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Online social networks are flooded with lot of user-generated information; fake news offenders 

use these online social network platforms to spread COVID fake news. This propagation of fake 

news results in a low level of content truthfulness, distrust in online social networks, panic and 

fear, which makes people take erroneous decisions. Hence, accurate classification of fake news 

against real news is mandatory. Therefore, in this study, a novel Neurally Augmented model is 

proposed to classify fake news accurately based on the content of the tweet. The proposed model 

creates a novel Deep Neural Network to automatically extract the neutrally processed features for 

downstream processing in a classic Machine Learning model. A neurally processed feature from 

1D ConvNet is used to augment classic Machine Learning model in an attempt to improve the 

classification and discriminative capability of the classic Machine Learning model. 

Experimentation is done on a COVID-19 Twitter dataset curated by the authors. The proposed 

methodology provides a highly accurate fake news classification of 97.25%, which is 12% 

superior to the classic Machine Learning and Deep Learning models without neural augmentation. 

The proposed methodology is further evaluated on the ISOT, Indian Fake News Dataset, LIAR 

and Constraint Shared task COVID-19 Fake News benchmark datasets to determine its 

robustness, and it achieves significant accuracy of 93.75%, 89.17%, 83.68%, and 91%, 

respectively. The proposed model is tested on the proposed dataset and achieved a 5% increase in 

accuracy over the benchmark datasets.    

 

Keywords: COVID-19, Fake News, Twitter, Infodemic, Deep Neural Network, Neural 

Augmentation, Machine Learning.  

 

1 Introduction 

Over the past few years, the rapid and vast adoption of online social networks has played a 

crucial role in connecting people, consuming news, and sharing it across the internet in large 
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volumes [1]. People often fail to intensely evaluate the news shared on online social 

networks and confirm their beliefs. Consequently, this impact leads to the problem of the 

propagation of inaccurate information. This widespread tremendous fake news originated in 

the 2016 United States presidential election [2]. Fake news is intentionally written to convey 

false information, making it difficult to understand and decipher facts from fiction. Fake 

news exists on almost every Online Social Networks platform, including Facebook, Twitter, 

Instagram and WhatsApp [3]. The majority of fake news and rumours spread differently than 

genuine news via Twitter [4]. Twitter's public tweets were mined for unstructured data that 

takes various forms to propagate text, image, audio, and video [5, 6]. Recently, during the 

COVID-19 pandemic, coronavirus fake news threatened the public. Some fake information 

about COVID-19 treatments, medicines and cures on Twitter platform include ‘Alcohol is a 

cure for COVID -19’, ‘Steaming in a bowl with towel can recover COVID-19’, ‘Eating 

garlic help prevent COVID -19 infection [7]. Some of the tweets claimed as fake cures by 

World Health Organization are depicted in Figure 1. 

 

Figure 1: Tweets claimed as fake cure by World Health Organization. 

Fake news on Twitter is a far bigger concern since it leads people to adapt drastic measures 

if they believe the information is real. This becomes the motivation for this work to classify 

real information against the fake news about COVID-19 based on the tweet content. Some of 

the conventional techniques utilized for solving the issue of fake news were network 

analysis, linguistic cue methods, knowledge-based approach, topic agnostic approach, 

Feature extraction, Machine Learning approach, Deep Learning approach, and hybrid 

approach, [37].  

Social network behaviour and linked data were implemented as part of the network analysis 

method [36]. Deep syntax, sentiment analysis, data representation, and semantic analysis 

were all implemented as part of the linguistic cue method [36]. Crowdsourcing-oriented fact-

checking, computational-oriented fact-checking, and expert-oriented fact-checking were 

implemented as part of knowledge-based approach [37]. Topic diagnostic approach 

identified fake news by utilizing web mark-up capabilities and linguistic features [37]. 

Feature extraction was an essential part of Machine Learning to process the text as it focused 

on creating features and data/word representations (vectors) from the raw data, which is 

helpful for training the Machine Learning model. The vector representation connected the 

human level of knowledge to the machine’s understanding. Large datasets would require 

tremendous computing resources for processing. Hence, feature engineering could reduce the 

compiler's processing time and maximise the efficiency rate in recognizing the word's value 
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[8]. From [49], it is stated that feature engineering technique relies heavily on data domain 

expertise. However, [10] did not consider domain knowledge-associated features. Some of 

the feature extraction strategies that have been utilized to extract valuable features from 

textual information in classifying were Bag of Words, Term frequency – Inverted Document 

Frequency (TF-IDF), N-grams, Doc2Vec, Word2Vec, Latent Semantic Analysis, Glove and 

One-dimensional Convolutional Neural Network (1D-CNN) [10 – 21], [31]. The research 

work in [22] proposed an approach that automatically identifies applicable features related to 

fake news without any prior understanding of the domain by Long Short-Term Memory 

(LSTM) and CNN. As Deep Learning models allowed for automatic feature extraction, 

dependencies between words in bogus messages could be automatically recognized without 

having to explicitly define them in the networks [23].  

Machine Learning techniques applied for the classification of fake news in online social 

networks are Naïve Bayes (NB), Support Vector Machines (SVM), Logistic Regression, 

Decision Trees, K-Nearest Neighbour (KNN), Random Forest (RF), XGBoost (XGB) and 

Neural Networks [10-17], [25,26]. Of which, SVM and Logistic Regression outperformed 

other algorithms for the characterization approach along with the TF-IDF technique [10, 13]. 

Four Machine Learning algorithms were employed for COVID-19 fake news classification: 

SVM with Linear kernel, Gradient Boosting (GB), Logistic Regression, and Decision Tree. 

