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This paper presents a comprehensive analysis of various time series segmentation methods, 

including traditional statistical techniques and contemporary machine learning approaches. We 

focus on the performance of the Top-Down segmentation method, particularly enhanced by 

significant point identification, and compare it with established methods such as Sliding Window, 

Bottom-Up, K-Means clustering, and Dynamic Time Warping (DTW). Through extensive 

experiments across diverse datasets, we evaluate each method's performance based on 

approximation error, computational efficiency, and overall segmentation quality. Our results 

demonstrate that the proposed enhancement to the Top-Down method, which incorporates 

significant points for segmentation, achieves competitive accuracy while significantly reducing 

computational time compared to traditional methods. This study underscores the potential of 

leveraging advanced segmentation strategies to improve time series analysis in various application 

domains.  
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1. Introduction 

Time series analysis is a critical area of research with diverse applications across various 

domains, including cybersecurity [1], finance [2], and healthcare [3]. Accurate and efficient 

analysis of time series data is essential for tasks such as forecasting, anomaly detection, and 

informed decision-making. A fundamental component of time series analysis is the effective 

representation of data, which seeks to reduce dimensionality while preserving the essential 

characteristics of the original series [4]. Among the various representation techniques, 

Piecewise Linear Representation (PLR) has gained prominence for its simplicity, efficiency, 

and enhanced interpretability. 

A significant challenge in time series representation is the segmentation process, which 

involves dividing a time series into meaningful subsequences [5]. Despite its importance, 

segmentation remains an underexplored area, with many studies relying on traditional 

algorithms like Top-Down, Bottom-Up, and Sliding Window methods. These approaches can 
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be computationally inefficient and may yield less accurate results in certain scenarios [6]. This 

gap in the literature underscores the necessity for a comprehensive evaluation of existing 

methods and the development of more advanced, efficient alternatives. 

This paper presents several contributions to the field of time series segmentation. First, it 

provides a detailed comparison of existing segmentation algorithms, including Sliding 

Window, Bottom-Up, and Top-Down methods, evaluating their performance across various 

datasets to highlight their strengths and limitations. Second, we introduce an innovative 

segmentation approach, the Candidate-based Top-Down (CBD) method. By leveraging 

statistical insights and integrating machine learning techniques, CBD efficiently identifies 

optimal split points in time series data. Our results demonstrate that the CBD algorithm 

achieves approximation errors comparable to those of the traditional Top-Down method while 

significantly reducing computational time. This positions CBD as a promising alternative for 

time series segmentation, paving the way for more effective data analysis across numerous 

applications. 

 

2. Related works 

Piecewise Linear Representation (PLR) of time series has emerged as a pivotal technique in 

various applications, simplifying complex datasets by transforming them into linear segments. 

This method enhances analysis and interpretation, offering simplicity, efficiency, and improved 

clarity compared to other representation methodologies [7]. As such, PLR has become the most 

widely adopted segmentation approach in time series data analysis. 

Despite its popularity, several research gaps and limitations in PLR techniques remain 

unaddressed: 

• Noise Sensitivity: Traditional PLR methods often struggle with noisy data, where 

fluctuations may be misinterpreted as significant changes, resulting in inaccurate 

segmentations. This issue is particularly pronounced in datasets with high variability, 

emphasizing the need for methods that preserve the integrity of the time series representation 

[8]. 

• Computational Efficiency: Many existing PLR algorithms, such as Bidirectional 

Piecewise Linear Representation (BPLR), while robust, demand substantial computational 

resources, which can hinder performance when processing large datasets [9]. 

• Adaptability to Data Complexity: Most PLR methods are designed for univariate time 

series. However, real-world applications frequently involve multivariate or non-stationary data, 

necessitating more sophisticated approaches to effectively capture the underlying dynamics of 

such datasets. 

