
Nanotechnology Perceptions 20 No.S1 (2024) 580-620

On the Effect of Intelligent Neurally

Processed Features on COVID–19 Fake

News Detection Performance

Selva Birunda S1, Kanniga Devi R2, Suresh Kumar N3,

Muthukannan M4

1Department of Computer Science and Engineering, Kalasalingam Academy of Research and

Education, Srivilliputhur, India, sbirunda89@gmail.com
2School of Computer Science and Engineering, Vellore Institute of Technology Chennai,

Chennai, India
3Department of Computer Science and Engineering, Kalasalingam Academy of Research and

Education, Srivilliputhur, India
4Department of Civil Engineering, KCG College of Technology, Chennai, India

Online social networks are flooded with lot of user-generated information; fake news offenders

use these online social network platforms to spread COVID fake news. This propagation of fake

news results in a low level of content truthfulness, distrust in online social networks, panic and

fear, which makes people take erroneous decisions. Hence, accurate classification of fake news

against real news is mandatory. Therefore, in this study, a novel Neurally Augmented model is

proposed to classify fake news accurately based on the content of the tweet. The proposed model

creates a novel Deep Neural Network to automatically extract the neutrally processed features for

downstream processing in a classic Machine Learning model. A neurally processed feature from

1D ConvNet is used to augment classic Machine Learning model in an attempt to improve the

classification and discriminative capability of the classic Machine Learning model.

Experimentation is done on a COVID-19 Twitter dataset curated by the authors. The proposed

methodology provides a highly accurate fake news classification of 97.25%, which is 12%

superior to the classic Machine Learning and Deep Learning models without neural augmentation.

The proposed methodology is further evaluated on the ISOT, Indian Fake News Dataset, LIAR

and Constraint Shared task COVID-19 Fake News benchmark datasets to determine its

robustness, and it achieves significant accuracy of 93.75%, 89.17%, 83.68%, and 91%,

respectively. The proposed model is tested on the proposed dataset and achieved a 5% increase in

accuracy over the benchmark datasets.

Keywords: COVID-19, Fake News, Twitter, Infodemic, Deep Neural Network, Neural

Augmentation, Machine Learning.

1 Introduction

Over the past few years, the rapid and vast adoption of online social networks has played a

crucial role in connecting people, consuming news, and sharing it across the internet in large

581 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

volumes [1]. People often fail to intensely evaluate the news shared on online social

networks and confirm their beliefs. Consequently, this impact leads to the problem of the

propagation of inaccurate information. This widespread tremendous fake news originated in

the 2016 United States presidential election [2]. Fake news is intentionally written to convey

false information, making it difficult to understand and decipher facts from fiction. Fake

news exists on almost every Online Social Networks platform, including Facebook, Twitter,

Instagram and WhatsApp [3]. The majority of fake news and rumours spread differently than

genuine news via Twitter [4]. Twitter's public tweets were mined for unstructured data that

takes various forms to propagate text, image, audio, and video [5, 6]. Recently, during the

COVID-19 pandemic, coronavirus fake news threatened the public. Some fake information

about COVID-19 treatments, medicines and cures on Twitter platform include ‘Alcohol is a

cure for COVID -19’, ‘Steaming in a bowl with towel can recover COVID-19’, ‘Eating

garlic help prevent COVID -19 infection [7]. Some of the tweets claimed as fake cures by

World Health Organization are depicted in Figure 1.

Figure 1: Tweets claimed as fake cure by World Health Organization.

Fake news on Twitter is a far bigger concern since it leads people to adapt drastic measures

if they believe the information is real. This becomes the motivation for this work to classify

real information against the fake news about COVID-19 based on the tweet content. Some of

the conventional techniques utilized for solving the issue of fake news were network

analysis, linguistic cue methods, knowledge-based approach, topic agnostic approach,

Feature extraction, Machine Learning approach, Deep Learning approach, and hybrid

approach, [37].

Social network behaviour and linked data were implemented as part of the network analysis

method [36]. Deep syntax, sentiment analysis, data representation, and semantic analysis

were all implemented as part of the linguistic cue method [36]. Crowdsourcing-oriented fact-

checking, computational-oriented fact-checking, and expert-oriented fact-checking were

implemented as part of knowledge-based approach [37]. Topic diagnostic approach

identified fake news by utilizing web mark-up capabilities and linguistic features [37].

Feature extraction was an essential part of Machine Learning to process the text as it focused

on creating features and data/word representations (vectors) from the raw data, which is

helpful for training the Machine Learning model. The vector representation connected the

human level of knowledge to the machine’s understanding. Large datasets would require

tremendous computing resources for processing. Hence, feature engineering could reduce the

compiler's processing time and maximise the efficiency rate in recognizing the word's value

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 582

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

[8]. From [49], it is stated that feature engineering technique relies heavily on data domain

expertise. However, [10] did not consider domain knowledge-associated features. Some of

the feature extraction strategies that have been utilized to extract valuable features from

textual information in classifying were Bag of Words, Term frequency – Inverted Document

Frequency (TF-IDF), N-grams, Doc2Vec, Word2Vec, Latent Semantic Analysis, Glove and

One-dimensional Convolutional Neural Network (1D-CNN) [10 – 21], [31]. The research

work in [22] proposed an approach that automatically identifies applicable features related to

fake news without any prior understanding of the domain by Long Short-Term Memory

(LSTM) and CNN. As Deep Learning models allowed for automatic feature extraction,

dependencies between words in bogus messages could be automatically recognized without

having to explicitly define them in the networks [23].

Machine Learning techniques applied for the classification of fake news in online social

networks are Naïve Bayes (NB), Support Vector Machines (SVM), Logistic Regression,

Decision Trees, K-Nearest Neighbour (KNN), Random Forest (RF), XGBoost (XGB) and

Neural Networks [10-17], [25,26]. Of which, SVM and Logistic Regression outperformed

other algorithms for the characterization approach along with the TF-IDF technique [10, 13].

Four Machine Learning algorithms were employed for COVID-19 fake news classification:

SVM with Linear kernel, Gradient Boosting (GB), Logistic Regression, and Decision Tree.

Among these, SVM outperformed other algorithms with a better F1 score. The predictions

are balanced among the two labels as they train and evaluate the model on the balanced

dataset [7]. The authors of [35] suggested users use Natural Language Processing (NLP) to

communicate with machines in human language. NLP model, namely, Passive Aggressive

Classifier, was built for classifying the tweets with TF-IDF technique [21]. During COVID-

19 pandemic, the researchers of [32] employed Machine Learning as well as Deep Learning

algorithms to determine the shipment timeframes of diagnostics and vaccines in the supply

chain. The authors of [33] utilized Machine Learning algorithms to address the issue of digit

recognition. To detect the people propagating fake news on Twitter, [34] mined the users’

tweets to obtain their 360-degree profiling using Machine Learning techniques, namely,

Logistic Regression, Random Forest and Decision Tree.

Some of the Deep Learning models applied for the classification of fake news are Recurrent

Neural Network (RNN), LSTM [10], Gated Recurrent Unit (GRU), CNN and Bidirectional

Long Short Term Memory (BiLSTM). The authors of [21] compared NLP, LSTM and GRU

models for predicting fake information on Twitter. Experimental results showed that LSTM

and GRU models could not classify satire news and classify this as real news, whereas, NLP

model could be able to classify this news as fake. Then, [22] applied three Deep Neural

Network RNN variant models to train the dataset, including LSTM, LSTM with Drop out

regularization, and LSTM integrating with CNN. Usually, RNN, as well as CNN, require

more training data. However, the proposed LSTM variant achieved better performance. But,

as suggested earlier, LSTM integrating CNN could not excel the LSTM variant as it had

insufficient training data. It required even more training data. Then, [25] experimented that

neural network models were showing better performance on the large dataset of over 100000

samples. Besides, [12] demonstrated how the abundance of corpora could help to increase

the performance. Using the enriched dataset had a considerable impact on the accuracy.

Next, Modified LSTM and Modified Gated GRU with one to three layers were applied to

583 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

classify COVID-19 tweets. Both the techniques outperformed six Machine Learning

algorithms employed by [17].

A hybrid method was proposed to classify the fake news using COVID-19 dataset.

Hybridization combined numerous CNN branches with LSTM layers of various kernel sizes

and filters. The pooled features were extracted from CNN and were fed into RNN variant

LSTM for training and classification of news articles [20]. The Deep Hybrid Learning

approach comes in different forms like early fusion and late fusion. In Early fusion, prior to

feature extraction, the fusion process happens. In Late fusion, the features are extracted, and

the fusion process happens [50]. The authors of [30] utilized the late fusion technique by

utilizing Deep Neural Network (1D-CNN) as a feature extractor from the Bangla news and

Machine Learning algorithms, namely, Random Forest, AdaBoost, K-Nearest Neighbours,

SVM and Decision Tree for classification of fake and real news.

The contribution of this research is as follows:

• A novel scrapping technique is developed for creating COVID-19 Twitter dataset for

fake news detection

• A novel Deep Neural Network feature extractor algorithm is built to neurally process

the tweets from the created dataset

• A novel Augmenter layer is constructed to extract the neurally processed feature

from the Deep Neural Network feature extractor to augment the Machine Learning

classification layers

• A novel Neurally Augmented Machine Learning classification layers namely,

Neurally Augmented Naive Bayes, Neurally Augmented Random Forest, Neurally

Augmented Gradient Boosting and Neurally Augmented Extreme Gradient

Boosting, which do not overfit the training procedure are built for assessing the

classification performance of the proposed model

2 Literature Survey

This section narrates a detailed view of the existing methodologies and datasets applied for

fake news identification and the effect of each methodology, along with its pros and cons.

Network analysis required collective human knowledge to determine the truth of new

information and verify the veracity of claims. However, this approach had been employed

for the conference call records, e-mails and not for social media tweets or microblogs [36].

Linguistic cue method found the fake news by the content writing style of the information

manipulators [36]. However, this approach was imperfect because the issues of verification

and credibility were given less priority [36]. Expert-oriented fact-checking required

professionals to manually evaluate the credibility of the news. Crowd-sourcing fact-checking

allowed collective decisions from the group of people to examine the truthfulness of the

news. Computational-oriented fact-checking checked the news as authentic or fake

automatically. This approach identified fake news by ignoring the article content and

considering topic features alone [37].