Among these, SVM outperformed other algorithms with a better F1 score. The predictions 

are balanced among the two labels as they train and evaluate the model on the balanced 

dataset [7]. The authors of [35] suggested users use Natural Language Processing (NLP) to 

communicate with machines in human language. NLP model, namely, Passive Aggressive 

Classifier, was built for classifying the tweets with TF-IDF technique [21]. During COVID-

19 pandemic, the researchers of [32] employed Machine Learning as well as Deep Learning 

algorithms to determine the shipment timeframes of diagnostics and vaccines in the supply 

chain. The authors of [33] utilized Machine Learning algorithms to address the issue of digit 

recognition. To detect the people propagating fake news on Twitter, [34] mined the users’ 

tweets to obtain their 360-degree profiling using Machine Learning techniques, namely, 

Logistic Regression, Random Forest and Decision Tree. 

Some of the Deep Learning models applied for the classification of fake news are Recurrent 

Neural Network (RNN), LSTM [10], Gated Recurrent Unit (GRU), CNN and Bidirectional 

Long Short Term Memory (BiLSTM). The authors of [21] compared NLP, LSTM and GRU 

models for predicting fake information on Twitter. Experimental results showed that LSTM 

and GRU models could not classify satire news and classify this as real news, whereas, NLP 

model could be able to classify this news as fake. Then, [22] applied three Deep Neural 

Network RNN variant models to train the dataset, including LSTM, LSTM with Drop out 

regularization, and LSTM integrating with CNN. Usually, RNN, as well as CNN, require 

more training data. However, the proposed LSTM variant achieved better performance. But, 

as suggested earlier, LSTM integrating CNN could not excel the LSTM variant as it had 

insufficient training data. It required even more training data. Then, [25] experimented that 

neural network models were showing better performance on the large dataset of over 100000 

samples. Besides, [12] demonstrated how the abundance of corpora could help to increase 

the performance. Using the enriched dataset had a considerable impact on the accuracy. 

Next, Modified LSTM and Modified Gated GRU with one to three layers were applied to 
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classify COVID-19 tweets. Both the techniques outperformed six Machine Learning 

algorithms employed by [17].  

A hybrid method was proposed to classify the fake news using COVID-19 dataset. 

Hybridization combined numerous CNN branches with LSTM layers of various kernel sizes 

and filters. The pooled features were extracted from CNN and were fed into RNN variant 

LSTM for training and classification of news articles [20]. The Deep Hybrid Learning 

approach comes in different forms like early fusion and late fusion. In Early fusion, prior to 

feature extraction, the fusion process happens. In Late fusion, the features are extracted, and 

the fusion process happens [50]. The authors of [30] utilized the late fusion technique by 

utilizing Deep Neural Network (1D-CNN) as a feature extractor from the Bangla news and 

Machine Learning algorithms, namely, Random Forest, AdaBoost, K-Nearest Neighbours, 

SVM and Decision Tree for classification of fake and real news.  

The contribution of this research is as follows: 

• A novel scrapping technique is developed for creating COVID-19 Twitter dataset for 

fake news detection  

• A novel Deep Neural Network feature extractor algorithm is built to neurally process 

the tweets from the created dataset   

• A novel Augmenter layer is constructed to extract the neurally processed feature 

from the Deep Neural Network feature extractor to augment the Machine Learning 

classification layers  

• A novel Neurally Augmented Machine Learning classification layers namely, 

Neurally Augmented Naive Bayes, Neurally Augmented Random Forest, Neurally 

Augmented Gradient Boosting and Neurally Augmented Extreme Gradient 

Boosting, which do not overfit the training procedure are built for assessing the 

classification performance of the proposed model 

2 Literature Survey 

This section narrates a detailed view of the existing methodologies and datasets applied for 

fake news identification and the effect of each methodology, along with its pros and cons. 

Network analysis required collective human knowledge to determine the truth of new 

information and verify the veracity of claims. However, this approach had been employed 

for the conference call records, e-mails and not for social media tweets or microblogs [36]. 

Linguistic cue method found the fake news by the content writing style of the information 

manipulators [36]. However, this approach was imperfect because the issues of verification 

and credibility were given less priority [36]. Expert-oriented fact-checking required 

professionals to manually evaluate the credibility of the news. Crowd-sourcing fact-checking 

allowed collective decisions from the group of people to examine the truthfulness of the 

news. Computational-oriented fact-checking checked the news as authentic or fake 

automatically. This approach identified fake news by ignoring the article content and 

considering topic features alone [37]. 

2.1 Datasets 

Some of the existing fake news datasets for COVID-19 were COVID-19 FN dataset, 

FakeCovid, ReCOVery, CoAID and FANG-COVID. COVID-19 FN dataset comprised of 
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10,700 tweets in English language. FakeCovid dataset contained 5,182 news articles in many 

different languages with 2, 116 news articles alone in English Language. ReCOVery dataset 

included 2, 029 news articles in English language. CoAID dataset comprised of 4,251 news 

articles, social media posts and claims in English Language. FANG-COVID dataset included 

41, 242 German news articles [FANG-COVID].  

 

2.2 Feature Engineering in Machine Learning and Deep Learning 

The effect of feature extraction in Machine Learning and Deep Learning applied for 

classifying fake news, along with the pros and cons are as follows: Bag of Words technique 

calculated the individual word frequency. This word frequency aided in the identification of 

word usage patterns [37]. Bag of words technique failed to consider the context and position 

of a word, when the textual content was converted into vector representations. Besides, these 

representations resulted in data sparsity issues while considering the social media news 

content [37]. N-gram was used to determine the probability distribution over word sequence 

of ‘n’ length and was capable of retaining the context [17]. While using n-grams, the model 

trained on one genre did not provide accurate predictions on another genre. If the training 

and test corpus were not similar, n-grams could not give better results. Besides, two of the 

challenges of n-grams were the Out of Vocabulary (OOV) words and sparse data issues [17]. 