Recent studies have begun to address these challenges by developing more adaptive and robust 

PLR methods. For instance, Shi et al. [9] introduced a bidirectional segmentation algorithm that 

enhances traditional PLR by employing a dual scanning process to minimize error and improve 

the detection of true change points. Additionally, advancements in adaptive error-bounded 

piecewise linear approximation have shown promise for achieving accurate and 

computationally efficient representations, particularly in financial time series analysis [10]. 
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A novel PLR method has also been proposed that utilizes R-squared statistics to identify optimal 

segmentation points, aiming to maximize the explained variance and ensuring that each linear 

segment captures the underlying trends effectively. This approach has been validated through 

extensive simulations, demonstrating improvements in both accuracy and interpretability of 

segmented time series [11]. Furthermore, Trirat et al. [12] conducted a comprehensive survey 

of various time series representation methods, including piecewise linear techniques such as 

piecewise aggregate approximation (PAA) and symbolic-based approaches. Their work 

examines the strengths and limitations of each method and proposes a framework for universal 

time series representation learning, aimed at leveraging the best features of diverse techniques 

to enhance performance across various tasks and datasets. 

Additional notable contributions include: 

• Machine Learning Approaches: Recent works have integrated machine learning 

techniques with PLR methods to enhance segmentation performance. For instance, S.Ahmed et 

al. [13] proposed a hybrid model that combines PLR with support vector machines (SVM) to 

improve segmentation accuracy in non-linear time series data. Their approach leverages the 

strengths of both methods, allowing for effective pattern recognition and trend identification. 

• Deep Learning for Time Series Segmentation: Studies like those by Casolaro et al.[14] 

focuses on models like CNNs, RNNs, and TCNs, emphasizing their strengths in pattern 

recognition and sequence prediction. While CNNs excel at identifying patterns, RNNs are 

better at capturing dependencies over time. The paper highlights the challenges these models 

face, such as limitations in handling long-range dependencies, and explores emerging 

approaches like Temporal Convolutional Networks and Transformer models. 

• Dynamic Time Warping (DTW): A method widely used for time series analysis, DTW 

has been combined with PLR to improve segmentation in datasets with varying lengths and 

non-linear distortions. The study by Berndt and Clifford [15] demonstrates that integrating 

DTW with PLR can enhance segmentation quality by aligning similar patterns in time series 

data. 

The ongoing evolution of PLR techniques is likely to focus on several key areas: Enhancing 

Robustness to Noise: Developing algorithms capable of distinguishing between noise-induced 

fluctuations and genuine data trends. Scalability and Efficiency: Designing faster algorithms 

that can manage larger datasets without sacrificing accuracy. Multivariate and Complex Data 

Handling: Extending PLR methods to effectively represent multivariate and non-stationary time 

series data. 

In conclusion, while PLR remains a cornerstone of time series analysis, there is significant 

potential for innovation that could broaden its applicability and effectiveness. As data 

complexity and volume continue to grow, these enhancements will be crucial for addressing 

the evolving demands of time series analysis. 

 

3. Background 

In this section, we will explore three prominent Piecewise Linear Representation (PLR) 

methods: Sliding Window, Bottom-Up, and Top-Down segmentation. Each method offers 
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unique advantages and is applicable to different scenarios in time series analysis. 

A. Sliding Window 

The Sliding Window method starts with a fixed initial point and incrementally expands the 

window until the error between the actual data and the approximated linear segment exceeds a 

predefined threshold. Once this threshold is surpassed, a segment boundary is established, and 

the process restarts from the next point after the endpoint of the last segment. 

This approach guarantees that each segment adheres to the maximum allowable error, striking 

a balance between accuracy and simplicity. It is particularly advantageous for real-time and 

online processing applications due to its localized operation, allowing for efficient updates as 

new data points arrive. Moreover, it effectively captures short-term trends and patterns within 

the data, making it suitable for applications in signal processing, data compression, and anomaly 

detection. Incorporating machine learning techniques into the Sliding Window method can 

enhance its performance by automatically adjusting the window size and error threshold based 

on the characteristics of the incoming data, improving adaptability across various datasets. 

B. Bottom-Up 

Bottom-Up segmentation begins by representing the data as a series of small initial segments, 

typically formed by two consecutive data points. These segments are iteratively merged based 

on a criterion that aims to minimize the increase in error. The merging process continues until 

the error of the resulting segments exceeds a predefined threshold, ensuring that the final 

segments provide an optimal balance between accuracy and simplicity. 

This method excels at reducing noise and capturing local variations within the data, making it 

particularly effective in applications requiring detailed pattern recognition, such as in data 

compression and signal processing. Integrating machine learning algorithms in Bottom-Up 

segmentation can facilitate dynamic merging criteria, enabling the algorithm to learn optimal 

thresholds from historical data and adaptively refine the segmentation process. 

