂(x) denote the estimated 
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demand. The RNN can be defined as follows: 

h(x) = RNN(D(x), h(x-1)) 

D̂(x) = OutputLayer(h(x)) 

where h(x) represents the hidden state of the RNN at time x, and RNN() represents the 

recurrent neural network function. The OutputLayer() computes the output based on the 

hidden state, which provides the estimated demand D̂(x) at time x. 

Fuzzy Membership Functions for Demand: 

To capture the uncertainties in demand, fuzzy membership functions can be used. Let μ(D(x)) 

represent the membership degree of the demand at time x in the Deep Fuzzy Set. The 

membership degree can be determined based on the estimated demand D̂(x) obtained from the 

RNN: 

μ(D(x)) = FuzzyMembership(D̂(x)) 

where FuzzyMembership() computes the membership degree based on the estimated demand. 

Deep Fuzzy Optimization Algorithm: 

The Deep Fuzzy Optimization algorithm incorporates the fuzzy membership degrees and 

constraints to guide the search for the optimal inventory policy. Let TC denote the total cost, 

and 𝐱 represent the decision variables of the inventory policy. The objective function can be 

expressed as: 

TC = f(𝐱, μ(D(x)), μ(LT(x)), ...) 

where f() represents the cost function that considers the fuzzy membership degrees of demand 

(μ(D(x))), lead time (μ(LT(x))), and other relevant parameters. 

Fuzzy Logic Operations: 

Fuzzy logic operations, such as fuzzy intersection (∩) and fuzzy union (∪), can be utilized 

within the Deep Fuzzy Optimization algorithm to combine and manipulate the fuzzy 

membership degrees. These operations enable reasoning and decision-making based on the 

uncertain parameters. 

Deep Fuzzy Sets play a crucial role in solving the optimization problem within the Deep Fuzzy 

Inventory Model. Uncertain parameters, such as demand and lead time, are represented by 

Deep Fuzzy Sets, allowing for the incorporation of uncertainty in the objective function and 

constraints. 

The optimization algorithm iteratively evaluates the objective function and constraints using 

fuzzy logic operations, membership degrees, and the deep learning models' outputs. Through 

iterative optimization, the algorithm gradually converges towards the inventory policy that 

minimizes the total cost while accounting for the uncertainties and non-linearities represented 

by the Deep Fuzzy Sets. 

By leveraging Deep Fuzzy Optimization, the Deep Fuzzy Inventory Model achieves cost 

minimization while considering the uncertainties and complexities of inventory management. 

The utilization of Deep Fuzzy Sets allows for the representation of uncertain parameters, 
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enabling accurate and effective optimization. 

Genetic Algorithm: 

The genetic algorithm is employed to solve the optimization problem. It involves the following 

steps: 

a. Initialization: Generate an initial population of potential solutions (individuals) for the 

decision variables. 

b. Fitness Evaluation: Evaluate the fitness of each individual in the population based on the 

objective function. This involves computing the total cost using the fuzzy membership degrees 

and decision variables. 

c. Selection: Select individuals from the population to form the parent population for the next 

generation. The selection process is based on the fitness of the individuals, with fitter 

individuals having a higher chance of being selected. 

d. Crossover: Perform crossover operations on selected individuals to create offspring for the 

next generation. This involves combining the genetic information of the selected individuals 

to generate new solutions. 

e. Mutation: Introduce random changes in the offspring's genetic information to promote 

exploration of the solution space. This helps in maintaining diversity and prevents premature 

convergence to suboptimal solutions. 

f. Fitness Evaluation: Evaluate the fitness of the offspring population using the objective 

function. 

g. Replacement: Select individuals from the parent and offspring populations to form the new 

generation. This involves replacing less fit individuals with fitter ones. 

h. Termination: Repeat steps b to g for a certain number of iterations or until a termination 

condition is met (e.g., reaching a maximum number of generations or achieving a desired level 

of improvement). 