When using machine learning algorithms to do text classification, TF-IDF was a better 

feature choice than N-Gram [38]. Relevance or importance of the word in a document could 

be quantified using TF-IDF by assigning weightage to the words [19]. TF-IDF technique 

yielded sparse data samples, particularly for the Online Social Network data, as it had only 

100 or fewer words [19]. These vector representations of words were domain-specific [20]. 

Latent Semantic Analysis, a dimensionality reduction technique, was used to minimize the 

number of features than the previous techniques by preserving the original semantic structure 

of the space and original characteristics variance [14]. Latent Semantic Analysis performed 

well for the long documents. Moreover, because of the large size of the data, the efficiency 

of LSA was reduced as it required more computing time and extra storage space. LSA did 

not perform well on the analogy tasks. Feature engineering was domain-specific, time 

consuming and required human involvement and domain knowledge. Performing automatic 

feature engineering to extract features automatically without any direct human involvement 

was a major challenge in Machine Learning. Hence, depending on Deep Learning, feature 

extraction was employed to extract the features automatically.    

Doc2Vec generated the vector representation of the document irrespective of length. 

Doc2Vec and TF-IDF worked well for linear classification tasks. However, TF-IDF data 

representations outperformed the Doc2Vec representations [42]. Word2Vec expressed each 

word in the textual content as dense vector representations with unified dimension and 

meaning. Word2Vec was capable of capturing word-to-word relationships, including 

semantic and syntactic relationships. In the case of a data sequence, there was a strong 

correlation among the sequence's local data. The adjacent words were highly related, and 

even a word's context could approximately predict the middle word. As vectors and words 

are one-to-one, the problem of polysemous (word with multiple meanings) words could not 

be solved. Word2Vec failed to capture the word co-occurrence at a global level. Besides, 
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word2vec could not handle Out of Vocabulary (OOV) words. GloVe technique performed 

better than word2vec in analogy tasks. While constructing the vectors, GloVe considered the 

word pair-word pair relationship than the word-word relationships, as it tends to provide 

significant meaning to the vectors. GloVe technique utilized global information and co-

occurrence matrix. 1D-CNN was used to learn and extract the local features automatically 

from the training data [20]. Deep Learning models did not necessitate manual feature 

engineering; instead, they have the auto feature extraction capability [24]. 

2.3 Machine Learning  

The effect of Machine Learning techniques applied for classifying fake news and the pros 

and cons are as follows: Using experience, Naive Bayes classifier predicted the membership 

probabilities for each class [36]. Naïve Bayes classifier was recommended as a better 

classifier for the limited dataset by [25]. Naïve Bayes assumed the features to be unrelated 

and independent. Support Vector Machine performed well on more concise and smaller 

datasets. It was capable of dealing with high-dimensional spaces and was memory efficient. 

SVM was flexible because it could be used to determine or categorize numbers. However, it 

took more training time on larger datasets [36]. Logistic regression could classify binary 

inputs because of better predictive performance in probability values. It performed well with 

both short and long input text, but, it struggled to capture complex relationships [41]. 

Decision tree transformed the data into the representation of a tree. Decision Tree had a high 

likelihood of overfitting [15]. During the training period, KNN learned nothing as it was a 

lazy learner, so it took less training time and much faster than other classifiers. However, it 

failed to work well with large datasets [17]. Ensemble learners, namely Random Forest, 

Gradient Boosting, and XGBoost, produced high accuracy because using a specific learning 

technique, multiple models were trained to increase the model's performance and lower the 

total error rate. Gradient Boosting tried to reduce the errors of the weak learner models and 

combine the predictions from the weak learners to become a strong learner. The extension of 

Gradient Boosting technique is the XGBoost, which reduces the time computation and 

computational complexity of the Gradient Boosting technique [26, 29, 48]. 

2.4 Deep Learning  

Rather than Machine Learning algorithms, Deep Learning models worked very well with the 

unstructured data [24]. CNN and RNN could identify the patterns in the text data that are 

complicated [27].RNN could process a variety of word embedding vectors of any dimension. 

However, RNN had the drawback of memory accesses and gradient exploding. Hence, 

LSTM was created to address the above issue [28, 9]. LSTM was employed to examine data 

with varying lengths of time. Large data sequences have long been a problem for neural 

networks. Hence, [13] employed LSTM to handle a large data sequence for the fake tweet 

classification purpose. However, LSTM failed to focus on the whole context, which only 

process the text in the forward direction.NLP model took into account the context and the 

tone of an article, whereas the LSTM and GRU failed to consider [21]. Thus, the context 

information offered by the upcoming words will be ignored in this scenario. BiLSTM was 

applied to process the input sequence from both forward and backward directions to classify 

fake news [28]. The recent battle against fake news on COVID-19, as well as the uncertainty 

surrounding it, demonstrated the need for a hybrid approach to classify fake news [37]. 
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The summary of Feature Extraction, Machine Learning, and Deep Learning techniques used 

for fake news classification in existing literatures are depicted in Figure 2. 

 

 

Figure 2: Summary of Feature Extraction, Machine Learning, and Deep Learning techniques 

used for fake news classification in existing literatures. 

2.5 Outcome of the literature survey 

From the above literature survey, it is observed that the classification performance of the 

Machine Learning and Deep Learning techniques are influenced by three factors: Dataset, 

Feature Engineering as well as Model architecture defined or determined by hyper 

parameters of the model. When it comes to dataset, the existing datasets for the COVID-19 

fake news detection is too small to be processed by the Deep Learning models. While 

considering feature engineering, the existing feature extractors require handcrafted feature 

engineering and domain knowledge. Besides, the feature extractor fails to extract the features 

automatically and consider the semantic nature of the text. The existing feature extractors 

learn and process the features repeatedly by consuming maximum time and memory storage. 

While considering model architecture, the existing fake news detection models utilize either 

Machine Learning or Deep Learning techniques. Hybridization of these techniques is 

essential to improve the classification performance. Hence, there is a need to solve these 

issues to improve the classification performance. 