2.1 Datasets

Some of the existing fake news datasets for COVID-19 were COVID-19 FN dataset,

FakeCovid, ReCOVery, CoAID and FANG-COVID. COVID-19 FN dataset comprised of

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 584

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

10,700 tweets in English language. FakeCovid dataset contained 5,182 news articles in many

different languages with 2, 116 news articles alone in English Language. ReCOVery dataset

included 2, 029 news articles in English language. CoAID dataset comprised of 4,251 news

articles, social media posts and claims in English Language. FANG-COVID dataset included

41, 242 German news articles [FANG-COVID].

2.2 Feature Engineering in Machine Learning and Deep Learning

The effect of feature extraction in Machine Learning and Deep Learning applied for

classifying fake news, along with the pros and cons are as follows: Bag of Words technique

calculated the individual word frequency. This word frequency aided in the identification of

word usage patterns [37]. Bag of words technique failed to consider the context and position

of a word, when the textual content was converted into vector representations. Besides, these

representations resulted in data sparsity issues while considering the social media news

content [37]. N-gram was used to determine the probability distribution over word sequence

of ‘n’ length and was capable of retaining the context [17]. While using n-grams, the model

trained on one genre did not provide accurate predictions on another genre. If the training

and test corpus were not similar, n-grams could not give better results. Besides, two of the

challenges of n-grams were the Out of Vocabulary (OOV) words and sparse data issues [17].

When using machine learning algorithms to do text classification, TF-IDF was a better

feature choice than N-Gram [38]. Relevance or importance of the word in a document could

be quantified using TF-IDF by assigning weightage to the words [19]. TF-IDF technique

yielded sparse data samples, particularly for the Online Social Network data, as it had only

100 or fewer words [19]. These vector representations of words were domain-specific [20].

Latent Semantic Analysis, a dimensionality reduction technique, was used to minimize the

number of features than the previous techniques by preserving the original semantic structure

of the space and original characteristics variance [14]. Latent Semantic Analysis performed

well for the long documents. Moreover, because of the large size of the data, the efficiency

of LSA was reduced as it required more computing time and extra storage space. LSA did

not perform well on the analogy tasks. Feature engineering was domain-specific, time

consuming and required human involvement and domain knowledge. Performing automatic

feature engineering to extract features automatically without any direct human involvement

was a major challenge in Machine Learning. Hence, depending on Deep Learning, feature

extraction was employed to extract the features automatically.

Doc2Vec generated the vector representation of the document irrespective of length.

Doc2Vec and TF-IDF worked well for linear classification tasks. However, TF-IDF data

representations outperformed the Doc2Vec representations [42]. Word2Vec expressed each

word in the textual content as dense vector representations with unified dimension and

meaning. Word2Vec was capable of capturing word-to-word relationships, including

semantic and syntactic relationships. In the case of a data sequence, there was a strong

correlation among the sequence's local data. The adjacent words were highly related, and

even a word's context could approximately predict the middle word. As vectors and words

are one-to-one, the problem of polysemous (word with multiple meanings) words could not

be solved. Word2Vec failed to capture the word co-occurrence at a global level. Besides,

585 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

word2vec could not handle Out of Vocabulary (OOV) words. GloVe technique performed

better than word2vec in analogy tasks. While constructing the vectors, GloVe considered the

word pair-word pair relationship than the word-word relationships, as it tends to provide

significant meaning to the vectors. GloVe technique utilized global information and co-

occurrence matrix. 1D-CNN was used to learn and extract the local features automatically

from the training data [20]. Deep Learning models did not necessitate manual feature

engineering; instead, they have the auto feature extraction capability [24].

2.3 Machine Learning

The effect of Machine Learning techniques applied for classifying fake news and the pros

and cons are as follows: Using experience, Naive Bayes classifier predicted the membership

probabilities for each class [36]. Naïve Bayes classifier was recommended as a better

classifier for the limited dataset by [25]. Naïve Bayes assumed the features to be unrelated

and independent. Support Vector Machine performed well on more concise and smaller

datasets. It was capable of dealing with high-dimensional spaces and was memory efficient.

SVM was flexible because it could be used to determine or categorize numbers. However, it

took more training time on larger datasets [36]. Logistic regression could classify binary

inputs because of better predictive performance in probability values. It performed well with

both short and long input text, but, it struggled to capture complex relationships [41].

Decision tree transformed the data into the representation of a tree. Decision Tree had a high

likelihood of overfitting [15]. During the training period, KNN learned nothing as it was a

lazy learner, so it took less training time and much faster than other classifiers. However, it

failed to work well with large datasets [17]. Ensemble learners, namely Random Forest,

Gradient Boosting, and XGBoost, produced high accuracy because using a specific learning

technique, multiple models were trained to increase the model's performance and lower the

total error rate. Gradient Boosting tried to reduce the errors of the weak learner models and

combine the predictions from the weak learners to become a strong learner. The extension of

Gradient Boosting technique is the XGBoost, which reduces the time computation and

computational complexity of the Gradient Boosting technique [26, 29, 48].

2.4 Deep Learning

Rather than Machine Learning algorithms, Deep Learning models worked very well with the

unstructured data [24]. CNN and RNN could identify the patterns in the text data that are

complicated [27].RNN could process a variety of word embedding vectors of any dimension.

However, RNN had the drawback of memory accesses and gradient exploding. Hence,

LSTM was created to address the above issue [28, 9]. LSTM was employed to examine data

with varying lengths of time. Large data sequences have long been a problem for neural

networks. Hence, [13] employed LSTM to handle a large data sequence for the fake tweet

classification purpose. However, LSTM failed to focus on the whole context, which only

process the text in the forward direction.NLP model took into account the context and the

tone of an article, whereas the LSTM and GRU failed to consider [21]. Thus, the context

information offered by the upcoming words will be ignored in this scenario. BiLSTM was

applied to process the input sequence from both forward and backward directions to classify

fake news [28]. The recent battle against fake news on COVID-19, as well as the uncertainty

surrounding it, demonstrated the need for a hybrid approach to classify fake news [37].

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 586

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

The summary of Feature Extraction, Machine Learning, and Deep Learning techniques used

for fake news classification in existing literatures are depicted in Figure 2.

Figure 2: Summary of Feature Extraction, Machine Learning, and Deep Learning techniques

used for fake news classification in existing literatures.

2.5 Outcome of the literature survey

From the above literature survey, it is observed that the classification performance of the

Machine Learning and Deep Learning techniques are influenced by three factors: Dataset,

Feature Engineering as well as Model architecture defined or determined by hyper

parameters of the model. When it comes to dataset, the existing datasets for the COVID-19

fake news detection is too small to be processed by the Deep Learning models. While

considering feature engineering, the existing feature extractors require handcrafted feature

engineering and domain knowledge. Besides, the feature extractor fails to extract the features

automatically and consider the semantic nature of the text. The existing feature extractors

learn and process the features repeatedly by consuming maximum time and memory storage.

While considering model architecture, the existing fake news detection models utilize either

Machine Learning or Deep Learning techniques. Hybridization of these techniques is

essential to improve the classification performance. Hence, there is a need to solve these

issues to improve the classification performance.

To address the above issues, there is a need to create a COVID-19 Twitter dataset with large

quantity of tweets and a novel feature extractor, which can preserve the semantic nature of

the tweet during feature extraction, which in turn reduce the processing time and memory

consumption. In addition, there is a need for a novel model to neurally process the tweets

587 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

and uses it to augment the Machine Learning model. Hence, this research work focuses in

these aspects to improve the classification performance.

3 Proposed Methodology

The core idea of this work is, the use of Deep Neural Network to augment the classic

Machine Learning, which has a significant impact on the COVID-19 fake news classification

performance. The section 3.1 presents the proposed architecture. The section 3.2 – 3.4

present the COVID-19 twitter dataset creation, tweet pre-processing and tweet vector

representation. The section 3.5 – 3.7 present the Neurally Augmented Model (NAM), which

is constructed by integrating three Convolutional layers, three MaxPooling layers, Fully

Connected layer, Augmenter layer and Neurally Augmented (NA) Machine Learning

classification layer in its architecture.

3.1 Proposed Architecture

 The proposed architecture operates in two phases. The phase-1 creates the Deep Neural

Network feature extractor to neurally process the tweets and extract the neurally processed

features. The phase-2 creates an Augmenter layer, which extracts the neurally processed

features from the fully connected layer of phase-1 and uses it to augment the classic Machine

Learning classification layers. The overall architecture of the proposed model is depicted in

Figure 3.

Figure 3: Architecture of Neurally Augmented Model.

3.2 Dataset

This research work developed a novel snscrape script in python to create 50,000 tweets on

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 588

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

COVID-19 dataset in English language from Twitter. The COVID-19 keywords and

hashtags namely, “SARS-CoV-2”, “coronavirus”, “covid”, “@CDC”, “@WHO”, “vaccine”,

and “ncov2019” are provided as input to extract the tweets published on the duration from

January 2020 to January 2022. Using the script, 30000 tweets are gathered by crawling

tweets from official and verified Twitter handles of sources such as, the World Health

Organization, the Centers for Disease Control and Prevention, the Government of India, and

the Indian Council of Medical Research. These 30000 tweets are real tweets as they are

collected from government authentic information sources. The tweets are annotated as real as

they provide useful information regarding government policies concerning COVID-19,

safety guidelines, and the significance of vaccination. The remaining 20000 tweets are

collected from general public posts on Twitter, unverified Twitter accounts which may not

be an authentic source of information and hence considered fake tweets. The collected tweets

have three attributes: Tweet id, Tweets, and Label. Tweet id is the unique identification of

tweets. Tweets are running text with 140 characters. Label is the tag added to the tweets that

notify a model of a specific tweet so it may learn from it. Some samples of Real and Fake

COVID-19 tweet information of the dataset are illustrated in Table.1.
COVID – 19 News Information Source Label

The [#COVID19] Delta variant is dangerous and is continuing to evolve & mutate,

which requires constant evaluation & careful adjustment of the public health response.

- @DrTedros

(WHO)

Twitter
Real

A CDC study shows mRNA #COVID19 vaccines reduce risk of infection by 91%. If

you are vaccinated & still get COVID-19, there are other benefits of vaccination, like

fewer sick days & reduced risk of symptoms like fever or chills.

