
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S16 (2024) 745-759

Building Resilient AI-enabled Detection

Systems for .NET Threats: Insights

from the DoubleZero Wiper

Chetali Bandodkar1, Utkarsh Parashar1, Aarav Rajput1, Nitya Mittal2,

Shivi Khimesara2

1VIT Bhopal University, Sehore, Madhya Pradesh, India
2Medi-Caps University, Indore, Madhya Pradesh, India

The DoubleZero wiper, a recent malware threat associated with the Russia-Ukraine cyber activity,

has drawn significant attention for its unique approach to file destruction and obfuscation

techniques. This paper introduces an AI-based solution designed to detect the maliciousness of

.NET samples, leveraging structural analysis of PE and .NET file attributes combined with machine

learning techniques. By highlighting key differences in the detection challenges posed by .NET and

PE file structures, we propose advanced feature engineering methods and evaluate their efficacy in

detecting DoubleZero-like threats. Our findings demonstrate the potential for generalized detection

of .NET malware, paving the way for robust threat prevention mechanisms.

Keywords: .NET Malware, Metadata analysis, Threat intelligence, DoubleZero wiper.

1. Introduction

The escalation of cyber threats has paralleled the rapid evolution of digital ecosystems, with

malware attacks emerging as a particularly insidious facet of this threat landscape. Among the

myriad types of malware, wipers occupy a unique niche due to their destructive intent, which

often seeks to irreversibly erase data and disrupt critical infrastructure. Recent geopolitical

conflicts, particularly the Russia-Ukraine war, have underscored the strategic deployment of

such malware to compromise national security and economic stability. The DoubleZero wiper,

a .NET-based malware, exemplifies this trend and highlights the challenges of detecting and

mitigating wipers within complex IT environments.

The DoubleZero wiper’s distinct architecture and operational methodology underscore the

rising prominence of .NET malware. Leveraging the rich ecosystem of the .NET framework,

threat actors are increasingly adopting this platform to craft sophisticated payloads that evade

traditional detection mechanisms. Unlike conventional wipers that employ brute-force tactics

to damage Master Boot Records (MBRs) or partitions, DoubleZero targets specific file

structures, erasing initial segments to render files unusable while maintaining operational

stealth. These characteristics necessitate the development of specialized detection frameworks

capable of addressing .NET-specific nuances.

http://www.nano-ntp.com/

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 746

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

The detection of .NET malware poses unique challenges due to its reliance on Common

Intermediate Language (CIL) bytecode and metadata-heavy architecture. Traditional

signature-based approaches fall short in capturing the dynamic and obfuscated nature of .NET

threats. Consequently, the integration of advanced machine learning techniques offers a

promising avenue for detecting such sophisticated threats. By combining structural analysis of

Portable Executable (PE) files with deep insights into .NET-specific attributes, machine

learning models can identify malicious patterns and behaviors that are otherwise obscured by

obfuscation techniques.

This paper explores an AI-driven approach to detecting the DoubleZero wiper, emphasizing

the role of feature engineering in extracting meaningful insights from .NET malware. By

delineating the fundamental differences between .NET and traditional PE malware, we

propose a machine learning framework designed to detect the unique characteristics of .NET-

based threats. The research not only highlights the efficacy of the proposed method in detecting

DoubleZero but also extends its applicability to the broader domain of .NET malware, thereby

contributing to the advancement of cybersecurity practices.

Background

The DoubleZero Wiper

First revealed by Ukraine CERT in March 2022, the DoubleZero wiper epitomizes the

advanced destructive capacities of .NET-based malware. Implemented in C#, this wiper

employs sophisticated obfuscation techniques to elude detection mechanisms and

systematically targets file systems through specialized drivers. Its distinctive modus

operandi—such as circumventing Master Boot Record (MBR) corruption and terminating

critical processes like lsass—sets it apart from other wipers in the malware landscape.

In comparison to HermeticWiper and IsaacWiper, DoubleZero adopts a more focused

approach by exclusively erasing the initial 4096 bytes of targeted files. For instance,

HermeticWiper leverages MBR corruption to render entire systems unbootable, while

IsaacWiper indiscriminately wipes entire disk partitions. These operational distinctions

highlight DoubleZero’s emphasis on precision and expedience in data obliteration.

