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The DoubleZero wiper, a recent malware threat associated with the Russia-Ukraine cyber activity, 

has drawn significant attention for its unique approach to file destruction and obfuscation 

techniques. This paper introduces an AI-based solution designed to detect the maliciousness of 

.NET samples, leveraging structural analysis of PE and .NET file attributes combined with machine 

learning techniques. By highlighting key differences in the detection challenges posed by .NET and 

PE file structures, we propose advanced feature engineering methods and evaluate their efficacy in 

detecting DoubleZero-like threats. Our findings demonstrate the potential for generalized detection 

of .NET malware, paving the way for robust threat prevention mechanisms. 
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1. Introduction 

The escalation of cyber threats has paralleled the rapid evolution of digital ecosystems, with 

malware attacks emerging as a particularly insidious facet of this threat landscape. Among the 

myriad types of malware, wipers occupy a unique niche due to their destructive intent, which 

often seeks to irreversibly erase data and disrupt critical infrastructure. Recent geopolitical 

conflicts, particularly the Russia-Ukraine war, have underscored the strategic deployment of 

such malware to compromise national security and economic stability. The DoubleZero wiper, 

a .NET-based malware, exemplifies this trend and highlights the challenges of detecting and 

mitigating wipers within complex IT environments. 

The DoubleZero wiper’s distinct architecture and operational methodology underscore the 

rising prominence of .NET malware. Leveraging the rich ecosystem of the .NET framework, 

threat actors are increasingly adopting this platform to craft sophisticated payloads that evade 

traditional detection mechanisms. Unlike conventional wipers that employ brute-force tactics 

to damage Master Boot Records (MBRs) or partitions, DoubleZero targets specific file 

structures, erasing initial segments to render files unusable while maintaining operational 

stealth. These characteristics necessitate the development of specialized detection frameworks 

capable of addressing .NET-specific nuances. 

http://www.nano-ntp.com/
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The detection of .NET malware poses unique challenges due to its reliance on Common 

Intermediate Language (CIL) bytecode and metadata-heavy architecture. Traditional 

signature-based approaches fall short in capturing the dynamic and obfuscated nature of .NET 

threats. Consequently, the integration of advanced machine learning techniques offers a 

promising avenue for detecting such sophisticated threats. By combining structural analysis of 

Portable Executable (PE) files with deep insights into .NET-specific attributes, machine 

learning models can identify malicious patterns and behaviors that are otherwise obscured by 

obfuscation techniques. 

This paper explores an AI-driven approach to detecting the DoubleZero wiper, emphasizing 

the role of feature engineering in extracting meaningful insights from .NET malware. By 

delineating the fundamental differences between .NET and traditional PE malware, we 

propose a machine learning framework designed to detect the unique characteristics of .NET-

based threats. The research not only highlights the efficacy of the proposed method in detecting 

DoubleZero but also extends its applicability to the broader domain of .NET malware, thereby 

contributing to the advancement of cybersecurity practices. 

Background 

The DoubleZero Wiper 

First revealed by Ukraine CERT in March 2022, the DoubleZero wiper epitomizes the 

advanced destructive capacities of .NET-based malware. Implemented in C#, this wiper 

employs sophisticated obfuscation techniques to elude detection mechanisms and 

systematically targets file systems through specialized drivers. Its distinctive modus 

operandi—such as circumventing Master Boot Record (MBR) corruption and terminating 

critical processes like lsass—sets it apart from other wipers in the malware landscape. 

In comparison to HermeticWiper and IsaacWiper, DoubleZero adopts a more focused 

approach by exclusively erasing the initial 4096 bytes of targeted files. For instance, 

HermeticWiper leverages MBR corruption to render entire systems unbootable, while 

IsaacWiper indiscriminately wipes entire disk partitions. These operational distinctions 

highlight DoubleZero’s emphasis on precision and expedience in data obliteration. 