(CDC)

Twitter
Real

ICMR study shows #COVAXIN neutralises against multiple variants of SARS-CoV-2

and effectively neutralises the double mutant strain as

well.@MoHFW_INDIA@DeptHealthRes#IndiaFightsCOVID19#LargestVaccineDrive

(ICMR)

Twitter
Real

The symptoms of COVID-19 Delta Variant do not include fever and cough and Delta

variant gives negative RT-PCR results.

Facebook,

Twitter
Fake

The protein S generated by COVID-19 vaccines is toxic and damages many tissues in

our body.
Twitter Fake

Anaesthesia must not be used to those who have just received Covid-19 vaccine
Social

Media
Fake

Table 1. Sample dataset.

3.3 Tweet pre-processing

The created COVID -19 Twitter dataset should be free from noisy and missing data for the

model to accurately classify the reliable information against the fake news. For this, pre-

processing is required on the COVID-19 Twitter dataset, DS. The DS consisting of n tweets

is represented as DS = {(T1, Y1), (T2,Y2),.....,(Tn, Yn)}, where, Y ∈ {real, fake}. Now, each Ti

gets pre-processed by removing noisy, duplicate and missing data to reduce the storage space

and computation time. Next, the irrelevant data in tweets, such as, tweet url, square brackets,

double spaces, and punctuation, are deleted as they are unnecessary while processing the

textual content. Then, the Natural Language Processing technique, such as tokenization is

done on the tweets to split the tweets as individual tokens. Tokenization is performed using

Keras library’s Tokenizer function. Once the tweets get tokenized, the number of words in

the tokens is W. Then the stop words are removed from the tweets as these are less

informative words that have no contribution while processing the text. Next, lowercasing is

applied to alter the case of words. Finally, stemming is done to reduce a particular word to its

https://twitter.com/MoHFW_INDIA
https://twitter.com/DeptHealthRes
https://twitter.com/hashtag/IndiaFightsCOVID19?src=hashtag_click
https://twitter.com/hashtag/LargestVaccineDrive?src=hashtag_click

589 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

root word. Finally, the tweets in DS are pre-processed and are ready for actual processing.

The obtained pre-processed dataset, denoted by PD = {(PT1, Y1), (PT2, Y2),......,(PTn, Yn)}, can

maximize the accuracy of the classification model. The entire process of tweet pre-

processing is explained in algorithm 1.
Algorithm 1: Covid-19 Tweet Pre-processing

Input: DS consisting of tweets Ti = {(T1, Y1), (T2, Y2),....., (Tn, Yn) }

Output: Pre-processed Dataset, PD

for each Ti ∊ DS

 preprocess (Ti):

 PTi  ɸ

 PD  ɸ

 //URL Removal

 PTi  Eliminate (Ti, “https (s)?://(.||[a-z]||[A-Z]||[0-9]+”]))

 // Punctuation removal

 for each char (c) in PTi :

 if c ∉ punctuations:

 PTi =  PTi U c

 end if

 end for

 // Tokenization

 tokens  Tokenization (PTi)

 // Stopword removal

 W  Number of words in tokens

 S  Number of words in Stop words list

 for j = 1 to W do

 for i = 1 to S do

 if W(j) == S (i) then

 PTi  eliminate W(j)

 end if

 end for

 end for

 // Lowercasing

 for q in range (len(PTi)):

 if PTi [q].isupper():

 PTi  PTi U PTi [q].lower()

 end if

 end for

 for each PTi, apply PorterStemmer function (PS)

 PTi  PS (PTi)

 end for

 PD  PD U PTi

 end for

return PD

3.4 Tweet vector Representation

Once the pre-processed dataset, PD is obtained, each tweet, PTi (1 ≤ i ≤ n) consists of a

sequence of words. This sequence of words has to be converted into embedding vector

representations to be processed by the Deep Neural Network feature extractor to extract the

features from it. Initially, the sequence of words gets tokenized into individual words as PTi

= {w1, w2,.,....,wm}by the task of tokenization.

Next, each word wi (1 ≤ i ≤ m) in PTi is embedded using the Glove pre-trained word

embedding ‘glove.twitter.27B.100d.txt’ Dictionary (GD) to generate the embedding vectors.

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 590

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Each word wi is represented as q dimensions. The ‘q’-dimensional embedding vectors of

each word is generated by mapping wi with each word Dwi in GD. ℝq is the q-dimensional

vector space of words. wm ϵ ℝq is the q-dimensional embedding vector of the mth word.

Similarly, the dense embedding vectors for all words in the tweets consisting of features with

q dimensions f1
q
 is generated and is represented as in (1),

ET = {w1,f1
q , w2,f1

q , … . . , wm,f1
q}

The pictorial representation of tweet vector representation is illustrated in Figure 4.

Figure 4: Tweet vector representation by mapping words into numerical vectors.

Once the embedding vectors are generated, the semantically related vectors are identified to

reduce the size of embedding vectors, in order to get the reduced optimal features. Hence, to

obtain semantic-aware embedding vector representations, semantic similarity is calculated

for all the embedding vectors. The general manner of similarity calculation in Vector Space

Model is modified by considering similarity among the features. The semantic similarity

between the embedding vectors (w1,f1
q , wj=i+1,f1

q) is calculated for all the feature dimensions

of the words and is measured by (2),

 simf (wi,f1
q , wj=i+1,f1

q) =
w

i,f1
q ∗ w

j=i+1,f1
q

√w
i,f1

q ,w
i,f1

q √w
j=i+1,f1

q ,w
j=i+1,f1

q

where,

 wi,f1
q ∗ wj=i+1,f1

q indicate the product of vectors

 √wi,f1
q , wj=i+1,f1

q indicate the length of the vector w1,f1
q of d dimensions

 √wj=i+1,f1
q , wj=i+1,f1

q indicate the length of the vector wj=i+1,f1
q of d dimensions

Based upon the simf value, the two embedding vectors (w1,f1
q , wj=i+1,f1

q) with similar value

(1)

(2)

591 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

are combined into single vector representation. Similarly, the semantic similarity is

calculated for all embedding vectors in ET and similar representations are provided for the

semantically related words. These similar representations can effectively reduce the memory

storage to a large extent. The final embedding representation is updated in ET.

Phase – 1

3.5 1D ConvNet feature extractor

A Deep Neural Feature extractor namely, 1D ConvNet is proposed, which automatically

extracts the features without handcrafted feature approach designed by experts, as they are

self-learners. In addition, it has salient properties such as, sub sampling and weight sharing,

which reduces the complexity of the neural network structure and parameters. Besides, this

feature extractor is built to neurally process the tweets and extracts the optimal features out

of it. Initially, the obtained embedding representations ET is given as input to the proposed

feature extractor as the initial embedding layer. This is followed by three Convolutional

layers, three Max Pooling layers and a fully connected layer along with Dropout and Zero

Padding in its architecture.

Each Semantic-Aware embedding representations {w1,f1
q , w2,f1

q , … . . , wm,f1
q}from ET enters

the first 1D Convolutional layer (l1) with hyperparameter tuned are 128 filters, kernel size of

5, activation function ‘relu’, MaxPooling1D layer with a pool size of 2 and a regularization

dropout layer of dropout rate as 0.25. This dropout layer is added to minimize over fitting.

Now, slide 1D Kernel of size (5 X 1) over the input embedding representations to obtain the

1D Convolutional output feature maps. The generated output feature maps are of small size.

Hence, to control the reduction of output dimension while applying large filter size, zero

padding is added before the 1D convolution block. By applying zero padding, optimal

features are extracted from the Convolutional layer. Then Maxpooling1D layer reduces the

feature representation’s dimensionality, however preserving the significant informative

features.

The operation of 1St 1D Convolutional layer (l1) is illustrated in Figure 5.

Figure 5: Computation of 1D Convolutional operation.

The next convolution layer (l2) having 256 filters, kernel size of 4, activation function ‘relu’,

dropout layer with a dropout rate of 0.25, and 2nd MaxPooling1D layer with a pool size of 2.

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 592

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

This layer is followed by one more convolution layer (l3) with 256 filters, kernel size of 5,

activation function ‘relu’, dropout layer with a dropout rate of 0.25, and 3rd MaxPooling1D

layer with a pool size of 4. The fully connected layer has input with 256 units, dropout rate

as 0.25 and ‘relu’ as the activation function. This fully connected layer is the last layer of the

feature extractor.

 The hyperparameter configurations of 1D-ConvNet feature extractor are illustrated in

Table.1.

Table 1: Hyperparameter Configurations of 1D ConvNet feature extractor.
Name of the parameter Value

Max_Sequence_Length 500

Embedding dimensions 100

Number of 1D convolution

layers

3

Number of filters in each layer 128, 256

Kernel size 4, 5

Number of MaxPooling 1D

layers

3

Pool size 2, 4

Activation function ReLU

Number of hidden units present

in the dense layer

256

Number of flatten layer 1

Number of dense layer 1

Dropout 0.25

Strides 2

Then the size of the output feature map by projecting the input on the kernel at each 1D

Convolutional layer is calculated by (3),

O =
I − K + 2 ∗ P

Strides = 2
+ 1

where,

 O = Size of output feature map

 I = Size of SA

 K = Kernel size

 P = Zero Padding,

 Strides indicates kernel movement

A narrow convolution is applied between ET and Kernel K from the layer l1 to l2. The

operation of 1D forward propagation from the layer l1 to l2 is represented as given in (4),

On
(l2)

= ∑ 1d_cnn(ETm
(l1)

N(l1)

m=1
, wkmn

(l1)) + bn
(l2)

where,

(3)

(4)

593 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

 ETm
(l1)

 indicate the input of mth neuron at layer (l1)

 On
(l2)

 indicate the output of nth neuron at layer (l2)

 1d_cnn indicate Convolutional Operation

 wkmn
(l1)

 indicate the weight of the kernel filter from mth neuron in layer (l1) to the nth neuron

in layer (l2)

bn
(l2)

 indicate the bias of nth neuron in layer (l2)

N(l1) indicate the kernel filters in layer (l1).

Applying the ReLu activation function to the output of the Convolutional layer is given by

(5),

Rn
(l2)

= ReLu(On
(l2)

)

Where,

 Rn
(l2)

 is the intermediate output of (l2) before applying MaxPooling.

This layer is again followed by the 1st MaxPooling1D layer. The MaxPooled output of the

Convolutional layer (l2) is given by (6),

MPn
(l2)

= MaxPooling (Rn
(l2)

)

Where,

MPn
(l2)

 will be the input of next Convolutional layer l2.