To address the above issues, there is a need to create a COVID-19 Twitter dataset with large 

quantity of tweets and a novel feature extractor, which can preserve the semantic nature of 

the tweet during feature extraction, which in turn reduce the processing time and memory 

consumption. In addition, there is a need for a novel model to neurally process the tweets 
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and uses it to augment the Machine Learning model. Hence, this research work focuses in 

these aspects to improve the classification performance.  

3 Proposed Methodology 

The core idea of this work is, the use of Deep Neural Network to augment the classic 

Machine Learning, which has a significant impact on the COVID-19 fake news classification 

performance. The section 3.1 presents the proposed architecture. The section 3.2 – 3.4 

present the COVID-19 twitter dataset creation, tweet pre-processing and tweet vector 

representation. The section 3.5 – 3.7 present the Neurally Augmented Model (NAM), which 

is constructed by integrating three Convolutional layers, three MaxPooling layers, Fully 

Connected layer, Augmenter layer and Neurally Augmented (NA) Machine Learning 

classification layer in its architecture.  

3.1 Proposed Architecture 

  The proposed architecture operates in two phases. The phase-1 creates the Deep Neural 

Network feature extractor to neurally process the tweets and extract the neurally processed 

features. The phase-2 creates an Augmenter layer, which extracts the neurally processed 

features from the fully connected layer of phase-1 and uses it to augment the classic Machine 

Learning classification layers. The overall architecture of the proposed model is depicted in 

Figure 3. 

 

Figure 3: Architecture of Neurally Augmented Model. 

3.2 Dataset 

This research work developed a novel snscrape script in python to create 50,000 tweets on 
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COVID-19 dataset in English language from Twitter. The COVID-19 keywords and 

hashtags namely, “SARS-CoV-2”, “coronavirus”, “covid”, “@CDC”, “@WHO”, “vaccine”, 

and “ncov2019” are provided as input to extract the tweets published on the duration from 

January 2020 to January 2022. Using the script, 30000 tweets are gathered by crawling 

tweets from official and verified Twitter handles of sources such as, the World Health 

Organization, the Centers for Disease Control and Prevention, the Government of India, and 

the Indian Council of Medical Research. These 30000 tweets are real tweets as they are 

collected from government authentic information sources. The tweets are annotated as real as 

they provide useful information regarding government policies concerning COVID-19, 

safety guidelines, and the significance of vaccination. The remaining 20000 tweets are 

collected from general public posts on Twitter, unverified Twitter accounts which may not 

be an authentic source of information and hence considered fake tweets. The collected tweets 

have three attributes: Tweet id, Tweets, and Label. Tweet id is the unique identification of 

tweets. Tweets are running text with 140 characters. Label is the tag added to the tweets that 

notify a model of a specific tweet so it may learn from it. Some samples of Real and Fake 

COVID-19 tweet information of the dataset are illustrated in Table.1. 
COVID – 19 News Information Source Label 

The [#COVID19] Delta variant is dangerous and is continuing to evolve & mutate, 

which requires constant evaluation & careful adjustment of the public health response. 

- @DrTedros 

(WHO) 

Twitter 
Real 

A CDC study shows mRNA #COVID19 vaccines reduce risk of infection by 91%. If 

you are vaccinated & still get COVID-19, there are other benefits of vaccination, like 

fewer sick days & reduced risk of symptoms like fever or chills. 

(CDC) 

Twitter 
Real 

ICMR study shows #COVAXIN neutralises against multiple variants of SARS-CoV-2 

and effectively neutralises the double mutant strain as 

well.@MoHFW_INDIA@DeptHealthRes#IndiaFightsCOVID19#LargestVaccineDrive 

(ICMR) 

Twitter 
Real 

The symptoms of COVID-19 Delta Variant do not include fever and cough and Delta 

variant gives negative RT-PCR results. 

Facebook, 

Twitter 
Fake 

The protein S generated by COVID-19 vaccines is toxic and damages many tissues in 

our body. 
Twitter Fake 

Anaesthesia must not be used to those who have just received Covid-19 vaccine 
Social 

Media 
Fake 

Table 1. Sample dataset. 

3.3 Tweet pre-processing 

The created COVID -19 Twitter dataset should be free from noisy and missing data for the 

model to accurately classify the reliable information against the fake news. For this, pre-

processing is required on the COVID-19 Twitter dataset, DS. The DS consisting of n tweets 

is represented as DS = {(T1, Y1), (T2,Y2),.....,(Tn, Yn)}, where, Y ∈ {real, fake}. Now, each Ti 

gets pre-processed by removing noisy, duplicate and missing data to reduce the storage space 

and computation time. Next, the irrelevant data in tweets, such as, tweet url, square brackets, 

double spaces, and punctuation, are deleted as they are unnecessary while processing the 

textual content. Then, the Natural Language Processing technique, such as tokenization is 

done on the tweets to split the tweets as individual tokens. Tokenization is performed using 

Keras library’s Tokenizer function. Once the tweets get tokenized, the number of words in 

the tokens is W. Then the stop words are removed from the tweets as these are less 

informative words that have no contribution while processing the text. Next, lowercasing is 

applied to alter the case of words. Finally, stemming is done to reduce a particular word to its 

https://twitter.com/MoHFW_INDIA
https://twitter.com/DeptHealthRes
https://twitter.com/hashtag/IndiaFightsCOVID19?src=hashtag_click
https://twitter.com/hashtag/LargestVaccineDrive?src=hashtag_click
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root word. Finally, the tweets in DS are pre-processed and are ready for actual processing. 