C. Top-Down 

The Top-Down segmentation method begins by modeling the entire data sequence as a single 

linear segment and computing the associated approximation error. It identifies the point at 

which the errors of the left and right segments are maximized, subsequently dividing the data 

at this juncture into two distinct segments. 

This recursive process continues, further dividing each segment at points of maximum error 

until the error within each segment falls below a predefined threshold. The Top-Down approach 

is particularly adept at capturing global patterns and trends within the data, making it valuable 

for applications requiring high-level data abstraction, such as trend analysis, pattern 

recognition, and data summarization. To enhance the Top-Down method, machine learning 

approaches can be employed to optimize the selection of segment boundaries. By training 

models on historical data, algorithms can learn to predict optimal split points, thereby 

improving accuracy and reducing computational overhead. 
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4. Experimental Comparison of Segmentation Methods 

To evaluate the performance of the proposed segmentation method, 

topdown_segment_with_significant_points, we conducted a series of experiments comparing 

its efficiency and accuracy against both traditional segmentation algorithms and contemporary 

machine learning approaches. 

Experiment Setup 

In our studies, we employ linear regression to model time series segments rather than relying 

on simple interpolation. This approach is preferred because linear regression is more resilient 

to noisy data and capable of extending predictions beyond the available data points, making it 

ideal for forecasting and trend analysis. Unlike interpolation, which is confined to the dataset’s 

scope, linear regression enables statistical inference, providing insights into the strength and 

relevance of relationships among variables. 

Selecting the maximum error is a critical decision for segmentation algorithms, including the 

Candidate-based Top-Down (CBD) method. Currently, to our knowledge, there are no 

automated methods for determining this parameter. As the maximum error approaches zero, all 

algorithms perform similarly, producing error-free segments. Conversely, as the maximum 

error increases significantly, the algorithms converge in performance, simplifying the entire 

time series into a single optimal line. This selection process involves balancing data 

compression and precision. The "reasonable value" for maximum error is subjective and varies 

according to the specific requirements of the data mining application and the characteristics of 

the data itself. In our approach, smaller maximum error values tend to lead to overly detailed 

and fragmented approximations, while larger values result in overly generalized 

approximations. 

The evaluation of the algorithms is conducted by assessing their performance on two distinct 

datasets, each utilizing a tailored range of maximum errors determined by the standard deviation 

(std) of the respective time series. For the first dataset, the tailored ranges are

 

  

While for the second dataset, the ranges are     

These specific intervals were established through extensive experimentation to explore the 

impact of varying error thresholds on the performance of the CBD algorithm, thus enabling a 

comprehensive comparison under diverse conditions characterized by both datasets. 

The experimental environment for the study was configured on a computer system equipped 

with a 64-bit Windows 10 operating system. The hardware included an Intel Core i5-6500 CPU 

and 16GB of RAM. 

Methodology 

Algorithm Implementation: The combined algorithm was implemented to identify significant 

points based on the rolling mean and standard deviation. It then recursively segmented the time 
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series, ensuring that the maximum allowable error for each segment was not exceeded. 

(i) Performance Metrics: 

(a) Approximation Error: Calculated using the sum of absolute differences between the original 

data points and their corresponding approximated values:   

 

    (1) 

(b) Execution Time: The total time taken to process each dataset was recorded to evaluate 

computational efficiency. 

(ii) Comparison Criteria: The performance of the combined algorithm was compared with: 

(a) Traditional Algorithms: (i) Top-Down Method: A conventional approach that recursively 

segments the data without significant deviation detection. (ii) Sliding Window Method: A 

fixed-window technique that approximates the data based on local averages without identifying 

significant points. (iii) Bottom-Up Method: This method starts with individual data points and 

merges them based on a specified error threshold. 

(b) Machine Learning Approaches: (i) K-Means Clustering: Used to identify natural clusters 

within the time series data. Data points were grouped based on similarity, and segment 

boundaries were determined based on cluster assignments. (ii) Dynamic Time Warping (DTW): 

A technique that aligns sequences that may vary in speed or timing, allowing for segmentation 

based on distance measures between time series. 