Similarly, this operation of 1D forward propagation is repeated for all Convolutional layers

(li, 2 ≤ i ≤ p) present in 1D ConvNet feature extractor. Then pooled semantic features are

given to the fully connected layer, which flattens the learned features into one-dimensional

array and constructs a single lengthy feature map {f1, f2,......,fm} and is given by NF as in (7).

NF = {f1, f2, … . . , fm} = flatten (MP(li))

Now, the Neurally processed Features (NF) is ready for training the Neurally Augmented

Machine Learning classifiers in phase-2. The entire process of Neurally processed feature

construction is presented in algorithm 2.
Algorithm 2: Neurally processed Feature algorithm

Input: Pre-Processed dataset (PD), Glove Pre-trained Word Embedding Dictionary (GD)

Output: Neurally processed Features (NF)

// Tweet Embedding

ℝq  q-dimensional vector word space

ET  ɸ

for each PTi ∊ PD

 for each wi ∊ PTi

 for each Dwi ∊ GD

(5)

(6)

(7)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 594

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

 if (wi = = Dwi) then

 wi  Dwi

 end if

 end for

 end for

end for

ET  ET U wi

Sem_rep (ET)

// Function for Semantic Representation of Embedded Tweets

Sem_rep (ET):

 for each wi,f1
q ∊ ET

 for each wj= i+1, f1
q∊ ET

 SV = simf (wi,f1
q, wj= i+1, f1

q)

 if SV = 0 then

 ET  ET \ wi,f1
q

 end if

 end for

 end for

// Function for similarity calculation

 simf (wi,f1
q , wj=i+1,f1

q):

 val =
w

i,f1
q , w

j=i+1,f1
q

√w
i,f1

q,w
i,f1

q √w
j=i+1,f1

q ,w
j=i+1,f1

q

return val

// Function for extracting Neurally processed features

 1D-CNN (ET):

 NF  ɸ

 ET(l1)  input to Convolutional layer (l1)

 for each li , (2 ≤ i ≤ p)

 On
(li)  ∑ 1d_cnn(ETm

(li−1)N(li−1)

m=1 , wkmn

(li−1)) + bn
(li)

 Rn
(li)
 ReLu (On

(li))

 MPn
(li)
 MaxPooling (Rn

(li))

 fi flatten (MPn
(li)

)

 end for

 NF  NF U fi

 return NF

Phase – 2

3.6 Construction of Augmenter layer

Once the Neurally processed Features (NF) are extracted in phase - 1, a novel Augmenter

layer is constructed in such a way that 1D ConvNet feature extractor augments the Machine

Learning classification layers by stacking process. The extracted features are used to train

the Neurally Augmented Machine Learning classification layers.

3.7 Neurally Augmented Machine Learning classification layers

For classification purpose, the existing Machine Learning classifiers namely, Naïve Bayes,

Random Forest, Gradient Boosting, and XGBoost are modified to include the Neurally

595 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

processed features, NF. Hence, this phase constructs Neurally Augmented (NA) Machine

Learning classification layers such as, NA_Naive Bayes, NA_Random Forest, NA_Gradient

Boosting, and NA_XGBoost below the augmenter layer, which do not overfit the training

procedure. These classifiers will provide more accurate results as the model is rigorously

trained with large input datasets. More the training, better the classifier accuracy, hence, 80%

of the pre-processed tweets are given for training and 20% of pre-processed tweets are given

for testing.

The pre-processed dataset, PD = {(PT1, Y1), (PT2, Y2),......,(PTn, Yn)} is split into the training

dataset denoted by TD = {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)} where, Y ∊ {real, fake}, and

the testing dataset denoted by SD = {PTc+1 ,PTc+2,.....,PTn }. The training dataset is used for

training the Neurally Augmented Machine Learning classifiers as follows:

Neurally Augmented Naive Bayes Classification

A NA_Naive Bayes Classification layer is constructed using Training Dataset TD to identify

the best class for the test dataset SD. This layer performs COVID-19 tweet classification

based on the principle of Bayes theorem, which depends upon conditional probabilities, prior

probability, and evidence to identify posterior probability. The posterior probability of a

particular tweet PTi from SD belonging to a class Yi based on Naive Bayes is computed as in

(8),

𝐩(𝐘𝐢|𝐏𝐓𝐢) =
𝐩(𝐏𝐓𝐢|𝐘𝐢) ∗ 𝐩(𝐘𝐢)

𝐩(𝐏𝐓𝐢)

where,

Yi denotes the class labels, i ∊ {real, fake}

p(Yi) denotes the prior probability

p(PTi) denotes the evidence

Likelihood p(PTi | Yi) denotes the conditional probability

p(Yi | PTi) denotes the posterior probability

Each PTi is represented as Neurally processed features NF = {f1, f2,...., fm }. In general, Naive

Bayes considers that the features are independent of each other. Hence, the NA_Naive Bayes

classification layer assumes the Neurally processed features p(f1, f2,...., fm | Yi) are independent

to each other given the class Yi. Likelihood or Conditional probabilities are estimated

directly from TD and is computed as,

p(f1, f2, … . , fm|Yi=real) = p(f1|Yi=real) . p(f2|Yi=real) … … . . p(fm|Yi=real)
= ∏k=1

m p(fk |Yi=real)

p(f1, f2, … . , fm|Yi=fake) = p(f1|Yi=fake) . p(f2|Yi=fake) … . . p(fm|Yi=fake)
= ∏k=1

m p(fk |Yi=fake)

Prior probability p(Yi) denotes the probability of a feature occuring in a particular class and

is given by (9) and (10),

(8)

(9)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 596

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

p(Yi=real) =
Yi=real

Yi=real, fake

p(Yi=fake) =
Yi=fake

Yi=real, fake

p(f1, f2, … . , fm) denotes the evidence that a particular feature is independent from the class

label.

To find the accurate class for the SD, the decision rule of NA_Naive Bayes classification

layer is made to consider the maximum a posteriori or most likely class and is computed as

(11),

Y ’ = argmaxi ∈{real,fake) p(Yi) ∏ p(

m

k=1

fk | Yi)

For every new tweet in SD, the probability of such tweet is computed and the final predicted

class (fake or real) is decided based on the maximum a posterior or maximum probability.

The entire NA_Random Forest classification layer process is presented in algorithm 3.

Algorithm 3: Neurally Augmented Naive Bayes Classification

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn },

Neurally processed Features, NF:= { f1, f2,...., fm}

Output: class labels of SD:- Y ’∊ Yi

NA_NaiveBayes (TD, SD, NF):

 p(TDfake) =
(TD,Yi∈fake)

|TD|

 p(TDreal) =
(TD,Yi∈real)

|TD|

 for each fiεreal in NF

 conditionalprob (fiεreal)  cp(fiεreal | Yiεreal)

 end for

 for each fiεfake in NF

 conditionalprob (fiεfake)  cp(fiiεfake | Yiεfake)

 end for

// Classification

 Posteriorprob (Yiεreal | fiεreal)  conditionalprob (fiεreal) * p(TDreal)

 Posteriorprob (Yiεfake | fiεfake)  conditionalprob (fiεfake) * p(TDfake)

 mx max (Posteriorprob (Yiεreal | fiεreal), Posteriorprob (Yiεfake | fiεfake))

 i  posteriorprob(Yi | fi) (mx))

 Y ’ i

(10)

(11)

597 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

 return Y’

Neurally Augmented Random Forest Classification

A NA_Random Forest Classification layer is built using Training Dataset TD to identify the

best class for the test dataset SD. In general, Random Forest constructs n number of trees for

performing classification in order to improve the overall accuracy. Hence, NA_Random

Forest builds n trees that work on the principle of ensemble learning by combining

predictions from n trees to improve the classification performance and to make the

classification model more robust. Building n trees require bootstrap datasets BDi (1≤ i ≤ n),

which are subsets from TD and Neurally processed Features NF. Bootstrap datasets are

randomly chosen subsets using random sampling with replacement technique and each

subset trains each tree in order to get predictions of each subset.

To build a tree, a subset of features NF from BDi is selected randomly. Deciding on the

maximum number of features to split a node in a tree takes more computation; however,

selecting the subset of features will speed up the process of tree learning. Hence, among NF

features, a random feature sf is designated as the root node ‘r’. Next, the root node r is split

into m children nodes using the random split feature from remaining sf-1 features. The

procedure is repeated for constructing the remaining n-1 trees. After training, the test dataset

is passed to all the newly built trees to predict the classification results of each tree. Finally,

all the classification results are subject to majority voting to determine the maximum

possibility of the class for SD. The entire process of NA_Random Forest classification layer

is explained in algorithm 4.

Algorithm 4: Neurally Augmented Random Forest Classification

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:=

{PTc+1 , PTc+2,.....,PTn }, Neurally processed Features (NF), n trees in Forest V

Output: class labels of SD:- Y ’∊ Yi

Buildtree (TD, NF):

 V  Φ

 for i = 1 to n do

 BDi  Random Sampling with replacement (TD)

 Vi  NA_RandomForestTreeLearn (BDi , NF)

 V  V U Vi

 end for

NA_RandomForestTreeLearn (BDi, NF):

for each BDi

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 598

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

 select sf ⊆ NF

 r  random(sf)

 split r into sub nodes from (sf-1)

end

// Classification

classification(V, SD):

for each Vi ∈ V

 Traverse PTi over Vi

 Ci  predictclass

end for

Y’ = majorityvoting {C1 (PTc+1) , C2 (PTc+2),....., Cn (PTn)}

return Y’

Neurally Augmented Gradient Boost Classification

A Neurally Augmented Gradient Boosting Classification layer is built using Training Dataset

TD to identify the best class for the test dataset SD based on Neurally processed Features

NF. NA_Gradient Boosting is based on the principle of ensemble learning where n weak

learner trees are created sequentially which reduces the errors made by the previous trees.

The proposed classification layer aims to minimize the loss function (i.e. errors); hence, the

weak learners are combined to form a strong learner, which improves the accuracy of

classification. NA_Gradient Boosting initializes the model with a constant value using log

(odds), which is given by (12),

M0(x) = argminγ ∑ 𝐿(𝑌𝑖 , 𝛾)n
i=1

where,

 L – Loss function

 𝑌𝑖 - Observed classification labels of TD, Y ∊ {real = 1, fake = 0},

 𝛾 - Predicted probability obtained using log (odds)

 argmin indicates determining the log (odds) value at which the loss function is

minimal. Hence, this minimal loss function is the initial prediction for base model M0(x).