The obtained pre-processed dataset, denoted by PD = {(PT1, Y1), (PT2, Y2),......,(PTn, Yn)}, can 

maximize the accuracy of the classification model. The entire process of tweet pre-

processing is explained in algorithm 1.   
Algorithm 1: Covid-19 Tweet Pre-processing  

Input: DS consisting of tweets Ti = {(T1, Y1),  (T2, Y2),....., (Tn, Yn) } 

Output: Pre-processed Dataset, PD  

for each Ti ∊ DS  

  preprocess (Ti): 

               PTi  ɸ 

              PD  ɸ 

           //URL Removal 

                           PTi  Eliminate (Ti, “https (s)?://(.||[a-z]||[A-Z]||[0-9]+”]))       

          // Punctuation removal    

             for each char (c) in PTi : 

                  if c ∉ punctuations: 

                          PTi =  PTi U c 

                 end if 

            end for 

          // Tokenization 

                           tokens  Tokenization (PTi)       

         // Stopword removal    

             W  Number of words in tokens   

             S  Number of words in Stop words list  

             for j = 1 to W do  

             for i = 1 to S do  

                  if W(j) == S (i) then 

                           PTi  eliminate W(j)    

                 end if 

            end for 

            end for 

        // Lowercasing    

             for q in range (len(PTi)): 

                  if PTi [q].isupper(): 

                           PTi  PTi U PTi [q].lower()   

                   end if 

            end for 

            for each PTi, apply PorterStemmer function (PS)    

                           PTi  PS (PTi) 

            end for    

            PD  PD U PTi 

        end for 

return PD 

3.4 Tweet vector Representation 

Once the pre-processed dataset, PD is obtained, each tweet, PTi (1 ≤ i ≤ n) consists of a 

sequence of words. This sequence of words has to be converted into embedding vector 

representations to be processed by the Deep Neural Network feature extractor to extract the 

features from it. Initially, the sequence of words gets tokenized into individual words as PTi 

= {w1, w2,.,....,wm}by the task of tokenization.  

Next, each word wi (1 ≤ i ≤ m) in PTi is embedded using the Glove pre-trained word 

embedding ‘glove.twitter.27B.100d.txt’ Dictionary (GD) to generate the embedding vectors. 
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Each word wi is represented as q dimensions. The ‘q’-dimensional embedding vectors of 

each word is generated by mapping wi with each word Dwi in GD. ℝq is the q-dimensional 

vector space of words. wm ϵ ℝq is the q-dimensional embedding vector of the mth word. 

Similarly, the dense embedding vectors for all words in the tweets consisting of features with 

q dimensions f1
q
 is generated and is represented as in (1),  

ET = {w1,f1
q , w2,f1

q , … . . , wm,f1
q}  

The pictorial representation of tweet vector representation is illustrated in Figure 4.  

 

 

 

Figure 4: Tweet vector representation by mapping words into numerical vectors. 

Once the embedding vectors are generated, the semantically related vectors are identified to 

reduce the size of embedding vectors, in order to get the reduced optimal features. Hence, to 

obtain semantic-aware embedding vector representations, semantic similarity is calculated 

for all the embedding vectors. The general manner of similarity calculation in Vector Space 

Model is modified by considering similarity among the features. The semantic similarity 

between the embedding vectors (w1,f1
q , wj=i+1,f1

q) is calculated for all the feature dimensions 

of the words and is measured by (2),  

 simf (wi,f1
q , wj=i+1,f1

q )    =     
w

i,f1
q     ∗     w

j=i+1,f1
q  

√w
i,f1

q ,w
i,f1

q     √w
j=i+1,f1

q ,w
j=i+1,f1

q
 

where,  

            wi,f1
q    ∗   wj=i+1,f1

q indicate the product of vectors 

           √wi,f1
q , wj=i+1,f1

q   indicate the length of the vector w1,f1
q of d dimensions 

          √wj=i+1,f1
q , wj=i+1,f1

q indicate the length of the vector wj=i+1,f1
q of d dimensions 

Based upon the simf value, the two embedding vectors (w1,f1
q , wj=i+1,f1

q) with similar value 

(1) 

(2) 
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are combined into single vector representation. Similarly, the semantic similarity is 

calculated for all embedding vectors in ET and similar representations are provided for the 

semantically related words. These similar representations can effectively reduce the memory 

storage to a large extent. The final embedding representation is updated in ET.  

Phase – 1 

3.5 1D ConvNet feature extractor 

A Deep Neural Feature extractor namely, 1D ConvNet is proposed, which automatically 

extracts the features without handcrafted feature approach designed by experts, as they are 

self-learners. In addition, it has salient properties such as, sub sampling and weight sharing, 

which reduces the complexity of the neural network structure and parameters. Besides, this 

feature extractor is built to neurally process the tweets and extracts the optimal features out 

of it. Initially, the obtained embedding representations ET is given as input to the proposed 

feature extractor as the initial embedding layer. This is followed by three Convolutional 

layers, three Max Pooling layers and a fully connected layer along with Dropout and Zero 

Padding in its architecture.  

Each Semantic-Aware embedding representations {w1,f1
q , w2,f1

q , … . . , wm,f1
q}from ET enters 

the first 1D Convolutional layer (l1) with hyperparameter tuned are 128 filters, kernel size of 

5, activation function ‘relu’, MaxPooling1D layer with a pool size of 2 and a regularization 

dropout layer of dropout rate as 0.25. This dropout layer is added to minimize over fitting. 

Now, slide 1D Kernel of size (5 X 1) over the input embedding representations to obtain the 

1D Convolutional output feature maps. The generated output feature maps are of small size. 

Hence, to control the reduction of output dimension while applying large filter size, zero 

padding is added before the 1D convolution block. By applying zero padding, optimal 

features are extracted from the Convolutional layer. Then Maxpooling1D layer reduces the 

feature representation’s dimensionality, however preserving the significant informative 

features.  

The operation of 1St 1D Convolutional layer (l1) is illustrated in Figure 5. 

 

Figure 5: Computation of 1D Convolutional operation. 