An experimental evaluation of Prominent Segmentation methods 

As previously discussed, from an application perspective, Sliding Window Segmentation is 

particularly effective for real-time processing and capturing local patterns. The Candidate-

based Top-Down (CBD) segmentation excels in identifying global patterns and trends, making 

it advantageous for high-level data abstraction while maintaining efficiency. Bottom-Up 

Segmentation is most effective for noise reduction and preserving local details. Each method 

possesses distinct strengths and weaknesses, rendering them suitable for different applications 

based on the specific requirements of the data analysis task. 

In this section, we present a detailed evaluation of these methods through experimental 

comparisons designed to assess their performance under various conditions. These experiments 

aim to provide insights into the practical effectiveness of each method, emphasizing their 

relative strengths and weaknesses across different scenarios. 

(A) Datasets: The experiments utilized two distinct datasets to ensure comprehensive coverage 

of the various characteristics inherent in time series data. The first dataset, introduced by Xu et 

al. [16], comprises a seasonal time series of Key Performance Indicators (KPIs) in web 

applications, known as the SKAW dataset, containing a total of 142,540 data points. To reduce 

complexity and facilitate comparative analysis, this dataset was partitioned into 10 separate 

batches, each considered an independent time series consisting of 14,254 data points. 

The second dataset used in the experiments is the L1A radar telemetry data from NASA’s Soil 

Moisture Active Passive (SMAP) mission [17,18]. This dataset has been anonymized 
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concerning time, and all telemetry values have been normalized to a range of (-1, 1) based on 

the observed minimum and maximum values. Unlike the first dataset, which primarily features 

seasonal time series, the SMAP dataset includes a diverse array of time series, encompassing 

both stationary and non-stationary series, with or without trends. This diversity is crucial for a 

thorough evaluation of time series characteristics and the robustness of the analysis methods 

employed. After filtering out time series with constant values, the dataset comprises 45 time 

series, with each time series containing approximately 2,700 data points. 

(B) Metrics: The algorithms are evaluated based on two key metrics: the total sum of absolute 

approximation errors and computational time. The first metric assesses the accuracy of a 

segmentation algorithm by summing the absolute differences between actual data points and 

their approximations on the fitted linear segments. A lower total sum indicates higher accuracy, 

reflecting the algorithm’s ability to preserve the original time series patterns without significant 

distortion. 

Computational time measures the efficiency of the algorithm, which is crucial for real-time 

processing or handling large datasets. It tracks the duration of the segmentation process. An 

effective algorithm, such as the CBD method, optimizes computational time without 

compromising accuracy, which is essential for practical applications where speed is a priority. 

Proposed Algorithm 

As highlighted in the previous section, the Top-Down approach generally outperforms other 

segmentation methods in terms of accuracy. However, it is significantly less efficient 

concerning computational time. Therefore, efforts have been made to enhance the speed of the 

Top-Down algorithm while preserving its accuracy. 

A. CBD - A Rapid and Precise Segmentation Algorithm 

The slow performance of the traditional Top-Down algorithm is primarily due to its brute-force 

methodology, which searches through all possible points in the time series to identify the 

optimal index for segment splitting based on minimal approximation error. This exhaustive 

search process is recursively repeated, leading to considerable computational overhead. To 

address this limitation, we propose the Candidate-based Top-Down (CBD) method, which 

identifies potential optimal indices for segmentation much more efficiently. This significantly 

reduces computational time while maintaining high accuracy. 

The CBD algorithm introduces an innovative approach to time series segmentation by 

leveraging statistical insights. Instead of relying on a conventional brute-force search, the 

algorithm computes the rolling mean and standard deviation over a predefined window size 

across the time series. When the absolute difference between the actual value at any point and 

the rolling mean exceeds a specified multiplier of the standard deviation, that point is flagged 

as a potential optimal index for segmentation. 

This targeted identification of split points not only accelerates the segmentation process but also 

preserves the accuracy associated with the original Top-Down approach. By refining the 

candidate selection process, the CBD algorithm effectively balances computational efficiency 

with segmentation precision, making it a robust alternative for time series analysis. 

In this context, the Candidate-based Top-Down (CBD) algorithm plays a pivotal role by 
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systematically identifying candidate split points based on significant deviations from the local 

mean. These pre-identified points are then leveraged to perform segmentation more efficiently, 

optimizing the computational demands of the traditional Top-Down approach. This integrated 

strategy marks a substantial advancement in the field, offering a faster and more effective 

solution for time series analysis. 
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Methodology 

Top-Down Segmentation with Significant Points: This method involves identifying significant 

deviations from local means, using rolling statistics to determine potential segment boundaries. 