The evolution of .NET malware underscores its increasing attractiveness to threat actors, 

driven by the .NET framework’s extensive capabilities and widespread adoption. Introduced 

in 2002, the framework offers a robust library ecosystem for executing system-level 

operations, simultaneously serving as a boon for developers and an exploitable avenue for 

malicious activities. Exemplars such as Gamut and Agent Tesla demonstrate the framework’s 

adaptability for obfuscation and payload dissemination, creating a fertile ground for advanced 

threats like DoubleZero to emerge. 

Challenges in .NET Malware Detection 

Conventional malware detection methodologies, which primarily rely on the analysis of 

Portable Executable (PE) file attributes, frequently fall short in addressing the intricate 

metadata and structural nuances of .NET files. This shortfall necessitates the development of 

advanced machine learning models explicitly designed to exploit .NET-specific 

characteristics, including: 
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• Attributes of the Cor20 header. 

• Metadata tables encompassing modules and methods. 

• Invocation of unmanaged API functions. 

Unlike traditional PE files, .NET malware encodes its functionality in Common Intermediate 

Language (CIL) bytecode, significantly complicating detection strategies predicated on static 

signatures. Furthermore, obfuscation techniques commonly employed in .NET malware—

such as control flow flattening, dynamic string decryption, and interleaving irrelevant code—

further exacerbate the challenges of effective detection. 

 

Fig. 1: Structure of a .NET file 
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Fig. 2: Structures from components of .NET and the data held by them 

By integrating machine learning approaches that account for these idiosyncrasies, the detection 

of .NET malware can transition from reactive reliance on known signatures to a proactive 

analysis of structural and behavioral patterns. This paradigm shift is critical in addressing the 

dynamic and evolving threat landscape exemplified by DoubleZero and similar malware 

entities.  

 

2. Research Methodology  

To accurately detect DoubleZero and similar .NET malware, a meticulously crafted 

methodology combining structural analysis and advanced machine learning is essential. Our 

proposed methodology is detailed as follows: 

Dataset Construction and Preprocessing 

1. Sample Collection: A balanced dataset of benign and malicious .NET samples was 

curated. Sources included open repositories, threat intelligence databases, and custom-
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generated obfuscated malware. 

o Malicious samples included known wipers, such as DoubleZero and HermeticWiper, 

to ensure comprehensive representation. 

o Benign samples were sourced from popular .NET applications. 

2. Feature Extraction: Extracting both PE and .NET-specific attributes: 

o PE File Attributes: Headers, imports, section entropy, and size. 

o .NET-Specific Features: Metadata tables, Cor20 headers, CIL bytecode patterns, and 

references to unmanaged API calls. 

 

Fig. 3: Process flow diagram for feature extraction 

o Obfuscation Normalization: Employing reverse engineering and de-obfuscation 

techniques to standardize heavily obfuscated samples. 

Machine Learning Model Design 

1. Feature Engineering: Enhancing the raw dataset with derived features, such as: 

o API sequence patterns. 

o Metadata entropy. 

o Frequency of unmanaged calls. 

2. Model Selection and Training: 

o Chosen classifiers: Gradient Boosting, Random Forest, and Deep Neural Networks. 

o Imbalanced dataset techniques: Synthetic Minority Oversampling Technique 

(SMOTE) to balance the dataset. 

o Metrics: Precision, recall, and F1-score were prioritized to evaluate performance. 
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Fig. 4: Process flow diagram for the model 

Model Explainability 

To ensure the reliability of predictions, SHAP (SHapley Additive exPlanations) values were 

used: 

o Highlighting influential features for each prediction. 

o Ensuring insights into false positives or negatives. 

 

Fig. 5: Overview of our detection workflow 
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Performance Optimization 

1. Low-Latency Inference: 

o Preloading metadata parsing for real-time detection. 

o Optimizing models for edge deployment. 

2. Evaluation Framework: 

o Testing with unseen samples to validate generalization. 

o Stress-testing against heavily obfuscated variants to assess robustness. 

Deployment Strategy 

1. Integration with Existing Security Systems: 

o Embedding within Cortex XDR for enterprise-level application. 

o Compatibility with open-source tools for broader adoption. 

2. Real-Time Monitoring: 

o Deploying lightweight agents for continuous scanning. 

o Centralized dashboards for anomaly tracking. 