The next convolution layer (l2) having 256 filters, kernel size of 4, activation function ‘relu’, 

dropout layer with a dropout rate of 0.25, and 2nd MaxPooling1D layer with a pool size of 2. 
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This layer is followed by one more convolution layer (l3) with 256 filters, kernel size of 5, 

activation function ‘relu’, dropout layer with a dropout rate of 0.25, and 3rd MaxPooling1D 

layer with a pool size of 4. The fully connected layer has input with 256 units, dropout rate 

as 0.25 and ‘relu’ as the activation function. This fully connected layer is the last layer of the 

feature extractor.   

 The hyperparameter configurations of 1D-ConvNet feature extractor are illustrated in 

Table.1.  

Table 1: Hyperparameter Configurations of 1D ConvNet feature extractor. 
Name of the parameter Value 

Max_Sequence_Length 500 

Embedding dimensions 100 

Number of 1D convolution 

layers 

3 

Number of filters in each layer 128, 256 

Kernel size 4, 5 

Number of MaxPooling 1D 

layers 

3 

Pool size 2, 4 

Activation function ReLU 

Number of hidden units present 

in the dense layer 

256 

Number of flatten layer 1 

Number of dense layer 1 

Dropout 0.25 

Strides 2 

Then the size of the output feature map by projecting the input on the kernel at each 1D 

Convolutional layer is calculated by (3),  

O =  
I − K + 2 ∗ P 

Strides = 2
+  1 

where,  

           O = Size of output feature map 

           I = Size of SA 

           K = Kernel size  

           P = Zero Padding,  

           Strides indicates kernel movement  

A narrow convolution is applied between ET and Kernel K from the layer l1 to l2. The 

operation of 1D forward propagation from the layer l1 to l2 is represented as given in (4),  

On
(l2)

=  ∑ 1d_cnn(ETm
(l1)

N(l1)

m=1
, wkmn

(l1 )) + bn
(l2)

 

where,  

(3) 

 

(4) 
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 ETm
(l1 )

 indicate the input of mth neuron at layer (l1)  

 On
(l2)

  indicate the output of nth neuron at layer (l2) 

  1d_cnn indicate Convolutional Operation  

 wkmn
(l1)

 indicate the weight of the kernel filter from mth neuron in layer (l1) to the nth neuron 

in layer (l2) 

bn
(l2)

 indicate the bias of nth neuron in layer (l2) 

N(l1) indicate the kernel filters in layer (l1).  

 

Applying the ReLu activation function to the output of the Convolutional layer is given by 

(5),  

Rn
(l2)

= ReLu(On
(l2)

) 

Where,  

 Rn
(l2)

 is the intermediate output of (l2) before applying MaxPooling. 

 

This layer is again followed by the 1st MaxPooling1D layer. The MaxPooled output of the 

Convolutional layer (l2) is given by (6),  

MPn
(l2)

= MaxPooling (Rn
(l2)

) 

Where,  

MPn
(l2)

 will be the input of next Convolutional layer l2.  

Similarly, this operation of 1D forward propagation is repeated for all Convolutional layers 

(li, 2 ≤ i ≤ p) present in 1D ConvNet feature extractor. Then pooled semantic features are 

given to the fully connected layer, which flattens the learned features into one-dimensional 

array and constructs a single lengthy feature map {f1, f2,......,fm} and is given by NF as in (7).  

NF = {f1, f2, … . . , fm} =  flatten (MP(li)) 

Now, the Neurally processed Features (NF) is ready for training the Neurally Augmented 

Machine Learning classifiers in phase-2. The entire process of Neurally processed feature 

construction is presented in algorithm 2.   
Algorithm 2: Neurally processed Feature algorithm   

Input: Pre-Processed dataset (PD), Glove Pre-trained Word Embedding Dictionary (GD)   

Output: Neurally processed Features (NF)  

// Tweet Embedding 

ℝq  q-dimensional vector word space    

ET  ɸ 

for each PTi ∊ PD 

   for each wi ∊ PTi 

      for each Dwi ∊ GD 

(5) 

(6) 

(7) 
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          if (wi = = Dwi) then  

              wi  Dwi
 

          end if 

   end for 

   end for 

end for 

ET  ET U wi  

Sem_rep (ET) 

 

// Function for Semantic Representation of Embedded Tweets 

Sem_rep (ET): 

           for each wi,f1
q ∊ ET 

                 for each wj= i+1,   f1
q∊ ET  

                        SV = simf (wi,f1
q, wj= i+1,   f1

q) 

                             if SV = 0 then  

                                     ET  ET \ wi,f1
q 

                               end if 

                 end for 

             end for 

 

// Function for similarity calculation 

 simf (wi,f1
q , wj=i+1,f1

q):      

                val   =     
w

i,f1
q , w

j=i+1,f1
q 

√w
i,f1

q,w
i,f1

q √w
j=i+1,f1

q ,w
j=i+1,f1

q
 

return val 

 

// Function for extracting Neurally processed features 

 1D-CNN (ET): 

    NF  ɸ         

                ET(l1)  input to Convolutional layer (l1)  

              for each li , (2 ≤ i ≤ p)  

                               On
(li)  ∑ 1d_cnn(ETm

(li−1)N(li−1)

m=1 , wkmn

(li−1 )) + bn
(li) 

                               Rn
(li)
  ReLu (On

(li)) 

                              MPn
(li)
  MaxPooling (Rn

(li)) 

                               fi   flatten (MPn
(li)

) 

                  end for 

  NF  NF U fi 

  return NF 

Phase – 2 

3.6 Construction of Augmenter layer 

Once the Neurally processed Features (NF) are extracted in phase - 1, a novel Augmenter 

layer is constructed in such a way that 1D ConvNet feature extractor augments the Machine 

Learning classification layers by stacking process. The extracted features are used to train 

the Neurally Augmented Machine Learning classification layers. 