Initial prediction probability 𝛾 is calculated as in (13) and (14),

 𝑙𝑜𝑔(𝑜𝑑𝑑𝑠) = loge (pr / (1-pr))

gg

(12)

(13)

(14)

599 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

𝛾 =
1

1 + e−(loge (pr / (1−pr)))

Loss function is used to identify residuals. Once, 𝛾 is calculated, residual r is computed for

every PTi in TD as in (15),

ri = Yi − 𝛾

For each model Mmo(x) where, 1≤mo≤N, compute residuals, construct the trees, calculate

probabilities based on NF and residuals. Now these residual values are used to construct tree

t1 by branching NF instead of Yi labels. Then the weight of each leaf node wi is computed as

in (16),

wi =
∑ ri

∑[𝛾 ∗ (1 − 𝛾)]

This NA_Gradient Boosting classification layer generates learners, which minimizes the loss

function of the present model. Now every PTi in TD, compute new prediction probability

value 𝛾𝑖 as given in (17) and (18),

 g = ri + learning_rate * wi

𝛾i =
1

1 + e−(g)

Learning rate can be any value between 0 and 1, hence, 0.2 is chosen in this work, which

scales the new tree contribution resulting in accurate direction of prediction. Once, 𝛾𝑖 of ti is

calculated, residual of 𝛾𝑖 is computed and next t2 is constructed, again wi, 𝛾𝑖 of t2 is

computed. The same process is repeated until overall residuals get minimized and becomes

closer to the actual value. M0(x) along with predictions on (NF, residuals (M0(x))) and

residuals of first model together constitutes M1(x). Similarly, M1(x) along with predictions

on (NF, residuals (M1(x))) and residuals of (M2(x)) together constitutes M2(x). Finally, Mmo-

1(x) along with predictions on (NF, residuals (Mmo-1(x))) and residuals of (Mmo(x)) together

constitutes Mmo(x) and is given by (19).

Mmo(x) = Mmo-1(x) + learning_rate * K(NF, ri(Mmo(x))

To classify the tweet in SD, the prediction p is computed using (20),

p = 𝛾 + learning_rate ∗ wi(t1) + learning_rate ∗ wi(t2) +.....+ learning_rate ∗ wi(tn)

Then from p, prediction probability pp is calculated by,

(15)

(16)

(17)

(18)

(19)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 600

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

pp =
1

1+ e−p

If pp is greater than 0.5, then assign the predicted class Y ’of tweet as real, otherwise the

predicted class Y’ is fake. The entire process of NA_Gradient Boosting classification layer is

explained in algorithm 5.
Algorithm 5: Neurally Augmented Gradient Boosting Classification

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn },

Neurally processed Features (NF)

Output: class labels of SD:- Y ’∊ Yi

Initialize model, M0(x) = argminγ ∑ 𝐿(𝑌𝑖 , 𝛾)n
i=1

 //Construction of learning models

for each model, mo = 1 to N:

Mmo(x)  Φ

 // Calculation of residuals

 for every tweet PTi in TD do

 calculate r

 ri(Mmo(x)) Yi − 𝛾
 // Construction of Trees

 fit a tree tmo by branching NF with r and create leaf nodes

 lej(Mmo(x)) leaf nodes

 // Calculation of weight for each leaf node

 for each lej(Mmo(x)) j ϵ1 to k

 compute weight wi(lej(Mmo(x)))

 wi (lej(Mmo(x))) =
∑ ri

∑ of each 𝛾(1−𝛾)for each lej (Mmo(x))

 end for

 // Prediction Probability value for each NF in TD

 g = ri(Mmo(x)) + learning_rate * wi (lej(Mmo(x)))

 𝛾𝑖(Mmo(x)) =
1

1 + e−(g)

 Mmo(x)  Mmo(x) U 𝛾𝑖(Mmo(x))

 end for

end

// Classification

 for tweet PTi in SD

 p = 𝛾 + learning_rate ∗ wi (lej(M1(x))) + learning_rate ∗ wi (lej(M2(x))) +.....+

learning_rate ∗ wi (lej(Mmo(x)))

 pp =
1

(1+e−p)

 if pp ≤ 0.5 then

 Y ’ϵ real

 else

 Y ’ϵ fake

 end for

end

Neurally Augmented XGBoost Classification

A Neurally Augmented XGBoost Classification layer is built on the extended version of

NA_Gradient Boosting to minimize it’s time computation. Neural-Augmented XGBoost

Classification layer assumes a constant value as initial probability 𝛾 and computes the

residuals ri for all tweets in the TD as given by (21),

(20)

(21)

601 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

ri = Yi − 𝛾

Next, tree is constructed based on the binary splits using the computed residuals. Then

similarity weight is computed for each split with root node, left subtree and right subtree as

in (22).

sim_wi =
∑ ri

∑[𝛾 ∗ (1 − 𝛾)] + λ

where,

 λ is a regularization constant used to prevent over fitting

Based on the similarity weight, gain is computed for each split. The split with maximum gain

is chosen and the tree is grown to maximum levels and is computed by (23),

gain = sim_wt(leftsubtree) + sim_wt(rightsubtree) − sim_wt(rootnode)

Then a new probability is calculated as in (24) and (25),

g = 𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) + learning_rate * sim_wt(node)(PTi)

𝑛𝑒𝑤_𝛾i =
1

1 + e−(g)

Again residuals are computed for each tweet in TD. This process is repeated until residuals

gets minimum.

After the split, whether we should do the splitting or not is decided by pruning. Pruning is

basically executed in XGBoost by a cover value, 𝛾(1 − 𝛾), if the gain is less than the cover

value, the branch is cut.

The entire process of NA_XGBoost classification layer is explained in algorithm 6.
Algorithm 6: Neurally Augmented XGBoost Classification

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn },

Neurally processed Features (NF)

Output: class labels of SD:- Y ’∊ Yi

// Calculation of residuals

 for every tweet PTi in TD do

 calculate r, residual

 ri Yi − 𝛾

 𝛾  initialProbability

 end for

Treeconstruction(NF, ri):

begin

(22)

(23)

(24)

(25)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 602

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

 // Construction of Trees

 for each tree tn

 split a binary tree tn by branching NF into node nj with ri

 where, j ∈ {rootnode, leftsubtree, rightsubtree}

 // Calculation of similarity weight for each node

 for each nj in tn calculate

 sim_wt (nj) =
∑ ri

∑ 𝛾(1−𝛾)+ λ

 λ  regularization constant

 end for

// Calculate gain for each split(si)

 gain(si) sim_wt (leftsubtree) + sim_wt (rightsubtree) - sim_wt (rootnode)

 (si) with max(gain) is grown to levels

end

// Calculation of new probability

for every tweet PTi in TD do

 𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) loge (
𝛾

1−𝛾
)

 g  log(odds) + learning_rate * sim_wt (nj) from grown tree according to NF in (PTi)

 𝑛𝑒𝑤_𝛾𝑖 
1

1+ e−(g)

 // calculate r

 new_ri Yi − new_𝛾𝑖
Treeconstruction(NF, new_ri)

// Classification

 for tweet PTi in SD

 p = 𝛾 + learning_rate ∗ 𝑠𝑖𝑚_𝑤𝑡(t1) + learning_rate ∗ sim_wt(t2) +.....+

 learning_rate ∗ 𝑠𝑖𝑚_𝑤𝑡(tn)

 pp =
1

(1+e−p)

 if pp ≤ 0.5 then

 Y ’ϵ real

 else

 Y ’ϵ fake

 end for

end

4 Experimental Setup & Result Analysis

The experimental setup and evaluation metrics of the proposed model are presented in

sections 4.1 and 4.2. The result analysis of Neurally Augmented Model, which is done by

comparing it with other classifiers based on Machine Learning and Deep Learning

algorithms, is discussed in Section 4.3.

4.1 Experimental set-up

The Experiment is performed in system settings with core resources of Intel(R) Core(TM) i5

Processor, 8GB RAM, 500GB Hard Disk and Graphics Processing Units (GPU)

environment. The experimentations and evaluations of the proposed model are done using

603 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Python 3.7 along with the Scikit-learn library, Tensor flow, Keras, Numpy and Pandas

package. The Deep Learning-based feature extractor is implemented using the Tensor Flow

sequential API. The newly created COVID-19 Twitter dataset is given as input to assess the

proposed network’s performance.

4.2 Evaluation metrics

The performance measures for classifying fake news in the COVID-19 dataset are

manifested in this section. The efficiency of the proposed model is validated using

evaluation metrics, such as, True Positive (TP), False Negative (FN), False Positive (FP),

True Negative (TN), Precision, Recall, and F1 Score to measure Accuracy as well as Area

Under the Receiver Operating Characteristic (AUROC) Score.

True Positive – The values that are predicted correctly as actual positives.

False Negative – Negative samples incorrectly predicted as actual positives

False Positive – Positive samples incorrectly predicted as actual negatives

True Negative – The samples that are identified correctly as actual negatives

Precision metric exhibits the accuracy of the positive class and measures whether the

prediction of the positive class is correct as defined in (26) and is given by,

Precision = TP / (TP + FP)

Recall is measured as the fraction of positive classes correctly detected to the total classes as

defined in (27) and is given by,

Recall = TP / (TP + FN)

F1 Score is the weighted average score or harmonic mean of true positive (recall) and

precision as defined in (28) and is given by,

F1 Score = 2 * [(P * R) / (P + R)]

Accuracy is measured as the fraction of total of True Positive, True Negative to the total of

True Positive, False Positive, True Negative, and False Negative as defined in (29) and is

expressed as,

Accuracy = [(TP + TN)/ (TP + TN + FP + FN)]

The ROC curve is used to visualize the performance of NAM. It is referred to as a

probability curve. True positive rate gets plotted on the y-axis against the false positive rate

on the x-axis. The Area Under the Curve (AUC) is a critical parameter for assessing the

classification accuracy of the model. The larger the AUC measurement, the model can better

be able to discern between authentic and false news. AUROC Score is the measure of

predicting power of the model to differentiate the classes.

4.3 Result analysis

Phase-1

This section discusses the results obtained when tested on the created COVID – 19 Twitter

dataset. The model summary of the proposed 1D ConvNet feature extractor is given in

(26)

(27)

(28)

 (29)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 604

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Figure 6.

Figure 6: Model Summary of 1D ConvNet feature extractor.