This meticulous approach ensures that the detection framework is both robust and scalable, 

capable of addressing the dynamic threat posed by modern .NET malware. 

 

3. Experimental Rules 

The experimental results were conducted to assess the performance, robustness, and 

applicability of the proposed AI-based detection framework. These experiments were 

meticulously designed to evaluate the model across multiple dimensions, including accuracy, 

resilience to obfuscation, and real-world scalability. 

Dataset Composition and Preprocessing 

The dataset was curated from multiple sources, ensuring a diverse representation of both 

benign and malicious .NET samples. A total of 75,000 samples were used, categorized as: 

o Benign Samples: 50,000 samples sourced from popular .NET applications and 

libraries. 

o Malicious Samples: 25,000 samples encompassing wipers (e.g., DoubleZero, 

HermeticWiper), ransomware, spyware, and backdoors. 

A key aspect of preprocessing was obfuscation normalization, where advanced reverse 

engineering techniques were applied to mitigate the effects of code obfuscation and string 

encryption. The dataset was split into training, validation, and testing sets in a 70:20:10 ratio. 

Performance Metrics 

To thoroughly evaluate the model, the following metrics were employed: 
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o Accuracy: The overall percentage of correctly classified samples. 

o Precision: The ratio of true positives to the sum of true and false positives, indicating 

specificity. 

o Recall (Sensitivity): The ratio of true positives to all actual positives, measuring 

completeness. F1-Score: The harmonic mean of precision and recall. 

o Latency: Average detection time per sample 

Model Evaluation Results 

The Gradient Boosting classifier emerged as the optimal model, achieving: 

o Accuracy: 97.2% 

o Precision: 96.4% 

o Recall: 95.8% F1-Score: 96.1% 

o Average Latency: 0.9 seconds/sample 

When benchmarked against Random Forest and Deep Neural Networks, Gradient Boosting 

demonstrated superior interpretability and a marginally higher F1-Score, making it the 

preferred choice for deployment. 

Obfuscation Resilience 

To test robustness, heavily obfuscated versions of DoubleZero and similar malware were 

introduced. Techniques such as control flow flattening, dynamic string generation, and code 

interleaving were applied. Despite these challenges, the model maintained an accuracy of 

93.5% and an F1-Score of 92.7%, underscoring its resilience to adversarial techniques. 

Scalability Tests 

The model was evaluated for scalability across: 

o Larger Datasets: Processing 250,000 samples resulted in a marginal latency increase 

to 1.2 seconds/sample. 

o Real-Time Applications: Deployment in a simulated network environment 

demonstrated consistent performance with real-time alerts generated within 1.5 seconds of 

sample submission. 

 

4. Case Study: Double Zero Detection 

The DoubleZero wiper served as an ideal candidate for evaluating the practical efficacy of the 

AI-based detection framework. This section provides a detailed analysis of its detection, the 

unique behaviors exhibited by the malware, and its implications for real-world cybersecurity. 

Detection Characteristics 

The framework leveraged specific attributes of the DoubleZero wiper to ensure effective 

detection. Key distinguishing characteristics included: 
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o API Invocation Patterns: DoubleZero makes extensive use of unmanaged APIs such 

as ntdll.NtOpenFile , kernel32.GetLastError , and user32.ExitWindowsEx . These patterns are 

not commonly observed in benign .NET applications, making them critical indicators of 

malicious intent. 

o Metadata Analysis: The Cor20 header and metadata fields exhibited unusually high 

entropy, indicating obfuscation. This was coupled with frequent access to privileged metadata 

such as assembly references and method definitions, further differentiating it from legitimate 

applications. 

o String Analysis: Despite employing obfuscation techniques, the malware left certain 

file paths and regular expressions as plaintext. This oversight provided valuable insights into 

its operational intent and target directories. 

