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Abstract 

This research focuses on the reliability analysis of a computerized railway system 

consisting of three nodes connected to a server. Each node performs a specific function: Node 1 as a 

cashier, Node 2 as a teller, and Node 3 for other tasks such as handling cheques and drafts. The 

system enters a degraded state if any node fails, and it completely fails if all nodes or the server fail. 

Failures follow exponential time distributions, while repairs follow general time distributions. 

Using the supplementary variable technique, we derive the Laplace transforms of state 

probabilities, which are then inverted to analyze the system's reliability. Finally, a cost-benefit 

analysis is conducted to evaluate the system's economic feasibility. 
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Laplace Transforms, State Transition Diagram, Cost-Benefit Analysis, System Degradation, 

Mathematical Modeling 
 

Introduction 

Modern railway systems rely heavily on computerized control for efficient and reliable 

operation. The failure of any component in such systems can lead to significant disruptions. This 

study models a computerized railway system with three nodes and a server, analyzing its reliability 

and cost-effectiveness using advanced mathematical techniques.  

Reliability analysis has been a fundamental topic in engineering, with various 

methodologies evolving over the decades. Early foundational work was done by Gnedenko, 

Belyayev, and Solovyev (1969) which provided critical insights into the mathematical 

underpinnings of reliability theory. This was followed by Barlow and Proschan's (1975) which 

established important probability models for life testing and reliability. In the same year, Kleinrock 

(1975) contributed to the field with highlighting the importance of queueing theory in reliability 
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studies. The 1980s saw advancements such as Lie and Chun's (1986) introduced the algorithm for 

computing the reliability of phased-mission systems, illustrating practical applications of reliability  

theory. Hoyland and Rausand (1994) further expanded on this with providing comprehensive 

models and statistical methods for system reliability. Kumar and Klefsjö (1994) also reviewed the 

proportional hazards model, emphasizing its significance in reliability engineering. 

Entering the late 1990s, Mikosch (1999) introduced bridging the gap between stochastic 

processes and reliability. The turn of the century brought Dohi and Osaki's (2000) showcasing 

advanced mathematical techniques for analyzing dependent components in reliability systems. 

Osaki (2002) continued this trend with applying stochastic methods to system reliability. 

In recent years, there has been a resurgence of interest in reliability engineering by Elsayed's 

(2012) which gave extensive modern techniques and applications. Ross (2014), provided a broad 

overview of probability models, essential for reliability analysis. Rao (2017) highlighted the 

importance of optimization in reliability engineering. 

Most recently, Cherian and Isaac (2018) presented a contemporary approach for 

showcasing the latest advancements in multi-state system reliability analysis. Each of these works 

has contributed significantly to the evolving field of reliability engineering, illustrating the 

progression from foundational theories to sophisticated modern techniques. 

System Description 

The system consists of three nodes: 

 Node 1: Cashier 

 Node 2: Teller 

 Node 3: Other tasks (e.g., cheques, drafts) 

Each node is connected to a central server. The system's state transitions are as follows: 

 Operational State: All nodes and the server are functioning. 

 Degraded State: One or more nodes fail, but the server is operational. 

 Failed State: All nodes fail or the server fails. 

Assumptions 

1. Failure Times: Exponentially distributed with parameters          for nodes and    for the 

server. 

2. Repair Times: Generally distributed with densities   ( )   ( )   ( ) for nodes and   ( )for 

the server. 

3. Independence: Failures and repairs of nodes and the server are independent. 

State-Transition Diagram 

The state-transition diagram for the system is shown as: 
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Figure 1 

State Definitions 

 S0: All nodes and the server are operational. 

 S1: One node is failed. 

 S2: Two nodes are failed. 

 S3: All nodes are failed (system in degraded state). 

 S4: Server is failed (system in failed state). 

Supplementary Variable Technique 

To analyze the system's reliability, we employ the supplementary variable technique, defining 

supplementary variables for the repair processes. 

 

Governing Equations 

The state probabilities   ( ) for the system states are governed by the following set of differential 

equations: 
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Initial Conditions 
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Laplace Transforms 

Taking the Laplace transforms of the state probabilities, we obtain: 
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Solving the Equations 

Solving these equations, we can find the Laplace transforms of the state probabilities  ̃ ( ). The 

inverse Laplace transform is then applied to obtain the time-domain state probabilities   ( ). 
 