Phase – 2

The Augmenter layer extracts Neurally processed features from the fully connected layer of

1D ConvNet feature extractor and use it to augment the Machine Learning classification

layers, NA_Naive Bayes (NA_NB), NA_Random Forest (NA_RF), NA_Gradient Boosting

(NA_GB) and NA_XGBoost (NA_XGB) for classification. The model summary of

Augmenter layer is depicted in Figure 7.

605 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Figure 7: Model Summary of the Augmenter Layer.

Learning curve is plotted to visualize the error in the predictions made by the Neurally

Augmented Machine Learning classification layers changes, when the training set size

increases or decreases. The Learning curve plots for NA_NB, NA_RF, NA_GB and

NA_XGB is depicted in Figure 8(a), 8(b), 8(c) and 8(d) respectively.

(a) Learning curve of NA_Naive Bayes

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 606

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(b) Learning curve of NA_Random Forest

(c) Learning curve of NA_Gradient Boosting

607 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(d) Learning curve of NA_XGBoost

Figure 8: Learning curves of Neurally Augmented Machine Learning classification layers

In Figure 8, Accuracy Score is plotted in X-axis and Training set size is plotted in Y-axis.

From Figure 8(a), it is observed that the training score initially increases and decreases at the

starting point and the prediction errors gets reduced and a constant training accuracy score is

maintained. Cross validation score increases above the training score initially, again it

decreases and a constant accuracy score is achieved as the training data gets added. From

Figure 8(b), it is observed that the training score is accurate as it gradually increases when

the training set size increases. Cross validation score decreases at a point after training set

size 20000 and again increases slowly after 30000. From Figure 8(c), it is observed that the

training score is accurate as the dada gets added. Cross validation score increases and

decreases initially and when the data gets added, the accuracy improves. From Figure 8(d), it

is observed that both the training score and cross validation score improves by adding the

data. It is observed that the training score and cross validation score converge with the

increase in training set size in all the cases of Neurally Augmented Machine Learning

classification layers. The prediction errors made by each classification layer get reduced

when training data is added resulting in improved accuracy.

The performance comparison of the proposed Neurally Augmented Model (NAM) in terms

of accuracy, AUROC Score, precision, recall and F1 Score are depicted in Figure 9.

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 608

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Figure 9: Performance comparison of Neurally Augmented Models.

From Figure 5, it is found that NA_NB obtains 95.01% accuracy, 0.9975 precision, 0.9191

recall, 0.9567 F1 Score and 0.9711 AUROC Score. NA_RF achieves 94.5 % accuracy,

0.9317 precision, 0.955 recall, 0.943 F1 Score and 0.9733 AUROC Score. NA_GB obtains

94.25% accuracy, 0.9194 precision, 0.97 recall, 0.944 F1 Score and 0.9447 AUROC Score.

NA_XGB achieves 97.25 percentage accuracy, 0.96 precision, 0.98 recall, 0.965 F1 Score

and 0.9624 AUROC Score. Among all the NA_Machine Learning classification layers,

NA_XGB performs well with the highest accuracy, recall and F1 Score. While considering

AUROC Score, NA_RF performs well with the highest AUROC Score. The ROC curve of

NA_NB, NA_RF, NA_GB and NA_XGB classification layers are depicted in Figure 10 (a),

10 (b), 10 (c) and 10 (d), respectively.

(a) ROC curve of NA_Naive Bayes

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Accuracy
(%)

Precision Recall F1 Score AUROC
Score

M
et

ri
c

V
a

lu
e

in
 %

Evaluation Metrics

Performance Comparison of NAM

NA_NB

NA_RF

NA_GB

NA_XGB

609 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(b) ROC curve of NA_Random Forest

(c) ROC curve of NA_Gradient Boosting

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 610

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(d) ROC curve of NA_XGBoost

Figure 10: ROC curves of Neurally Augmented Machine Learning classification layers

From Figure 10 (a), it is observed that area under the curve of False Positive Rate range is

higher resulting in 0.9711 AUROC Score. From Figure 10 (b), it is observed that area under

the curve of False Positive Rate range is higher resulting in 0.9733 AUROC Score. From

Figure 10 (c), it is observed that area under the curve of False Positive Rate range is higher

resulting in 0.9447 AUROC Score. From Figure 10 (d), it is observed that area under the

curve of False Positive Rate range is higher resulting in 0.9624 AUROC Score. The ROC

curve of Neurally Augmented Machine Learning classification layers is compared with the

non-neurally augmented Machine Learning classifiers. The ROC curve of non-neurally

augmented Machine Learning classifiers namely, Naive Bayes, Random Forest, Gradient

Boosting and XGBoost are depicted in Figure 11 (a), 11 (b), 11 (c) and 11 (d), respectively.

(a) ROC curve of NA_Naive Bayes

611 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(b) ROC curve of NA_Random Forest

(c) ROC curve of NA_Gradient Boosting

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 612

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

(d) ROC curve of NA_XGBoost

Figure 11: ROC curves of non-neurally Augmented Machine Learning classifiers

From Figure 11 (a), it is observed that area under the curve of False Positive Rate range is

lower resulting in 0.7754 AUROC Score. From Figure 11 (b), it is observed that area under

the curve of False Positive Rate range is higher resulting in 0.9057 AUROC Score. From

Figure 11 (c), it is observed that area under the curve of False Positive Rate range is higher

resulting in 0.9147 AUROC Score. From Figure 11 (d), it is observed that area under the

curve of False Positive Rate range is higher resulting in 0.9279 AUROC Score. Neurally

Augmented Naive Bayes shows 20% increased performance over non-neurally Augmented

Naive Bayes. Neurally Augmented Random Forest shows 7% increased performance over

non-neurally Augmented Random Forest. Neurally Augmented Gradient Boosting shows 3%

increased performance over non-neurally Augmented Gradient Boosting. Neurally

Augmented XGBoost shows 4% increased performance over non-neurally Augmented

XGBoost. Considering the false positive rate range, Neurally Augmented Machine Learning

classifier layers classifies the real and fake news better than the non-neurally augmented

classifiers.

5 Discussion

In online social networks, the most challenging task is the spread of fake news. Posting fake

news regarding COVID-19 is still making the situation worse. The major factors influencing

Machine Learning and, Deep Learning techniques are feature extraction and data. This work

aims to design a Neurally Augmented Model for the accurate, automatic and timely detection

of COVID-19 fake news on Twitter platforms. NAM is created with the capability of

automatic feature extraction and to augment the Deep Neural Network with the classic

Machine Learning. A Deep Neural Network feature extractor, 1D ConvNet, is used for

automatic feature extraction. To deal with the limited datasets, COVID-19 twitter datasets

are created with 50000 tweets and are given as input to NAM. The tweet dataset undergoes

pre-processing to remove noise from the dataset. After pre-processing, the Semantic-Aware

613 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

tweet vector representation of tweets is created using a pre-trained embedding,

‘glove.twitter.27B.100d.txt’. These vector representations form an embedding matrix, which

is added as the first embedding layer of the feature extractor. This extractor extracts the

Neurally processed significant features from the tweets. These features are extracted by the

Augmenter layer from the fully connected layer of the feature extractor and use it to augment

the Machine Learning classification layers for classification. NA_NB, NA_RF, NA_GB, and

NA_XGB, are trained to learn the patterns and is made to classify the test tweets. The

performance of NAM is measured in terms of accuracy, precision, recall, F1-Score and

AUROC Score. NA_XGB classification layer obtains 97.25% accuracy, 0.96 precision, 0.98

recall, 0.965 F1 Score and 0.9624 AUROC Score to detect the fake news.

To further investigate the performance of the proposed model, experiments are done by

comparing the proposed model with the Machine Learning and, Deep Learning models

without neural augmentation in terms of Accuracy, F1 Score as depicted in Figure 12.

Figure 12: Performance Comparison of Machine Learning and Deep Learning models with

and without Neural Augmentation.

From Figure 12, it is found that the existing NB classifier without Neural Augmentation

achieves 67.12% accuracy and 0.6563 F1 Score. RF achieves 80.86% accuracy and 0.8429

F1 Score. GB obtains 82.88% accuracy and 0.82 F1 Score. XGB achieves 81.52% accuracy

and 0.81 F1 Score. Existing Deep Learning model 1D-CNN without Neural Augmentation

obtains 51.4% accuracy and 0.679 F1 Score. In contrast, the proposed NA_NB obtains

95.01% accuracy and 0.9567 F1 Score. NA_RF obtains 94.5% accuracy and 0.943 F1 Score.

NA_GB obtains 94.25% accuracy and 0.944 F1 Score. NA_XGB obtains 97.25% accuracy

and 0.965 F1 Score. Machine Learning, and Deep Learning models with and without neural

augmentation in terms of Precision and recall are depicted in Figure 13.

NB RF GB XGB
1D-

CNN

NA_

NB

NA_

RF

NA_

GB

NA_

XGB

Without Neural

Augmentation

With Neural

Augmentation

Accuracy (%) 0.6712 0.8086 0.8288 0.8152 0.514 0.9501 0.945 0.9425 0.9725

F1 Score 0.6563 0.8429 0.82 0.81 0.679 0.9567 0.943 0.944 0.965

0

0.2

0.4

0.6

0.8

1

1.2

M
et

ri
c

V
a
lu

e
in

 %

Performance Comparison of Machine Learning and

Deep Learning models with and without Neural

Augmentation

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 614

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Figure 13: Precision and recall Comparison of Machine Learning, Deep Learning models

with and without Neural Augmentation

From Figure 13, it is found that the existing Machine Learning model NB without Neural

Augmentation achieves 0.8783 precision and 0.5239 recall. RF obtains 0.8292 precision and

0.8571 recall. GB obtains 0.88 precision and 0.84 recall. XGB achieves 0.87 precision and

0.83 recall. Deep Learning model 1D-CNN without Neural Augmentation obtains 0.87

precision and 0.82 recall. In contrast, NA_NB obtains 0.9975 precision and 0.9191 recall.

NA_RF obtains 0.9317 precision and 0.955 recall. NA_GB obtains 0.9194 precision and

0.97 recall. NA_XGB obtains 0.96 precision and 0.98 recall.

Consequently, the proposed Neurally Augmented Model outperforms the Machine Learning

and, Deep Learning models without Neural Augmentation by 12% and 10% in terms of

accuracy and F1 Score.