Constraints: 

Inventory management problems often involve constraints that must be satisfied. These 

constraints can be expressed using fuzzy membership functions. For example, a constraint on 

the minimum service level can be represented as: 

μ(Service Level ≥ SL_min) 

where μ(Service Level ≥ SL_min) denotes the membership degree of the constraint being 

satisfied. 

By incorporating a genetic algorithm into the optimization process, the Deep Fuzzy Sets 

framework allows for exploration and convergence towards the optimal inventory policy. The 

algorithm leverages fuzzy membership degrees, fuzzy logic operations, and genetic operations 

(selection, crossover, and mutation) to iteratively improve the population of solutions, 

ultimately minimizing the total cost while satisfying the constraints. 
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Input:  

- Historical inventory data 

- Uncertain parameters: demand, lead time, costs, etc. 

Output: 

- Optimal inventory policy 

- Total cost 

Procedure DeepFuzzyOptimization(): 

   Initialize decision variables 𝐱 

   Initialize fuzzy membership degrees for uncertain parameters 

   while not convergence_criteria_met do: 

      Update fuzzy membership degrees based on current decision variables 

      Evaluate total cost using the fuzzy membership degrees and decision variables 

      Update decision variables based on fuzzy logic and optimization algorithm 

   return Optimal inventory policy, Total cost 

Procedure DemandForecasting(): 

   Train RNN model on historical demand data 

   for each time step x do: 

      Estimate demand D̂(x) using the trained RNN model 

      Compute fuzzy membership degree μ(D(x)) for demand based on D̂(x) 

   return Fuzzy membership degrees μ(D(x)) 

Procedure ReorderPointDetermination(): 

   Compute fuzzy membership degree μ(LT(x)) for lead time 

   Compute optimal reorder point using fuzzy logic and relevant constraints 

   return Fuzzy membership degree μ(RP(x)) 

Procedure DeepFuzzyInventoryModel(): 

   Call DemandForecasting() to obtain fuzzy membership degrees for demand 

   Call ReorderPointDetermination() to obtain fuzzy membership degrees for reorder point 

   Implement inventory control policies based on fuzzy membership degrees and 

optimization algorithm 

   return Optimal inventory policy, Total cost 

Main(): 



                          Estimating and Optimizing Total Cost in Inventory…M. Reehana Parveen et al. 2012  
   

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

   Call DeepFuzzyInventoryModel() to obtain Optimal inventory policy, Total cost 

   Display Optimal inventory policy and Total cost 

 

4. Implementation and Evaluation 

To evaluate the performance of the proposed Deep Fuzzy Inventory Model, real-world 

inventory data is selected. The data should include historical demand, lead time, and cost 

information, as well as relevant parameters for inventory management. 

The Deep Fuzzy Inventory Model is implemented based on the proposed methodology. This 

involves developing the necessary algorithms, equations, and programming code to integrate 

deep learning technique. Deep learning frameworks, such as PyTorch is utilized to implement 

the deep neural networks and training processes. Fuzzy logic libraries isemployed to handle 

the Deep Fuzzy Sets and fuzzy operations. 

Performance Evaluation Metrics: 

Performance evaluation metrics are selected to assess the accuracy and effectiveness of the 

Deep Fuzzy Inventory Model. Common metrics for inventory management include forecasting 

accuracy measures (e.g., mean absolute percentage error, root mean squared error) for demand 

forecasting, as well as metrics related to cost optimization (e.g., total cost reduction 

percentage). These metrics provide quantitative measures to compare the performance of the 

Deep Fuzzy Inventory Model against traditional approaches. 

Comparative Analysis with Traditional Approaches: 

The Deep Fuzzy Inventory Model is compared with traditional inventory management 

approaches to evaluate its performance. This involves implementing and applying traditional 

methods, such as the Economic Order Quantity (EOQ) model or the Reorder Point (ROP) 

model, using the same real-world inventory data. The performance metrics are then calculated 

and compared between the Deep Fuzzy Inventory Model and the traditional approaches to 

determine the model's superiority in terms of accuracy and cost optimization. 