Behavioral Analysis 

Behavioral analysis of DoubleZero highlighted several tactics, techniques, and procedures 

(TTPs) used to achieve its destructive goals. These include: 

o Destructive Intent: 

o The wiper utilized the FSCTL_SET_ZERO_DATA function to overwrite file 

segments with zero bytes, rendering them unusable. 

o Instead of encrypting files (as ransomware does), it targeted the first 4096 bytes of 

each file, prioritizing speed and irreversibility. 

o Privilege Escalation: 

o The malware repeatedly invoked specific privileges such as 

SeTakeOwnershipPrivilege (to bypass file ownership protections) and SeShutdownPrivilege 

(to initiate system shutdown post-destruction).  

o These privileges are granted to administrative processes, underscoring the malware’s 

intent to operate with elevated permissions.  

o Process Termination: 

o DoubleZero targeted critical processes, notably lsass, which is integral to Windows 

authentication mechanisms. Terminating this process disrupts system integrity and further 

hinders recovery efforts 

Real-Time Detection Performance 

The framework’s integration into a simulated enterprise environment provided critical insights 

into its practical applicability: 

o Latency: 

o The average detection latency was measured at 1.1 seconds/sample, ensuring real-time 

responsiveness in high-throughput systems.  

o Detection Accuracy: 

o Over 500 simulated trials, the model achieved a 100% detection rate with zero false 
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negatives, validating its robustness and reliability.  

o Scalability: 

o The system processed up to 10,000 concurrent samples with negligible performance 

degradation, demonstrating its suitability for deployment in large-scale environments. 

Implications for Cybersecurity 

The DoubleZero case study underscores several critical considerations for modern 

cybersecurity strategies: 

o Feature Engineering: The success of the detection framework highlights the 

importance of comprehensive feature extraction, particularly for metadata and API usage 

patterns in .NET malware. 

o Obfuscation Resilience: Despite the malware’s use of obfuscation techniques, the 

framework’s ability to identify behavioral patterns proved instrumental in maintaining high 

detection accuracy. 

o Real-Time Applications: The system’s low latency and scalability make it a practical 

solution for enterprise-level threat monitoring and response. 

 

5. Discussion 

The results of this study demonstrate a robust and scalable AI-driven framework tailored to 

the challenges posed by detecting .NET malware, specifically the DoubleZero wiper. In this 

section, we delve deeply into the implications of these findings, explore the broader 

applicability of the methodology, highlight the limitations observed during testing, and 

propose future avenues for enhancement. 

Strengths of the Framework 

1. High Detection Accuracy Across Diverse Threats 

The framework achieved an overall accuracy of 97.2%, showcasing its effectiveness across a 

broad spectrum of .NET malware types, including wipers, ransomware, and spyware. This 

performance is attributed to the following key factors: 

o Comprehensive Feature Engineering: The integration of both PE and .NET-specific 

attributes allowed the model to capture subtle variations in metadata, API usage, and structural 

anomalies that distinguish malicious samples from benign ones. 

o Robust Classifier Selection: The Gradient Boosting algorithm provided a high balance 

of accuracy and interpretability, allowing security analysts to derive actionable insights from 

model predictions. 

2. Resilience to Obfuscation 

Malware obfuscation remains a significant barrier to static analysis methods. By employing 

advanced feature extraction techniques, such as entropy analysis of Cor20 headers and 

sequence analysis of unmanaged API calls, the framework effectively mitigated the impact of 
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common obfuscation strategies, maintaining over 93% accuracy in heavily obfuscated 

samples. 

3. Real-Time Detection Capability 

The average latency of 1.1 seconds per sample ensures that the system can be deployed in real-

time environments without compromising performance. This capability is crucial for 

enterprise cybersecurity applications, where immediate detection and response are critical to 

mitigating the impact of malware. 

Limitations of the Framework 

Despite its strengths, the proposed methodology exhibits certain limitations that warrant 

discussion: 

1. Dependence on Prior Knowledge 

The framework relies heavily on labelled datasets for training and validation. While it 

performed well against known threats, its ability to detect zero-day malware remains 

constrained. This limitation is inherent to supervised learning models, which lack the adaptive 

capabilities required to identify entirely novel threats. 

2. Platform-Specific Focus 

The methodology is specifically tailored to .NET malware and may not generalize seamlessly 

to other ecosystems such as Java or Python. Expanding the framework to support cross-

platform detection would require re-engineering feature extraction and model design to 

accommodate the unique attributes of each programming environment. 