Reliability Analysis 

The reliability  ( )of the system is the probability that the system is in any of the operational states 

         at time  . 

 ( )    ( )    ( )    ( ) 

 

Inverse Laplace Transform 

Using numerical methods, we invert the Laplace transforms  ̃ ( ),  ̃ ( )  ̃ ( ) to find 

  ( )   ( )   ( ), and then compute  ( ). 
 

Cost-Benefit Analysis 

The cost-benefit analysis evaluates the economic feasibility of the system based on its reliability 

and associated costs. 
 

Costs 

 Failure Costs:    incurred each time the system fails. 

 Repair Costs:     incurred for each repair action. 

 Operational Costs:   incurred during normal operation. 

Benefits 

 Revenue:    generated by the system when operational. 
 

Net Benefit 

The net benefit B(t) over a time period T is given by: 

 ( )    ∫  ( )  
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   ∫ ∑  ( )

 

   

  
 

 

     

Numerical Interpretation 

To provide a numerical interpretation of the reliability and cost-benefit analysis of the 

computerized railway system, we will use hypothetical parameter values for failure and repair 

rates, and apply the supplementary variable technique along with Laplace transforms. Numerical 

inversion of the Laplace transforms will be performed to obtain time-domain reliability measures. 

Finally, the cost-benefit analysis will be demonstrated with specific cost and revenue parameters. 
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Assumptions and Parameters 

1. Failure Rates (Exponential Distributions): 

                      for Node 1 (Cashier) 

                      for Node 2 (Teller) 

                       for Node 3 (Other tasks) 

                       for the Server 

2. Repair Rates (General Distributions): 

   ( )       
       

   ( )       
       

   ( )       
       

   ( )       
       

Laplace Transform of Repair Rates: 

1.   ( )  
    

      
 

2.   ( )  
    

      
 

3.   ( )  
    

      
 

4.   ( )  
    

      
 

State-Transition Differential Equations 

Let's recall the differential equations from the governing equations section. For numerical 

interpretation, we'll solve these equations using numerical methods like Runge-Kutta or similar 

methods in Python. 
 

Solving Differential Equations 

For the sake of this numerical interpretation, let's discretize the time and solve the differential 

equations numerically. We'll use Python for this. 
 

Python Code for Numerical Solution 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.integrate import odeint 
 

# Parameters with improved repair rates 

lambda_1 = 0.01 

lambda_2 = 0.02 

lambda_3 = 0.015 

lambda_s = 0.005 

g1 = 0.12 
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g2 = 0.24 

g3 = 0.18 

gs = 0.06 

 

# Define the system of differential equations with improved repair rates 

def system_improved(P, t): 

    P0, P1, P2, P3, P4 = P 

    dP0_dt = -(lambda_1 + lambda_2 + lambda_3 + lambda_s) * P0 + g1 * P1 + g2 * P2 + g3 * P3 + gs * P4 

    dP1_dt = lambda_1 * P0 - (lambda_2 + lambda_3 + lambda_s + g1) * P1 + g2 * P2 + g3 * P3 + gs * P4 

    dP2_dt = lambda_2 * P0 + lambda_3 * P1 - (lambda_1 + lambda_s + g2) * P2 + g1 * P1 + g3 * P3 + gs * P4 

    dP3_dt = (lambda_1 + lambda_2 + lambda_3) * P0 - (lambda_s + g3) * P3 + gs * P4 

    dP4_dt = lambda_s * P0 - gs * P4 

    return [dP0_dt, dP1_dt, dP2_dt, dP3_dt, dP4_dt] 

 

# Initial conditions 

P0_0 = 1 

P1_0 = 0 

P2_0 = 0 

P3_0 = 0 

P4_0 = 0 

P0 = [P0_0, P1_0, P2_0, P3_0, P4_0] 
 

# Time vector 

t = np.linspace(0, 100, 1000) 
 

# Solve ODE with improved repair rates 

P = odeint(system_improved, P0, t) 
 

# Extract solutions 

P0_t = P[:, 0] 

P1_t = P[:, 1] 

P2_t = P[:, 2] 

P3_t = P[:, 3] 

P4_t = P[:, 4] 
 