The evolution of .NET malware underscores its increasing attractiveness to threat actors,

driven by the .NET framework’s extensive capabilities and widespread adoption. Introduced

in 2002, the framework offers a robust library ecosystem for executing system-level

operations, simultaneously serving as a boon for developers and an exploitable avenue for

malicious activities. Exemplars such as Gamut and Agent Tesla demonstrate the framework’s

adaptability for obfuscation and payload dissemination, creating a fertile ground for advanced

threats like DoubleZero to emerge.

Challenges in .NET Malware Detection

Conventional malware detection methodologies, which primarily rely on the analysis of

Portable Executable (PE) file attributes, frequently fall short in addressing the intricate

metadata and structural nuances of .NET files. This shortfall necessitates the development of

advanced machine learning models explicitly designed to exploit .NET-specific

characteristics, including:

747 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

• Attributes of the Cor20 header.

• Metadata tables encompassing modules and methods.

• Invocation of unmanaged API functions.

Unlike traditional PE files, .NET malware encodes its functionality in Common Intermediate

Language (CIL) bytecode, significantly complicating detection strategies predicated on static

signatures. Furthermore, obfuscation techniques commonly employed in .NET malware—

such as control flow flattening, dynamic string decryption, and interleaving irrelevant code—

further exacerbate the challenges of effective detection.

Fig. 1: Structure of a .NET file

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 748

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

Fig. 2: Structures from components of .NET and the data held by them

By integrating machine learning approaches that account for these idiosyncrasies, the detection

of .NET malware can transition from reactive reliance on known signatures to a proactive

analysis of structural and behavioral patterns. This paradigm shift is critical in addressing the

dynamic and evolving threat landscape exemplified by DoubleZero and similar malware

entities.

2. Research Methodology

To accurately detect DoubleZero and similar .NET malware, a meticulously crafted

methodology combining structural analysis and advanced machine learning is essential. Our

proposed methodology is detailed as follows:

Dataset Construction and Preprocessing

1. Sample Collection: A balanced dataset of benign and malicious .NET samples was

curated. Sources included open repositories, threat intelligence databases, and custom-

749 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

generated obfuscated malware.

o Malicious samples included known wipers, such as DoubleZero and HermeticWiper,

to ensure comprehensive representation.

o Benign samples were sourced from popular .NET applications.

2. Feature Extraction: Extracting both PE and .NET-specific attributes:

o PE File Attributes: Headers, imports, section entropy, and size.

o .NET-Specific Features: Metadata tables, Cor20 headers, CIL bytecode patterns, and

references to unmanaged API calls.

Fig. 3: Process flow diagram for feature extraction

o Obfuscation Normalization: Employing reverse engineering and de-obfuscation

techniques to standardize heavily obfuscated samples.

Machine Learning Model Design

1. Feature Engineering: Enhancing the raw dataset with derived features, such as:

o API sequence patterns.

o Metadata entropy.

o Frequency of unmanaged calls.

2. Model Selection and Training:

o Chosen classifiers: Gradient Boosting, Random Forest, and Deep Neural Networks.

o Imbalanced dataset techniques: Synthetic Minority Oversampling Technique

(SMOTE) to balance the dataset.

o Metrics: Precision, recall, and F1-score were prioritized to evaluate performance.

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 750

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

Fig. 4: Process flow diagram for the model

Model Explainability

To ensure the reliability of predictions, SHAP (SHapley Additive exPlanations) values were

used:

o Highlighting influential features for each prediction.

o Ensuring insights into false positives or negatives.

Fig. 5: Overview of our detection workflow

751 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

Performance Optimization

1. Low-Latency Inference:

o Preloading metadata parsing for real-time detection.

o Optimizing models for edge deployment.

2. Evaluation Framework:

o Testing with unseen samples to validate generalization.

o Stress-testing against heavily obfuscated variants to assess robustness.

Deployment Strategy

1. Integration with Existing Security Systems:

o Embedding within Cortex XDR for enterprise-level application.

o Compatibility with open-source tools for broader adoption.

2. Real-Time Monitoring:

o Deploying lightweight agents for continuous scanning.

o Centralized dashboards for anomaly tracking.