3. Resource Intensity in Large-Scale Deployments 

While the model scaled effectively in simulated environments, the computational overhead 

associated with deep feature extraction and model inference may become a bottleneck in 

environments processing millions of samples daily. Optimization techniques, such as model 

quantization and distributed processing, could alleviate this challenge 

Implications for Cybersecurity 

1. Proactive Malware Detection 

The incorporation of behavioral features such as unmanaged API calls and privilege escalation 

patterns shifts the focus from reactive, signature-based detection to a more proactive approach. 

This paradigm shift is critical in addressing the rapidly evolving threat landscape, where 

attackers frequently modify signatures to evade traditional defenses. 

2. Enhanced Threat Intelligence 

By leveraging explainable AI techniques, such as SHAP (SHapley Additive exPlanations) 

values, the framework not only detects malware but also provides valuable insights into its 

operation. This capability enables cybersecurity teams to develop more targeted and effective 

countermeasures, strengthening organizational defences. 
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3. Enterprise-Scale Integration 

The framework’s compatibility with real-time monitoring tools and its low latency make it 

well suited for integration into existing security information and event management (SIEM) 

systems. This facilitates seamless adoption in enterprise environments, reducing the 

operational overhead associated with manual malware analysis. 

Future Directions 

1. Adaptive Learning for Zero-Day Detection 

Integrating reinforcement learning or semi-supervised learning techniques could enhance the 

framework’s ability to identify zero-day threats. By continuously updating its knowledge base 

with insights derived from new samples, the model could adapt to evolving malware tactics. 

2. Cross-Platform Expansion 

Extending the methodology to other programming ecosystems, such as Python and Java, 

would significantly broaden its applicability. This would involve developing platform-specific 

feature extractors and retraining the detection models to accommodate the nuances of each 

environment. 

3. Federated Learning for Collaborative Defence 

Implementing federated learning could enable organizations to share threat intelligence 

without compromising data privacy. This approach would facilitate the creation of a more 

comprehensive global threat detection system, capable of identifying patterns across diverse 

organizational datasets. 

4. Integration of Dynamic Analysis 

While the current framework focuses on static analysis, incorporating dynamic analysis 

techniques, such as monitoring runtime behaviors in sandbox environments, could enhance its 

detection capabilities. This hybrid approach would provide a more holistic understanding of 

malware operations. 

5. Computational Efficiency 

Optimizing the framework for large-scale deployments through techniques such as model 

quantization, GPU acceleration, and distributed inference pipelines would address resource 

constraints and ensure scalability in high-throughput environments. 

Broader Implications for Cybersecurity Research 

The success of this framework highlights the potential of AI-driven solutions in addressing the 

complexities of modern malware detection. It underscores the importance of interdisciplinary 

collaboration, combining expertise in machine learning, cybersecurity, and software 

engineering to develop innovative solutions for emerging challenges. Moreover, it provides a 

blueprint for future research in adapting machine learning methodologies to the unique 

requirements of cybersecurity applications. 
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6. Conclusion 

This research presents a sophisticated, AI-driven framework for detecting .NET malware, with 

a particular focus on addressing the unique challenges posed by the DoubleZero wiper. 

Through the integration of advanced machine learning techniques, extensive feature 

engineering, and structural analysis of .NET files, the framework has demonstrated a 

significant capability to detect and mitigate modern malware threats. This conclusion distils 

the critical findings, contributions, and potential impacts of the study, while highlighting 

avenues for future exploration. 

Key Findings 

1. High Detection Accuracy 

The framework achieved a detection accuracy of 97.2%, underscoring its effectiveness in 

identifying a wide array of .NET malware, including obfuscated and highly complex samples. 

By leveraging both static and behavioral features, the model outperformed traditional detection 

methods reliant on signature-based or solely static analysis approaches. 

2. Robustness to Obfuscation 

Obfuscation techniques are a staple in modern malware development, aimed at evading 

conventional detection systems. This study demonstrated that advanced feature engineering—

including entropy analysis, API invocation patterns, and metadata extraction—can 

significantly mitigate the impact of these techniques. The framework maintained a detection 

accuracy of 93.5% even against heavily obfuscated variants, marking a substantial step 

forward in malware resilience. 