3.7 Neurally Augmented Machine Learning classification layers 

For classification purpose, the existing Machine Learning classifiers namely, Naïve Bayes, 

Random Forest, Gradient Boosting, and XGBoost are modified to include the Neurally 
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processed features, NF. Hence, this phase constructs Neurally Augmented (NA) Machine 

Learning classification layers such as, NA_Naive Bayes, NA_Random Forest, NA_Gradient 

Boosting, and NA_XGBoost below the augmenter layer, which do not overfit the training 

procedure. These classifiers will provide more accurate results as the model is rigorously 

trained with large input datasets. More the training, better the classifier accuracy, hence, 80% 

of the pre-processed tweets are given for training and 20% of pre-processed tweets are given 

for testing.  

The pre-processed dataset, PD = {(PT1, Y1), (PT2, Y2),......,(PTn, Yn)} is split into the training 

dataset denoted by TD = {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc )}  where, Y ∊ {real, fake}, and 

the testing dataset denoted by SD = {PTc+1 ,PTc+2,.....,PTn }. The training dataset is used for 

training the Neurally Augmented Machine Learning classifiers as follows: 

Neurally Augmented Naive Bayes Classification 

A NA_Naive Bayes Classification layer is constructed using Training Dataset TD to identify 

the best class for the test dataset SD. This layer performs COVID-19 tweet classification 

based on the principle of Bayes theorem, which depends upon conditional probabilities, prior 

probability, and evidence to identify posterior probability. The posterior probability of a 

particular tweet PTi from SD belonging to a class Yi based on Naive Bayes is computed as in 

(8),  

𝐩(𝐘𝐢|𝐏𝐓𝐢) =  
𝐩(𝐏𝐓𝐢|𝐘𝐢) ∗  𝐩(𝐘𝐢)

𝐩(𝐏𝐓𝐢)
 

where,  

Yi denotes the class labels, i ∊ {real, fake} 

p(Yi) denotes the prior probability  

p(PTi) denotes the evidence  

Likelihood p(PTi | Yi) denotes the conditional probability  

p(Yi |  PTi) denotes the posterior probability  

Each PTi is represented as Neurally processed features NF = {f1, f2,...., fm }. In general, Naive 

Bayes considers that the features are independent of each other. Hence, the NA_Naive Bayes 

classification layer assumes the Neurally processed features p(f1, f2,...., fm | Yi) are independent 

to each other given the class Yi. Likelihood or Conditional probabilities are estimated 

directly from TD and is computed as,   

p(f1, f2, … . , fm|Yi=real) =  p(f1|Yi=real) . p(f2|Yi=real) … … . . p(fm|Yi=real)
=  ∏k=1

m  p(fk |Yi=real)   

p(f1, f2, … . , fm|Yi=fake) = p(f1|Yi=fake) . p(f2|Yi=fake) … . . p(fm|Yi=fake)
= ∏k=1

m  p(fk |Yi=fake)   

Prior probability p(Yi) denotes the probability of a feature occuring in a particular class and 

is given by (9) and (10),  

(8) 

(9) 
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p(Yi=real) =  
Yi=real

Yi=real,   fake 
 

p(Yi=fake) =  
Yi=fake

Yi=real,   fake 
 

p(f1, f2, … . , fm) denotes the evidence that a particular feature is independent from the class 

label. 

To find the accurate class for the SD, the decision rule of NA_Naive Bayes classification 

layer is made to consider the maximum a posteriori or most likely class and is computed as 

(11),  

Y ’ = argmaxi ∈{real,fake) p(Yi) ∏ p(

m

k=1

fk | Yi) 

For every new tweet in SD, the probability of such tweet is computed and the final predicted 

class (fake or real) is decided based on the maximum a posterior or maximum probability.    

The entire NA_Random Forest classification layer process is presented in algorithm 3. 

Algorithm 3: Neurally Augmented Naive Bayes Classification  

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc )}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn }, 

Neurally processed Features, NF:= { f1, f2,...., fm} 

Output: class labels of SD:- Y ’∊ Yi 

NA_NaiveBayes (TD, SD, NF): 

             p(TDfake) = 
(TD,Yi∈fake)

|TD|
 

             p(TDreal) = 
(TD,Yi∈real)

|TD|
 

           for each fiεreal in NF 

                conditionalprob (fiεreal)  cp(fiεreal | Yiεreal) 

           end for 

           for each fiεfake in NF 

               conditionalprob (fiεfake)  cp(fiiεfake | Yiεfake)                   

          end for   

  

// Classification  

            Posteriorprob (Yiεreal | fiεreal)  conditionalprob (fiεreal) * p(TDreal) 

           Posteriorprob (Yiεfake | fiεfake)  conditionalprob (fiεfake) * p(TDfake) 

           mx max (Posteriorprob (Yiεreal | fiεreal), Posteriorprob (Yiεfake | fiεfake)) 

                                       i  posteriorprob(Yi | fi) (mx)) 

                                  Y ’ i 

(10) 

 

(11) 
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           return Y’ 

 

Neurally Augmented Random Forest Classification  

A NA_Random Forest Classification layer is built using Training Dataset TD to identify the 

best class for the test dataset SD. In general, Random Forest constructs n number of trees for 

performing classification in order to improve the overall accuracy. Hence, NA_Random 

Forest builds n trees that work on the principle of ensemble learning by combining 

predictions from n trees to improve the classification performance and to make the 

classification model more robust. Building n trees require bootstrap datasets BDi (1≤ i ≤ n), 

which are subsets from TD and Neurally processed Features NF. Bootstrap datasets are 

randomly chosen subsets using random sampling with replacement technique and each 

subset trains each tree in order to get predictions of each subset.  