This meticulous approach ensures that the detection framework is both robust and scalable,

capable of addressing the dynamic threat posed by modern .NET malware.

3. Experimental Rules

The experimental results were conducted to assess the performance, robustness, and

applicability of the proposed AI-based detection framework. These experiments were

meticulously designed to evaluate the model across multiple dimensions, including accuracy,

resilience to obfuscation, and real-world scalability.

Dataset Composition and Preprocessing

The dataset was curated from multiple sources, ensuring a diverse representation of both

benign and malicious .NET samples. A total of 75,000 samples were used, categorized as:

o Benign Samples: 50,000 samples sourced from popular .NET applications and

libraries.

o Malicious Samples: 25,000 samples encompassing wipers (e.g., DoubleZero,

HermeticWiper), ransomware, spyware, and backdoors.

A key aspect of preprocessing was obfuscation normalization, where advanced reverse

engineering techniques were applied to mitigate the effects of code obfuscation and string

encryption. The dataset was split into training, validation, and testing sets in a 70:20:10 ratio.

Performance Metrics

To thoroughly evaluate the model, the following metrics were employed:

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 752

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

o Accuracy: The overall percentage of correctly classified samples.

o Precision: The ratio of true positives to the sum of true and false positives, indicating

specificity.

o Recall (Sensitivity): The ratio of true positives to all actual positives, measuring

completeness. F1-Score: The harmonic mean of precision and recall.

o Latency: Average detection time per sample

Model Evaluation Results

The Gradient Boosting classifier emerged as the optimal model, achieving:

o Accuracy: 97.2%

o Precision: 96.4%

o Recall: 95.8% F1-Score: 96.1%

o Average Latency: 0.9 seconds/sample

When benchmarked against Random Forest and Deep Neural Networks, Gradient Boosting

demonstrated superior interpretability and a marginally higher F1-Score, making it the

preferred choice for deployment.

Obfuscation Resilience

To test robustness, heavily obfuscated versions of DoubleZero and similar malware were

introduced. Techniques such as control flow flattening, dynamic string generation, and code

interleaving were applied. Despite these challenges, the model maintained an accuracy of

93.5% and an F1-Score of 92.7%, underscoring its resilience to adversarial techniques.

Scalability Tests

The model was evaluated for scalability across:

o Larger Datasets: Processing 250,000 samples resulted in a marginal latency increase

to 1.2 seconds/sample.

o Real-Time Applications: Deployment in a simulated network environment

demonstrated consistent performance with real-time alerts generated within 1.5 seconds of

sample submission.

4. Case Study: Double Zero Detection

The DoubleZero wiper served as an ideal candidate for evaluating the practical efficacy of the

AI-based detection framework. This section provides a detailed analysis of its detection, the

unique behaviors exhibited by the malware, and its implications for real-world cybersecurity.

Detection Characteristics

The framework leveraged specific attributes of the DoubleZero wiper to ensure effective

detection. Key distinguishing characteristics included:

753 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

o API Invocation Patterns: DoubleZero makes extensive use of unmanaged APIs such

as ntdll.NtOpenFile , kernel32.GetLastError , and user32.ExitWindowsEx . These patterns are

not commonly observed in benign .NET applications, making them critical indicators of

malicious intent.

o Metadata Analysis: The Cor20 header and metadata fields exhibited unusually high

entropy, indicating obfuscation. This was coupled with frequent access to privileged metadata

such as assembly references and method definitions, further differentiating it from legitimate

applications.

o String Analysis: Despite employing obfuscation techniques, the malware left certain

file paths and regular expressions as plaintext. This oversight provided valuable insights into

its operational intent and target directories.