3. Real-Time Applicability 

Incorporating real-time capabilities into malware detection systems is essential for mitigating 

threats in dynamic enterprise environments. The proposed model achieved a latency of 1.1 

seconds per sample, validating its readiness for deployment in high-throughput systems. 

Realtime detection was further enhanced through optimization of feature extraction pipelines 

and computational overhead. 

Contributions to Cybersecurity 

1. Proactive Detection Paradigm 

The transition from reactive, signature-based methods to a proactive detection paradigm is one 

of the most significant contributions of this study. By focusing on behavioral and structural 

attributes, the framework sets a new standard for addressing emerging malware tactics that 

prioritize evasion and stealth. 

2. Explainable Machine Learning 

Explainability is critical for fostering trust and utility in AI-driven systems. Through the use 

of SHAP (SHapley Additive exPlanations) values, the framework not only provided accurate 

detections but also actionable insights into the reasoning behind each prediction. This 

capability equips cybersecurity analysts with the knowledge needed to design targeted 

mitigation strategies. 
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3. Broad Applicability 

While the study was centred on .NET malware, the methodological insights gained—

particularly in feature extraction and model training—can be generalized to other 

programming ecosystems. This creates a foundation for future research aimed at cross 

platform malware detection. 

Challenges and Limitations 

The research revealed certain constraints that must be addressed in subsequent studies: 

• Zero-Day Threat Detection: The reliance on labelled datasets limits the model’s 

capacity to detect entirely novel threats. This challenge necessitates the exploration of adaptive 

learning techniques to enable zero-day detection. 

• Platform Dependence: While optimized for .NET, extending the framework to other 

ecosystems such as Java and Python will require reengineering feature extraction pipelines 

and training protocols. 

• Scalability: The computational demands associated with large-scale deployment 

remain a barrier. Techniques like distributed inference and model quantization should be 

explored to enhance scalability without sacrificing accuracy. 

Future Directions 

1. Adaptive Learning 

Future iterations of this framework should incorporate semi-supervised or reinforcement 

learning approaches to enable dynamic adaptation to zero-day threats. These models could 

continuously update their knowledge base with data from real-world environments, enhancing 

their resilience to emerging malware tactics. 

2. Hybrid Analysis 

Combining static and dynamic analysis methods offers the potential to capture a more 

comprehensive malware profile. While static analysis excels at identifying structural 

anomalies, dynamic analysis can reveal runtime behaviors that are otherwise obfuscated in 

code. 

3. Collaborative Defence Models 

The integration of federated learning techniques could enable collaborative threat intelligence 

sharing across organizations without compromising data privacy. Such an approach would 

facilitate the creation of global detection models capable of identifying patterns across diverse 

datasets. 

4. Optimization for Edge Deployment 

Deploying detection systems on edge devices, such as IoT gateways and mobile endpoints, 

requires computational efficiency. Techniques such as GPU acceleration, model pruning, and 

quantization could reduce latency and resource consumption, enabling deployment in resource 

constrained environments. 
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5. Cross-Platform Generalization 

Expanding the framework to support ecosystems beyond .NET would significantly increase 

its applicability. This would involve tailoring feature extraction and model design to the unique 

attributes of platforms like Java and Python while maintaining the core principles established 

in this research. 

Broader Implications for Cybersecurity Research 

The proposed framework exemplifies the transformative potential of AI in addressing the 

complexities of modern malware detection. By blending domain-specific knowledge with 

advanced machine learning, this research bridges a critical gap in cybersecurity. Its 

contributions extend beyond the immediate scope of .NET malware, offering methodological 

insights and practical tools that can be applied to other domains. This study not only advances 

the state of the art in .NET malware detection but also lays the groundwork for future 

innovations in AI-driven cybersecurity systems. By addressing the challenges of obfuscation, 

scalability, and cross-platform applicability, this research sets a precedent for the next 

generation of threat detection frameworks. 
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