Formulations: 

• Rolling Mean: 

                                                   (2) 

 

• Rolling Standard Deviation: 

                                                  
(3) 

 

Deviation Condition: if diffi > threshold multiplier x stdi 

Traditional Top-Down Segmentation: This method recursively divides the time series into 

segments based on a maximum error threshold. 

Formulation:  

• Approximation Error:  

 

                                     (4) 

Sliding Window Segmentation: This method divides the time series into fixed-size windows, 

calculating the approximation error for each. 

                 

                                                     (5) 

Bottom-Up Segmentation: This brute-force method evaluates every possible segment and 

retains those with acceptable errors. 

    

                                   

(6) 

K-Means Clustering: An unsupervised method grouping time series data into clusters based 

on similarity. 
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                            (7) 

Dynamic Time Warping (DTW): DTW measures similarity between temporal sequences that 

may vary in speed.  

    (8) 

 

 

Error Calculation for segments: The error between the original time series and the 

approximated segment can be defined as : 

                                                                

(9) 

 

Where [a,b] is the range of the segment being evaluated. xi is the original data point 

Approximation(i) is the value of the segmented segment at index i. The total error for a left 

segment and a right segment is computed as: Total Error=Errorleft+Errorright. The criteria for 

deciding whether to accept a segment or perform further segmentation is: 

For the left segment: 

If  Errorleft <= max error then accept segment 

For the right segment: 

If Errorright <=max error then accept segment 

 

5. Results and Discussion 

SMD Dataset [19]:A similar performance trend is observed in the SMD dataset, as detailed in 

Table I. With the first maximum error value, the Top-Down algorithm outperformed the other 

two algorithms in 32 out of 45 time series, representing 71.11% of the cases. The Sliding 

Window algorithm achieved superior performance in the remaining 13 time series, accounting 

for 28.89%. Conversely, the Bottom-Up algorithm consistently exhibited the poorest 

performance across all scenarios. 

At the seventh maximum error threshold, the Top-Down algorithm maintained its dominance, 

achieving superior results across all 45 time series. However, it is crucial to acknowledge that 

the computational time for the Top-Down algorithm was the highest in every scenario, 

consistently making it the slowest among the three algorithms evaluated. 

SKAW Dataset: Figure 1 presents a comparative analysis of three prominent piecewise linear 

regression (PLR) segmentation algorithms based on the total sum of approximation errors. In 

this context, lower error values indicate better performance. The experiments were conducted 

on 10 time series from the SKAW dataset, evaluated across 7 different maximum error 
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thresholds. Each line in the figure represents the mean approximation errors averaged over the 

10 time series. 

The results clearly demonstrate that the Top-Down algorithm consistently outperforms the other 

two algorithms across all time series and for every evaluated maximum error value, with the 

Sliding Window method ranking as the second-best performer. However, it is important to note 

that the Top-Down algorithm is significantly slower in terms of computational efficiency; it is 

approximately 60 times slower than the Sliding Window method and about 10 times slower 

than the Bottom-Up approach. Notably, the Sliding Window algorithm excels in computational 

speed while still providing acceptable performance in terms of approximation errors. Figure 2 

illustrates the average computational time of the three algorithms across the 10 time series, 

evaluated over the 7 different maximum error settings. 

M4 Dataset [20]: The M4 dataset, consisting of 100 time series from various domains such as 

finance, tourism, and demographics, further corroborates the findings. Table II summarizes the 

performance of the segmentation algorithms across different maximum error values. With the 

first maximum error value, the Top-Down algorithm excelled in 65 out of 100 time series, 

representing 65% of the cases, while the Sliding Window algorithm performed best in 30 time 

series (30%) and the Bottom-Up algorithm in 5 time series (5%). As the maximum error value 

increased, the Top-Down algorithm continued to dominate, particularly at higher thresholds, 

achieving superior results in 90 out of 100 time series by the seventh maximum error setting. 

Despite its strong performance, the computational time for the Top-Down algorithm remained 

the highest among the three algorithms, echoing results seen in both the SKWA and SMD 

datasets. Figure 3 illustrates the average computational time for all three algorithms evaluated 

across the 100 time series over the various maximum error thresholds. 