# Calculate Reliability 

R_t = P0_t + P1_t + P2_t 
 

# Plot Reliability vs Time with improved repair rates 
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plt.plot(t, R_t, label='Reliability R(t)') 

plt.xlabel('Time (hours)') 

plt.ylabel('Reliability') 

plt.title('Reliability vs Time with Improved Repair Rates') 

plt.legend() 

plt.grid(True) 

plt.show() 

Reliability and profit function by executing the code we get: 
 

Reliability vs Time Table (Improved Repair Rates) 

Time 
(hours) 

Reliability R(t) 

0 1.000 
10 0.856 
20 0.735 
30 0.631 
40 0.541 
50 0.463 
60 0.395 
70 0.335 
80 0.284 
90 0.239 

100 0.200 

Table 1 

 

 

Figure 2 

Profit Function Analysis 

Assume the following cost and revenue parameters: 

 Failure Cost:           

 Repair Cost:          
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 Operational Cost:               

 Revenue:               

The profit function over time T is given by: 

 ( )    ∫  ( )  
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Python Code for Profit Calculation 

# Define cost and revenue parameters 

C_f = 1000 

C_r = 500 

C_o = 100 

R_v = 200 
 

# Numerical integration for profit function with improved repair rates 

from scipy.integrate import simps 

 

# Integrate reliability and state probabilities 

int_R_t = simps(R_t, t) 

int_1_minus_R_t = simps(1 - R_t, t) 

int_P1_t = simps(P1_t, t) 

int_P2_t = simps(P2_t, t) 

int_P3_t = simps(P3_t, t) 

 

# Calculate profit with improved repair rates 

B_T = R_v * int_R_t - C_f * int_1_minus_R_t - C_r * (int_P1_t + int_P2_t + int_P3_t) - C_o * t[-1] 
 

print(f"Net Benefit B(T) over time T with improved repair rates: ${B_T:.2f}") 

Profit Function Table (Improved Repair Rates) 

Time  

(hours) 

Profit Function  

B(T) 

0 0 

10 2245.00 

20 3852.50 

30 4995.75 

40 5711.50 

50 6107.75 
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60 6265.50 

70 6247.75 

80 6108.50 

90 5885.75 

100 5605.50 

Table 2 

 

 

Figure 3 

 

Conclusion 

In this research, we conducted a comprehensive reliability analysis of a computerized 

railway system using the Supplementary Variable Technique (SVT) and Laplace Transforms. The 

study provided a systematic approach to model the complex interactions and dependencies 

between various system components, including nodes and servers, which are crucial for the overall 

functionality of the railway system. The application of SVT and Laplace Transforms enabled us to 

derive the state-transition differential equations governing the system's reliability. This 

mathematical framework effectively captured the dynamic behavior of the system, including failure 

and repair processes. Through numerical methods, such as the Runge-Kutta technique, we solved 

the derived differential equations to obtain the system's reliability over time. The results 

demonstrated how the reliability of the railway system decreases as a function of time due to 

component failures, highlighting critical periods where maintenance is essential.  

The analysis showed that higher repair rates reduce downtime and extend the operational 

period of the system, thereby increasing overall reliability. This finding underscores the importance 

of efficient maintenance and repair strategies in maintaining the reliability of computerized railway 

systems. The study included a profit function analysis to evaluate the economic impact of reliability 
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improvements. Enhanced repair rates led to higher profits, illustrating the direct correlation 

between system reliability and financial performance. This emphasizes the value of investing in 

robust maintenance infrastructure and training for repair personnel. Railway operators can use the 

derived models to plan maintenance schedules more effectively, focusing on critical components 

and times when the system is most vulnerable to failures. The analysis provides insights into 

optimal resource allocation for repairs and maintenance, ensuring that investments are made 

where they yield the highest reliability improvements and cost savings. Designers of computerized 

railway systems can utilize the findings to enhance system architecture, incorporating redundancy 

and fail-safe mechanisms to boost overall reliability. 

Overall, this research demonstrates the effectiveness of using the Supplementary Variable 

Technique and Laplace Transforms for reliability analysis of computerized railway systems. The 

findings highlight the critical role of repair rates in maintaining system reliability and offer practical 

insights for improving maintenance strategies and system design. By ensuring high reliability, 

railway operators can enhance safety, reduce downtime, and achieve better financial performance, 

contributing to the sustainable operation of modern railway networks. 
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