Behavioral Analysis

Behavioral analysis of DoubleZero highlighted several tactics, techniques, and procedures

(TTPs) used to achieve its destructive goals. These include:

o Destructive Intent:

o The wiper utilized the FSCTL_SET_ZERO_DATA function to overwrite file

segments with zero bytes, rendering them unusable.

o Instead of encrypting files (as ransomware does), it targeted the first 4096 bytes of

each file, prioritizing speed and irreversibility.

o Privilege Escalation:

o The malware repeatedly invoked specific privileges such as

SeTakeOwnershipPrivilege (to bypass file ownership protections) and SeShutdownPrivilege

(to initiate system shutdown post-destruction).

o These privileges are granted to administrative processes, underscoring the malware’s

intent to operate with elevated permissions.

o Process Termination:

o DoubleZero targeted critical processes, notably lsass, which is integral to Windows

authentication mechanisms. Terminating this process disrupts system integrity and further

hinders recovery efforts

Real-Time Detection Performance

The framework’s integration into a simulated enterprise environment provided critical insights

into its practical applicability:

o Latency:

o The average detection latency was measured at 1.1 seconds/sample, ensuring real-time

responsiveness in high-throughput systems.

o Detection Accuracy:

o Over 500 simulated trials, the model achieved a 100% detection rate with zero false

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 754

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

negatives, validating its robustness and reliability.

o Scalability:

o The system processed up to 10,000 concurrent samples with negligible performance

degradation, demonstrating its suitability for deployment in large-scale environments.

Implications for Cybersecurity

The DoubleZero case study underscores several critical considerations for modern

cybersecurity strategies:

o Feature Engineering: The success of the detection framework highlights the

importance of comprehensive feature extraction, particularly for metadata and API usage

patterns in .NET malware.

o Obfuscation Resilience: Despite the malware’s use of obfuscation techniques, the

framework’s ability to identify behavioral patterns proved instrumental in maintaining high

detection accuracy.

o Real-Time Applications: The system’s low latency and scalability make it a practical

solution for enterprise-level threat monitoring and response.

5. Discussion

The results of this study demonstrate a robust and scalable AI-driven framework tailored to

the challenges posed by detecting .NET malware, specifically the DoubleZero wiper. In this

section, we delve deeply into the implications of these findings, explore the broader

applicability of the methodology, highlight the limitations observed during testing, and

propose future avenues for enhancement.

Strengths of the Framework

1. High Detection Accuracy Across Diverse Threats

The framework achieved an overall accuracy of 97.2%, showcasing its effectiveness across a

broad spectrum of .NET malware types, including wipers, ransomware, and spyware. This

performance is attributed to the following key factors:

o Comprehensive Feature Engineering: The integration of both PE and .NET-specific

attributes allowed the model to capture subtle variations in metadata, API usage, and structural

anomalies that distinguish malicious samples from benign ones.

o Robust Classifier Selection: The Gradient Boosting algorithm provided a high balance

of accuracy and interpretability, allowing security analysts to derive actionable insights from

model predictions.

2. Resilience to Obfuscation

Malware obfuscation remains a significant barrier to static analysis methods. By employing

advanced feature extraction techniques, such as entropy analysis of Cor20 headers and

sequence analysis of unmanaged API calls, the framework effectively mitigated the impact of

755 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

common obfuscation strategies, maintaining over 93% accuracy in heavily obfuscated

samples.

3. Real-Time Detection Capability

The average latency of 1.1 seconds per sample ensures that the system can be deployed in real-

time environments without compromising performance. This capability is crucial for

enterprise cybersecurity applications, where immediate detection and response are critical to

mitigating the impact of malware.

Limitations of the Framework

Despite its strengths, the proposed methodology exhibits certain limitations that warrant

discussion:

1. Dependence on Prior Knowledge

The framework relies heavily on labelled datasets for training and validation. While it

performed well against known threats, its ability to detect zero-day malware remains

constrained. This limitation is inherent to supervised learning models, which lack the adaptive

capabilities required to identify entirely novel threats.

2. Platform-Specific Focus

The methodology is specifically tailored to .NET malware and may not generalize seamlessly

to other ecosystems such as Java or Python. Expanding the framework to support cross-

platform detection would require re-engineering feature extraction and model design to

accommodate the unique attributes of each programming environment.

3. Resource Intensity in Large-Scale Deployments

While the model scaled effectively in simulated environments, the computational overhead

associated with deep feature extraction and model inference may become a bottleneck in

environments processing millions of samples daily. Optimization techniques, such as model

quantization and distributed processing, could alleviate this challenge

Implications for Cybersecurity

1. Proactive Malware Detection

The incorporation of behavioral features such as unmanaged API calls and privilege escalation

patterns shifts the focus from reactive, signature-based detection to a more proactive approach.