TABLE I: COMPARISON OF ALGORITHM PERFORMANCE BY MAXIMUM ERROR (SMD 

DATASET) 

Algorithm Top-Down Sliding Window Bottom-Up 

Max Error 1 32 (71.11%) 13 (28.89%) 0 (0%) 

Max Error 2 34 (75.56%) 11 (22.44%) 0 (0%) 

Max Error 3 40 (88.89%) 5 (11.11%) 0 (0%) 

Max Error 4 43 (95.56%) 2 (4.44%) 0 (0%) 

Max Error 5 44 (97.78%) 1 (2.22%) 0 (0%) 

Max Error 6 44 (97.78%) 1 (2.22%) 0 (0%) 

Max Error 7 45 (100%) 0 (0%) 0 (0%) 

This revision adds the M4 dataset and its corresponding analysis, maintaining clarity while 

providing a thorough examination of the results across multiple datasets. This method begins 

by modeling the entire time series as one segment and recursively splits it at significant points 

where the error between the actual and modeled data is maximized. In the figure… blue line 

represents the original time series data, and the segmented parts highlight where the algorithm 

identified important change-points. 
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TABLE II: COMPARISON OF ALGORITHM PERFORMANCE BY MAXIMUM ERROR (M4 

DATASET) 

Algorithm Top-Down Sliding Window Bottom-Up 

Max Error 1 65 (65%) 30 (30%) 5 (5%) 

Max Error 2 70 (70%) 25 (25%) 5 (5%) 

Max Error 3 80 (80%) 15 (15%) 5 (5%) 

Max Error 4 85 (85%) 10 (10%) 5 (5%) 

Max Error 5 90 (90%) 5 (5%) 5 (5%) 

Max Error 6 90 (90%) 5 (5%) 5 (5%) 

Max Error 7 90 (90%) 0 (0%) 0 (0%) 

The Candidate-based Top-Down (CBD) method improves efficiency by identifying candidate 

split points based on deviations from the mean. These yellow highlighted segments reflect the 

points where the segmentation algorithm finds the largest errors and splits the data accordingly

. The recursion continues until the error in each segment falls below a threshold. This ensures 

that the segmentation captures global trends and structures. In real-world applications like 

trend analysis or anomaly detection, these splits would represent key changes in data behavior 

over time, helping in summarizing and interpreting large datasets. The term "Recursion Limit", 

which aligns with the Top-Down method's recursive splitting process. The recursion continues 

until the error in each segment falls below a threshold. This ensures that the segmentation 

captures global trends and structures. 

 

Figure 1:  Time Series Analysis 

The figure 1 above, showcases how the Top-Down segmentation method (specifically the 

CBD algorithm) operates by recursively splitting a time series at significant points to minimize 

approximation error, with the recursion stopping when the error threshold is met. 

 

 



                                 CBD: An Efficient Time Series Segmentation.... Bhagyashree Ambore et al. 804  
 

Nanotechnology Perceptions Vol. 20 No. S16 (2024) 

6. Conclusion 

In this paper, we conducted a comprehensive evaluation of various time series segmentation 

methods, with a particular focus on the computational efficiency of the widely used Top-Down 

approach. Our proposed method, Candidate-based Top-Down (CBD), leverages statistical 

insights and significant point identification to efficiently determine optimal segmentation 

boundaries. This approach allows CBD to maintain the high accuracy traditionally associated 

with Top-Down methods while significantly reducing computational time. 

Experimental results across multiple datasets demonstrate that CBD achieves approximation 

errors comparable to those of the conventional Top-Down method. Furthermore, CBD 

consistently outperforms other segmentation techniques, such as Sliding Window and Bottom-

Up methods. These findings suggest that CBD serves as a robust and practical alternative for 

time series segmentation, applicable across various real-world scenarios. 

While the CBD algorithm shows significant promise, several avenues for future research 

remain. Firstly, further optimization of the algorithm could be explored, particularly in the 

context of high-dimensional time series data, to enhance its scalability and applicability. 

Additionally, integrating machine learning techniques within the CBD framework presents an 

exciting opportunity to automate parameter adjustments, such as window size and threshold 

values. By dynamically adapting these parameters based on the characteristics of the dataset, 

the algorithm could improve its effectiveness across diverse domains, ensuring greater 

adaptability and performance in real-world applications. 
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