5.1 Performance analysis of NAM on the benchmark datasets

The proposed model has experimented on the benchmark datasets like LIAR, IFND, ISOT

and Constraint Shared Task ‘COVID-19 Fake News Dataset’ to further evaluate its

robustness. The LIAR dataset is a freely accessible benchmark labelled dataset obtained

from politifact.com with 1.4MB size. It consists of 12K short news samples with six labels

false, true, mostly true, half true, pants-on-fire and barely true. Indian Fake News Dataset

(IFND) is a publicly available large-scale Indian dataset that includes text of 4.77MB in size.

It consists of 48K news samples with binary labels as fake or true. ISOT dataset is collected

from reuters.com and kaggle.com with 86.6 MB size. It consists of 44K news samples with

binary labels as fake or true. Each news sample has a length of more than 200 characters.

COVID-19 Fake News Dataset in Constraint shared task ‘COVID 19 FN’ is collected from

social media posts, press releases, news articles and tweets from government accounts with

NB RF GB XGB
1D-

CNN

NA_N

B

NA_R

F

NA_G

B

NA_X

GB

Without Neural Augmentation With Neural Augmentation

precision 0.8783 0.8292 0.88 0.87 0.87 0.9975 0.9317 0.9194 0.96

Recall 0.5239 0.8571 0.84 0.83 0.82 0.9191 0.955 0.97 0.98

0

0.2

0.4

0.6

0.8

1

1.2

M
et

ri
c

V
a

lu
e

in
 %

Precision and Recall Comparison of Machine Learning

and Deep Learning models with and without Neural

Augmentation

615 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

2MB in size. It consists of 10K tweet samples with binary labels as real or fake. The

experimentation results are shown in Figure 14.

Figure 14: Performance Comparison of NAM model on the benchmark datasets and

proposed COVID-19 Twitter dataset.

From Figure 14, it is revealed that the proposed model achieves 83.68%, 89.17%, 93.75%,

91% and 97.25% accuracy for the LIAR, IFND, ISOT, COVID 19 FN benchmark datasets

and the proposed COVID-19 Twitter dataset, respectively. Consequently, the proposed

model performs well for the COVID-19 Twitter dataset than all the benchmark datasets.

5.2 Performance analysis of the proposed model and existing works based on the benchmark

datasets

The performance analysis of the proposed model on the four benchmark datasets is

compared with the previous works on the benchmark datasets and is tabulated in Table-2.

Table 2: Performance comparison of the proposed model with existing works on ISOT,

IFND, LIAR and COVID-19 FN benchmark datasets.
Re

f

Techniq

ues

Datasets ISOT IFND LIAR COVID 19

FN

ISO

T

IFN

D

LIAR COVI

D 19

FN

Accur

acy

F1

Score

Accur

acy

F1

Score

Accur

acy

F1

Score

Acc

urac

y

F1

Score

[4
3]

DT,

SGD

✓ - - - 89 - - - - - - -

SVM,

LR

✓ - - - 84 - - - - - - -

Linear

SVM

✓ - - - 92 - - - - - - -

KNN ✓ - - - 83 - - - - - - -

[4

4]

NB - ✓ - - - - 87.5 - - - - -

RF - ✓ - - - - 89 - - - - -

[4

5]

Bagging - - ✓ - - - - - - 70 - -

83.68

89.17

91

93.75

97.25

0 20 40 60 80 100 120

LIAR

IFND

Constraint Shared…

ISOT

COVID - 19 Twitter

Performance Comparison of NAM on the Benchmark and

proposed COVID - 19 Twitter datasets

Accuracy (%)

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 616

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

AdaBoos - - ✓ - - - - - - 70 - -

RF - - ✓ - - - - - - 65 - -

Extra

Trees

- - ✓ - - - - - - 62 - -

XGBoos

t

- - ✓ - - - - - - 62 - -

[4

6]

NB - - ✓ - - - - - 60 56 - -

SVM - - ✓ - - - - - 59 59 - -

LR - - ✓ - - - - - 58 58 - -

RF - - ✓ - - - - - 58 55 - -

Decision

Tree

- - ✓ - - - - - 57 57 - -

Gaussian

Naïve
Bayes

- - ✓ - - - - - 56 56 - -

KNN - - ✓ - - - - - 50 50 - -

[4

7]

SVM - - ✓ - - - - - 55.76

+/-
0.003

2

- - -

Naïve

Bayes

- - ✓ - - - - - 56.37

+/-
0.004

7

- - -

Auto

encoder
(Finance

)

✓ - - - 81.25 - - - - - - -

Auto

encoder
(Govern

ment)

✓ - - - 79.25 - - - - - - -

[7

]

DT - - - ✓ - - - - - - 85.3

7

85.39

GDBT - - - ✓ - - - - - - 86.9

6

86.96

Pr

op
os

ed

NAM ✓ ✓ ✓ ✓ 93.75 93.89 89.17 92.02 83.68 84.42 91 91.04

From Table 2, it is found that the proposed model obtains 93.75%, 89.17%, 83.68% and

91%accuracy for the ISOT, IFND, LIAR and COVID-19 FN benchmark datasets,

respectively. The existing works utilizing classic Machine Learning techniques obtain

accuracy ranging from 81.25% to 92% on the ISOT dataset, 87.5% to 89% on the IFND

dataset, 50% to 60% on the LIAR dataset and 85.37% to 86.96% on the COVID-19 FN

dataset. Similarly, the proposed model obtains the highest F1 Score of 93.89, 92.02, 84.42

and 91.04 on the ISOT, IFND, LIAR and COVID 19 FN datasets, respectively.

From the overall result analysis, it is concluded that the proposed model with Augmentation

outperforms the existing non-neural augmented Machine Learning, and Deep Learning

models and achieves high accurate detection of fake news. This model is successful in

detecting fake news prevailing on the Twitter platform.

6 Conclusion

This paper creates a Neurally Augmented model, which augments 1D ConvNet with the

617 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

Machine Learning classification layers. 1D ConvNet processes the features neurally and

these high-level neurally processed features are automatically extracted using the Augmenter

layer and are augmented to create the NA_Naive Bayes, NA_Random Forest, NA_Gradient

Boosting and NA_XGBoost classification layers for training and classification. The

performance of the proposed model is assessed by experimenting it on the created COVID-

19 Twitter dataset. The experimental results show that the proposed model classifies the

COVID-19 fake news propagating on Twitter by achieving 97.25% accuracy, 0.96 precision,

0.98 recall, 0.965 F1 Score and 0.9624 AUROC Score. In addition, the proposed model is

compared with non-neural augmented Machine Learning and Deep Learning models and it is

found that there is a 12% increase in accuracy and a 10% increase in F1 Score. To

investigate the robustness of the proposed model, it is tested on the proposed dataset and

achieved a 5% increase in accuracy over the benchmark datasets. As a future research

direction, the model could be extended further by using Deep Transfer Learning and unified

word embeddings for feature extraction. Besides, the neutrosophic field could be utilized to

handle the prediction errors to improve the classification performance further.

References
1. K. Shu, A. Sliva, S. Wang, J. Tang, H. Liu, Fake news detection on social media: A data mining

perspective. ACM SIGKDD explorations newsletter. vol.19, no.1, 2017, pp. 22 - 36,

https://doi.org/10.1145/3137597.3137600.

2. A. Bovet, H. A. Makse, Influence of fake news in Twitter during the 2016 US presidential election.

Nature communications. vol. 10, no.1, 2019, pp. 1-14, https://doi.org/10.1038/s41467-018-

07761-2.

3. G. Shrivastava, P. Kumar, R. P. Ojha, P. K. Srivastava, S. Mohan, G. Srivastava, Defensive

modelling of fake news through online social networks. IEEE Transactions on Computational

Social Systems, vol. 7, no.5, 2020, pp. 1159-1167,

https://doi.org/10.1109/tcss.2020.3014135.

4. C. Castillo, M. Mendoza, B. Poblete, "Information credibility on twitter," In Proceedings of the

20th international conference on World wide web, 2011, pp. 675-684,

https://doi.org/10.1145/1963405.1963500.

5. M. Al-Zaman, COVID-19-Related social media fake news in India. Journalism and Media, vol.2,

no.1, 2021, pp.100-114, https://doi.org/10.3390/journalmedia2010007.

6. T. K. Das, P. M. Kumar, Big data analytics: A framework for unstructured data analysis.

International Journal of Engineering Science & Technology. vol.5, no.1, 2013, pp.153.

7. P. Patwa, S. Sharma, S. Pykl, V. Guptha, G. Kumari, M. S. Akhtar, T. Chakraborty, "Fighting an

infodemic: Covid-19 fake news dataset," In International Workshop on Combating On line

Ho st ile Posts in Regional Languages dur ing Emerge ncy Si tuation, 2021, pp. 21-29.

Springer, Cham, arXiv:2011.03327.

8. S. Selva Birunda, R. Kanniga Devi, “A Review on Word Embedding Techniques for Text

Classification,” In Innovative Data Communication Technologies and Application, 2021, pp.

267-281. Springer, Singapore, https://doi.org/10.1007/978-981-15-9651-3_23.

9. A. Shewalkar, D. nyavanandi, S. Ludwig, Performance Evaluation of Deep neural networks

Applied to Speech Recognition: Rnn, LSTM and GRU. Journal of Artificial Intelligence and

Soft Computing Research, 9(4), 2019, 235–245. https://doi.org/10.2478/jaiscr-2019-0006.

10. E. M. Mahir, S. Akhter, M. R. Huq, "Detecting fake news using machine learning and deep

learning algorithms," In 2019 7th International Conference on Smart Computing &

Communications (ICSCC), 2019, pp. 1-5. IEEE, https://doi.org/10.1109/icscc.2019.8843612.

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 618

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

11. V. Suhasini, N. Vimala, A Hybrid TF-IDF and N-Grams Based Feature Extraction Approach for

Accurate Detection of Fake News on Twitter Data. Turkish Journal of Computer and

Mathematics Education, vol, 12, no.6, 2021, pp. 5710-5723.

12. F. I. Adiba, T. Islam, M. S. Kaiser, M. Mahmud, M. A. Rahman. Effect of corpora on

classification of fake news using naive Bayes classifier. International Journal of Automation,

Artificial Intelligence and Machine Learning, vol. 1, no.1, 2020, pp. 80-92.