The figure 2 shows the MAPE values for 10 different inventory datasets comparing the 

existing EOQ and ROP methods with the proposed Deep Fuzzy Inventory Model: 
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Figure 2: MAPE 

In the figure 2, each dataset represents a unique inventory scenario, and the MAPE values are 

calculated for each method (EOQ, ROP, Deep Fuzzy). Lower MAPE values indicate higher 

accuracy in demand forecasting. The table demonstrates the comparative performance of the 

three approaches in terms of demand forecasting accuracy for the given inventory datasets. 

The Deep Fuzzy Inventory Model consistently outperforms the EOQ and ROP methods, 

showing lower MAPE values and thereby suggesting its superior accuracy in demand 

forecasting. 

Figure 3 shows the root mean squared error (RMSE) values for 10 different inventory datasets 

comparing the existing EOQ and ROP methods with the proposed Deep Fuzzy Inventory 

Model: 

 

Figure 3: RMSE 
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In figure 3, each dataset represents a unique inventory scenario, and the RMSE values are 

calculated for each method (EOQ, ROP, Deep Fuzzy). Lower RMSE values indicate higher 

accuracy in demand forecasting. The table demonstrates the comparative performance of the 

three approaches in terms of demand forecasting accuracy for the given inventory datasets. 

The Deep Fuzzy Inventory Model consistently exhibits lower RMSE values compared to the 

EOQ and ROP methods, indicating its superior accuracy in demand forecasting. 

Figure 4 shows the total cost reduction percentage for 10 different inventory datasets 

comparing the existing EOQ and ROP methods with the proposed Deep Fuzzy Inventory 

Model: 

 

Figure 4: Cost Reduction in % 

In Figure 4, each dataset represents a unique inventory scenario, and the cost reduction 

percentage is calculated for each method (EOQ, ROP, Deep Fuzzy) compared to a baseline 

cost. Higher cost reduction percentages indicate more significant savings in total inventory 

costs. The table demonstrates the comparative performance of the three approaches in terms 

of cost optimization for the given inventory datasets. The Deep Fuzzy Inventory Model 

consistently shows higher cost reduction percentages compared to the EOQ and ROP methods, 

indicating its effectiveness in optimizing total costs and achieving significant cost reductions. 

 

5. Conclusion 

The proposed Deep Fuzzy Inventory Model has demonstrated its effectiveness in improving 

inventory management and cost optimization compared to traditional methods such as the 

EOQ and ROP models. The evaluation results highlight the advantages of the Deep Fuzzy 

Inventory Model in terms of forecasting accuracy, cost reduction, and overall performance. In 

terms of demand forecasting accuracy, the Deep Fuzzy Inventory Model outperformed the 

EOQ and ROP models with an MAPE reduction of approximately 20%. The deep learning 

techniques employed, such as RNNs, allowed the model to capture complex patterns and 
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temporal dependencies in the historical demand data, leading to more accurate demand 

forecasts. The Deep Fuzzy Inventory Model also demonstrated superior cost optimization 

capabilities. The average total cost reduction percentage achieved by the Deep Fuzzy 

Inventory Model was approximately 20% higher compared to the EOQ and ROP models. By 

leveraging fuzzy logic principles and Deep Fuzzy Sets, the model effectively handled 

uncertainties and non-linearities in demand, lead time, and cost parameters, resulting in more 

informed and optimized inventory control decisions. The significant improvements achieved 

by the Deep Fuzzy Inventory Model showcase its potential for practical implementation in 

real-world inventory management scenarios. The model offers decision-makers the 

opportunity to reduce inventory costs while maintaining service levels, leading to improved 

operational efficiency and profitability. 
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