This paradigm shift is critical in addressing the rapidly evolving threat landscape, where

attackers frequently modify signatures to evade traditional defenses.

2. Enhanced Threat Intelligence

By leveraging explainable AI techniques, such as SHAP (SHapley Additive exPlanations)

values, the framework not only detects malware but also provides valuable insights into its

operation. This capability enables cybersecurity teams to develop more targeted and effective

countermeasures, strengthening organizational defences.

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 756

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

3. Enterprise-Scale Integration

The framework’s compatibility with real-time monitoring tools and its low latency make it

well suited for integration into existing security information and event management (SIEM)

systems. This facilitates seamless adoption in enterprise environments, reducing the

operational overhead associated with manual malware analysis.

Future Directions

1. Adaptive Learning for Zero-Day Detection

Integrating reinforcement learning or semi-supervised learning techniques could enhance the

framework’s ability to identify zero-day threats. By continuously updating its knowledge base

with insights derived from new samples, the model could adapt to evolving malware tactics.

2. Cross-Platform Expansion

Extending the methodology to other programming ecosystems, such as Python and Java,

would significantly broaden its applicability. This would involve developing platform-specific

feature extractors and retraining the detection models to accommodate the nuances of each

environment.

3. Federated Learning for Collaborative Defence

Implementing federated learning could enable organizations to share threat intelligence

without compromising data privacy. This approach would facilitate the creation of a more

comprehensive global threat detection system, capable of identifying patterns across diverse

organizational datasets.

4. Integration of Dynamic Analysis

While the current framework focuses on static analysis, incorporating dynamic analysis

techniques, such as monitoring runtime behaviors in sandbox environments, could enhance its

detection capabilities. This hybrid approach would provide a more holistic understanding of

malware operations.

5. Computational Efficiency

Optimizing the framework for large-scale deployments through techniques such as model

quantization, GPU acceleration, and distributed inference pipelines would address resource

constraints and ensure scalability in high-throughput environments.

Broader Implications for Cybersecurity Research

The success of this framework highlights the potential of AI-driven solutions in addressing the

complexities of modern malware detection. It underscores the importance of interdisciplinary

collaboration, combining expertise in machine learning, cybersecurity, and software

engineering to develop innovative solutions for emerging challenges. Moreover, it provides a

blueprint for future research in adapting machine learning methodologies to the unique

requirements of cybersecurity applications.

757 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

6. Conclusion

This research presents a sophisticated, AI-driven framework for detecting .NET malware, with

a particular focus on addressing the unique challenges posed by the DoubleZero wiper.

Through the integration of advanced machine learning techniques, extensive feature

engineering, and structural analysis of .NET files, the framework has demonstrated a

significant capability to detect and mitigate modern malware threats. This conclusion distils

the critical findings, contributions, and potential impacts of the study, while highlighting

avenues for future exploration.

Key Findings

1. High Detection Accuracy

The framework achieved a detection accuracy of 97.2%, underscoring its effectiveness in

identifying a wide array of .NET malware, including obfuscated and highly complex samples.

By leveraging both static and behavioral features, the model outperformed traditional detection

methods reliant on signature-based or solely static analysis approaches.

2. Robustness to Obfuscation

Obfuscation techniques are a staple in modern malware development, aimed at evading

conventional detection systems. This study demonstrated that advanced feature engineering—

including entropy analysis, API invocation patterns, and metadata extraction—can

significantly mitigate the impact of these techniques. The framework maintained a detection

accuracy of 93.5% even against heavily obfuscated variants, marking a substantial step

forward in malware resilience.

3. Real-Time Applicability

Incorporating real-time capabilities into malware detection systems is essential for mitigating

threats in dynamic enterprise environments. The proposed model achieved a latency of 1.1

seconds per sample, validating its readiness for deployment in high-throughput systems.

Realtime detection was further enhanced through optimization of feature extraction pipelines

and computational overhead.

Contributions to Cybersecurity

1. Proactive Detection Paradigm

The transition from reactive, signature-based methods to a proactive detection paradigm is one

of the most significant contributions of this study. By focusing on behavioral and structural

attributes, the framework sets a new standard for addressing emerging malware tactics that

prioritize evasion and stealth.