13. H. Kudarvalli, J. Fiaidhi, Experiments on Detecting Fake News using Machine Learning

Algorithms. International Journal of Reliable Information and Assurance, 8, 2020, pp. 15-26,

DOI:10.21742/IJRIA.2020.8.1.03.

14. N. R. de Oliveira, D. S. Medeiros, D. M. Mattos, A sensitive stylistic approach to identify fake

news on social networking. IEEE Signal Processing Letters, 27, 2020, pp. 1250-1254,

https://doi.org/10.1109/lsp.2020.3008087.

15. S. Helmstetter, H. Paulheim, "Weakly supervised learning for fake news detection on Twitter," In

2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM), 2018, pp. 274-277. IEEE,

https://doi.org/10.1109/asonam.2018.8508520.

16. D. Keskar, S. Palwe, A. Gupta, "Fake news classification on twitter using flume, n-gram analysis,

and decision tree machine learning technique," In Proceeding of International Conference on

Computational Science and Applications, 2020, pp. 139-147. Springer, Singapore,

https://doi.org/10.1007/978-981-15-0790-8_15.

17. D. S. Abdelminaam, F. H. Ismail, M. Taha, A. Taha, E. H. Houssein, A. Nabil, CoAID-DEEP: an

optimized intelligent framework for automated detecting COVID-19 misleading information

on Twitter. Ieee Access, 9, 2021, pp. 27840-27867,

https://doi.org/10.1109/access.2021.3058066.

18. S. S. Birunda, R. Kanniga Devi, "A Novel Score-Based Multi-Source Fake News Detection using

Gradient Boosting Algorithm," In 2021 International Conference on Artificial Intelligence

and Smart Systems (ICAIS), 2021, pp. 406-414. IEEE,

https://doi.org/10.1109/icais50930.2021.9395896.

19. X. Dong, U. Victor, L. Qian, Two-path deep semi supervised learning for timely fake news

detection. IEEE Transactions on Computational Social Systems, vol.7, no.6, 2020, pp. 1386-

1398, https://doi.org/10.1109/tcss.2020.3027639.

20. J. A. Nasir, O. S. Khan, I. Varlamis, Fake news detection: A hybrid CNN-RNN based deep

learning approach. International Journal of Information Management Data Insights, vol.1,

no.1, 2021, pp. 100007, https://doi.org/10.1016/j.jjimei.2020.100007.

21. E. Cueva, G. Ee, A. Iyer, A. Pereira, A. Roseman, D. Martinez, "Detecting Fake News on Twitter

Using Machine Learning Models," In 2020 IEEE MIT Undergraduate Research Technology

Conference (URTC), 2020, pp. 1-5. IEEE, https://doi.org/10.1109/urtc51696.2020.9668872.

22. O. Ajao, D. Bhowmik, S. Zargari, "Fake news identification on twitter with hybrid cnn and rnn

models," In Proceedings of the 9th international conference on social media and society,

2018, pp. 226-230, https://doi.org/10.1145/3217804.3217917.

23. M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, E. Muharemagic, Deep

learning applications and challenges in big data analytics. Journal of big data. vol. 2, no.1,

2015, pp. 1-21, https://doi.org/10.1186/s40537-014-0007-7.

24. K. Karthikayani, A. R. Arunachalam, "A survey on deep learning feature extraction techniques,"

In AIP Conference Proceedings, vol. 2282, no. 1, 2020, pp. 020035. AIP Publishing LLC,

https://doi.org/10.1063/5.0028564.

25. J. Y. Khan, M. Khondaker, T. Islam, A. Iqbal, S. Afroz,A benchmark study on machine learning

methods for fake news detection, 2019, arXiv:1905.04749,

https://doi.org/10.1016/j.mlwa.2021.100032.

26. I. Ahmad, M. Yousaf, S. Yousaf, M. O. Ahmad, Fake news detection using machine learning

619 Selva Birunda S et al. On the Effect of Intelligent Neurally....

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

ensemble methods. Complexity, 2020, https://doi.org/10.1155/2020/8885861.

27. P. Bahad, P. Saxena, R. Kamal, Fake news detection using bi-directional LSTM-recurrent neural

network, Procedia Computer Science, 165, 2019, pp. 74-82,

https://doi.org/10.1016/j.procs.2020.01.072.

28. R. K. Kaliyar, A. Goswami, P. Narang, "A Hybrid Model for Effective Fake News Detection with

a Novel COVID-19 Dataset." In ICAART, (2), 2021, pp. 1066-1072,

https://doi.org/10.5220/0010316010661072.

29. C. Brunner, A. Ko, S. Fodor, An Autoencoder-Enhanced Stacking Neural Network Model for

Increasing the Performance of Intrusion Detection. Journal of Artificial Intelligence and Soft

Computing Research, 12(2), 2021, 149–163. https://doi.org/10.2478/jaiscr-2022-0010.

30. Q. A. R. Adib, M. H. K. Mehedi, M. S. Sakib, K. K. Patwary, M. S. Hossain, A. A. Rasel, “A

Deep Hybrid Learning Approach to Detect Bangla Fake News,” in 2021 5th International

Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2021, pp.

442-447. IEEE, https://doi.org/10.1109/ismsit52890.2021.9604712.

31. S. S. Birunda, R. K. Devi, Improving Energy Efficient Aspect of Spam Classification Framework

using Ensemble Machine Learning. Solid State Technology, vol. 63, no.5, 2020, pp.9032-

9039.

32. M. B. Mariappan, K. Devi, Y. Venkataraman, M. K. Lim, P. Theivendren, Using AI and ML to

predict shipment times of therapeutics, diagnostics and vaccines in e-pharmacy supply chains

during COVID-19 pandemic. The International Journal of Logistics Management, 2022,

https://doi.org/10.1108/ijlm-05-2021-0300.

33. R. Kanniga Devi, G. Elizabeth Rani, "A Comparative Study on Handwritten Digit Recognizer

using Machine Learning Technique," In 2019 IEEE International Conference on Clean

Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES),

2019, pp. 1-5. IEEE, https://doi.org/10.1109/incces47820.2019.9167748.

34. R. Kanniga Devi, A Machine Learning-based Online Social Network Analysis for 360-degree

User Profiling. International Journal of Innovative Technology and Exploring Engineering

(IJITEE), vol. 9, no. 2S2, 2019, pp. 992-998, https://doi.org/10.35940/ijitee.b1103.1292s219

35. C. Tapsai, P. Meesad, C. Haruechaiyasak, Natural Language Interface to Database for Data

Retrieval and Processing. Applied Science and Engineering Progress, vol. 14, no.3, 2021, pp.

435-446, https://doi.org/10.14416/j.asep.2020.05.003.

36. K. Stahl, Fake news detection in social media, California State University Stanislaus, 6, 2018, 4-

15.

37. D. D. Beer, M. Matthee, Approaches to identify fake news: A systematic literature review, In

International Conference on Integrated Science, 2020, pp. 13-22, Springer, Cham,

https://doi.org/10.1007/978-3-030-49264-9_2.

38. R. Ahuja, A. Chug, S. Kohli, S. Gupta, P. Ahuja, The impact of features extraction on the

sentiment analysis, Procedia Computer Science, 152, 2019, 341-348,

https://doi.org/10.1016/j.procs.2019.05.008.

39. A. K. Yadav, S. K. Borgohain, Sentence generation from a bag of words using N-gram model, In

2014 IEEE International Conference on Advanced Communications, Control and Computing

Technologies, 2014, pp. 1771-1776, IEEE, https://doi.org/10.1109/icaccct.2014.7019414.

40. D. Kim, D. Seo, S. Cho, P. Kang, Multi-co-training for document classification using various

document representations: TF–IDF, LDA, and Doc2Vec, Information Sciences, 477, 2019,

15-29, https://doi.org/10.1016/j.ins.2018.10.006.

41. M. S. Mokhtar, Y. Y. Jusoh, N. Admodisastro, N. Pa, A. Y. Amruddin, Fakebuster: Fake news

detection system using logistic regression technique in machine learning. International

Journal of Engineering and Advanced Technology, 9(1), 2019, 2407-2410,

https://doi.org/10.35940/ijeat.a2633.109119.

42. M. M. Truşcă, Efficiency of SVM classifier with Word2Vec and Doc2Vec models. In Proceedings

 On the Effect of Intelligent Neurally…. Selva Birunda S et al. 620

Nanotechnology Perceptions Vol. 20 No.S1 (2024)

of the International Conference on Applied Statistics, Vol. 1, No. 1, 2019, pp. 496-503),

https://doi.org/10.2478/icas-2019-0043.

43. H. Ahmed, I. Traore, S. Saad, Detection of online fake news using n-gram analysis and machine

learning techniques, In International conference on intelligent, secure, and dependable

systems in distributed and cloud environments, 2017, pp. 127-138, Springer.

https://doi.org/10.1007/978-3-319-69155-8_9.

44. D. K. Sharma, S. Garg, IFND: a benchmark dataset for fake news detection. Complex &

Intelligent Systems, 2021, 1-21.

45. L. Waikhom, R. S. Goswami, Fake news detection using machine learning. In Proceedings of

International Conference on Advancements in Computing & Management (ICACM), 2019.

46. S. Garg, D. K. Sharma, Phony news detection using Machine Learning and Deep-Learning

techniques, In 2020 9th International Conference System Modelling and Advancement in

Research Trends, 2020, pp. 27-32, IEEE. https://doi.org/10.1109/smart50582.2020.9337120.

47. V. T. Priyanga, J. P. Sanjanasri, V. K. Menon, E. A. Gopalakrishnan, K. P. Soman, Exploring fake

news identification using word and sentence embeddings. Journal of Intelligent & Fuzzy

Systems, 2021, 1-8.

48. S. A. Ludwig, Applying a Neural Network Ensemble to Intrusion Detection. Journal of Artificial

Intelligence and Soft Computing Research, 9(3), 2019, 177–188.

https://doi.org/10.2478/jaiscr-2019-0002.

49. U. Khurana, H. Samulowitz, D. Turaga, Feature engineering for predictive modeling using

reinforcement learning, In Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 32, No. 1, 2018, https://doi.org/10.1609/aaai.v32i1.11678.

50. A. R. Kothamachu, B. Chakraborty, Real Time Gait based Person Authentication using Deep

Hybrid Network. In 2021 IEEE 4th International Conference on Knowledge Innovation and

Invention (ICKII), 2021, (pp. 155-159). IEEE,

https://doi.org/10.1109/ICKII51822.2021.9574763.