2. Explainable Machine Learning

Explainability is critical for fostering trust and utility in AI-driven systems. Through the use

of SHAP (SHapley Additive exPlanations) values, the framework not only provided accurate

detections but also actionable insights into the reasoning behind each prediction. This

capability equips cybersecurity analysts with the knowledge needed to design targeted

mitigation strategies.

 Building Resilient AI-enabled Detection Systems for.... Chetali Bandodkar et al. 758

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

3. Broad Applicability

While the study was centred on .NET malware, the methodological insights gained—

particularly in feature extraction and model training—can be generalized to other

programming ecosystems. This creates a foundation for future research aimed at cross

platform malware detection.

Challenges and Limitations

The research revealed certain constraints that must be addressed in subsequent studies:

• Zero-Day Threat Detection: The reliance on labelled datasets limits the model’s

capacity to detect entirely novel threats. This challenge necessitates the exploration of adaptive

learning techniques to enable zero-day detection.

• Platform Dependence: While optimized for .NET, extending the framework to other

ecosystems such as Java and Python will require reengineering feature extraction pipelines

and training protocols.

• Scalability: The computational demands associated with large-scale deployment

remain a barrier. Techniques like distributed inference and model quantization should be

explored to enhance scalability without sacrificing accuracy.

Future Directions

1. Adaptive Learning

Future iterations of this framework should incorporate semi-supervised or reinforcement

learning approaches to enable dynamic adaptation to zero-day threats. These models could

continuously update their knowledge base with data from real-world environments, enhancing

their resilience to emerging malware tactics.

2. Hybrid Analysis

Combining static and dynamic analysis methods offers the potential to capture a more

comprehensive malware profile. While static analysis excels at identifying structural

anomalies, dynamic analysis can reveal runtime behaviors that are otherwise obfuscated in

code.

3. Collaborative Defence Models

The integration of federated learning techniques could enable collaborative threat intelligence

sharing across organizations without compromising data privacy. Such an approach would

facilitate the creation of global detection models capable of identifying patterns across diverse

datasets.

4. Optimization for Edge Deployment

Deploying detection systems on edge devices, such as IoT gateways and mobile endpoints,

requires computational efficiency. Techniques such as GPU acceleration, model pruning, and

quantization could reduce latency and resource consumption, enabling deployment in resource

constrained environments.

759 Chetali Bandodkar et al. Building Resilient AI-enabled Detection Systems for....

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

5. Cross-Platform Generalization

Expanding the framework to support ecosystems beyond .NET would significantly increase

its applicability. This would involve tailoring feature extraction and model design to the unique

attributes of platforms like Java and Python while maintaining the core principles established

in this research.

Broader Implications for Cybersecurity Research

The proposed framework exemplifies the transformative potential of AI in addressing the

complexities of modern malware detection. By blending domain-specific knowledge with

advanced machine learning, this research bridges a critical gap in cybersecurity. Its

contributions extend beyond the immediate scope of .NET malware, offering methodological

insights and practical tools that can be applied to other domains. This study not only advances

the state of the art in .NET malware detection but also lays the groundwork for future

innovations in AI-driven cybersecurity systems. By addressing the challenges of obfuscation,

scalability, and cross-platform applicability, this research sets a precedent for the next

generation of threat detection frameworks.

References
1. Akshata Rao, Zong-Yu Wu, Wenjun Hu. “An AI-Based Solution to Detecting the DoubleZero

.NET Wiper.” Palo Alto Networks, November 18, 2022.

2. CERT Ukraine. “Threat Update: DoubleZero Destructor,” 2022.

3. Microsoft. “.NET Framework Documentation,” Microsoft Learn, 2023.

4. Splunk Threat Research Team. “DoubleZero Malware Analysis.” Splunk Security Blog, 2022.

5. X. Zhang et al. “Feature Engineering for Malware Detection,” IEEE Transactions on

Cybersecurity, 2021.

6. NIST. “Guidelines on Malware Prevention,” Special Publication 800-83, 2020.

7. SHAP Documentation. “Explainable AI with Shapley Values,” 2023.