To build a tree, a subset of features NF from BDi is selected randomly. Deciding on the 

maximum number of features to split a node in a tree takes more computation; however, 

selecting the subset of features will speed up the process of tree learning. Hence, among NF 

features, a random feature sf is designated as the root node ‘r’.  Next, the root node r is split 

into m children nodes using the random split feature from remaining sf-1 features. The 

procedure is repeated for constructing the remaining n-1 trees. After training, the test dataset 

is passed to all the newly built trees to predict the classification results of each tree. Finally, 

all the classification results are subject to majority voting to determine the maximum 

possibility of the class for SD. The entire process of NA_Random Forest classification layer 

is explained in algorithm 4. 

Algorithm 4: Neurally Augmented Random Forest Classification  

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc )}, Test dataset, SD:= 

{PTc+1 , PTc+2,.....,PTn }, Neurally processed Features (NF), n trees in Forest V 

Output: class labels of SD:- Y ’∊ Yi 

Buildtree (TD, NF): 

     V  Φ 

          for i = 1 to n do 

                BDi  Random Sampling with replacement (TD) 

               Vi  NA_RandomForestTreeLearn (BDi , NF)  

              V  V U Vi  

         end for 

     

NA_RandomForestTreeLearn (BDi, NF): 

for each BDi  
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     select sf ⊆ NF                  

             r  random(sf)  

    split r into sub nodes from (sf-1)  

end 

 

// Classification 

classification(V, SD): 

for each Vi ∈ V  

       Traverse PTi over Vi 

               Ci  predictclass 

end for      

Y’ = majorityvoting {C1 (PTc+1) , C2 (PTc+2),....., Cn (PTn )}           

return Y’ 

 

Neurally Augmented Gradient Boost Classification  

A Neurally Augmented Gradient Boosting Classification layer is built using Training Dataset 

TD to identify the best class for the test dataset SD based on Neurally processed Features 

NF. NA_Gradient Boosting is based on the principle of ensemble learning where n weak 

learner trees are created sequentially which reduces the errors made by the previous trees. 

The proposed classification layer aims to minimize the loss function (i.e. errors); hence, the 

weak learners are combined to form a strong learner, which improves the accuracy of 

classification. NA_Gradient Boosting initializes the model with a constant value using log 

(odds), which is given by (12), 

M0(x) = argminγ ∑ 𝐿(𝑌𝑖   , 𝛾)n
i=1  

where, 

          L – Loss function 

          𝑌𝑖  - Observed classification labels of TD, Y ∊ {real = 1, fake = 0}, 

          𝛾 - Predicted probability obtained using log (odds) 

         argmin indicates determining the log (odds) value at which the loss function is 

minimal. Hence, this minimal loss function is the initial prediction for base model M0(x). 

Initial prediction probability 𝛾 is calculated as in (13) and (14), 

         𝑙𝑜𝑔(𝑜𝑑𝑑𝑠)   = loge (pr / (1-pr)) 

gg 

(12) 

(13) 

 

(14) 
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𝛾 =  
1

1 +  e−(loge (pr / (1−pr)))
 

 

Loss function is used to identify residuals. Once, 𝛾 is calculated, residual r is computed for 

every PTi in TD as in (15),  

 

ri = Yi −  𝛾 

For each model Mmo(x) where, 1≤mo≤N, compute residuals, construct the trees, calculate 

probabilities based on NF and residuals. Now these residual values are used to construct tree 

t1 by branching NF instead of Yi labels. Then the weight of each leaf node wi is computed as 

in (16),           

wi =  
∑ ri

∑[𝛾 ∗ (1 −  𝛾)]
 

 

This NA_Gradient Boosting classification layer generates learners, which minimizes the loss 

function of the present model. Now every PTi in TD, compute new prediction probability 

value 𝛾𝑖 as given in (17) and (18),  

 g = ri + learning_rate * wi  

 

𝛾i =  
1

1 +  e−(g)
 

Learning rate can be any value between 0 and 1, hence, 0.2 is chosen in this work, which 

scales the new tree contribution resulting in accurate direction of prediction. Once, 𝛾𝑖 of ti is 

calculated, residual of 𝛾𝑖 is computed and next t2 is constructed, again wi, 𝛾𝑖 of t2 is 

computed. The same process is repeated until overall residuals get minimized and becomes 

closer to the actual value. M0(x) along with predictions on (NF, residuals (M0(x))) and 

residuals of first model together constitutes M1(x). Similarly, M1(x) along with predictions 

on (NF, residuals (M1(x))) and residuals of (M2(x)) together constitutes M2(x). Finally, Mmo-

1(x) along with predictions on (NF, residuals (Mmo-1(x))) and residuals of (Mmo(x)) together 

constitutes Mmo(x) and is given by (19). 

Mmo(x) = Mmo-1(x) + learning_rate * K(NF, ri(Mmo(x)) 

   

To classify the tweet in SD, the prediction p is computed using (20), 

p =  𝛾 +  learning_rate ∗   wi(t1) + learning_rate ∗   wi(t2) +.....+ learning_rate ∗   wi(tn) 

Then from p, prediction probability pp is calculated by,  

(15) 

(16) 

(17) 

 

(18) 

(19) 
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pp = 
1

1+ e−p 

If pp is greater than 0.5, then assign the predicted class Y ’of tweet as real, otherwise the 

predicted class Y’ is fake. The entire process of NA_Gradient Boosting classification layer is 

explained in algorithm 5. 
Algorithm 5: Neurally Augmented Gradient Boosting Classification  

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn }, 

Neurally processed Features (NF) 

Output: class labels of SD:- Y ’∊ Yi 

Initialize model, M0(x) = argminγ ∑ 𝐿(𝑌𝑖   , 𝛾)n
i=1  

 //Construction of learning models 

for each model, mo = 1 to N: 

Mmo(x)  Φ 

        // Calculation of residuals   

      for every tweet PTi in TD do 

           calculate r   

                       ri(Mmo(x)) Yi −  𝛾  
          // Construction of Trees 

          fit a tree tmo by branching NF with r and create leaf nodes  

                    lej(Mmo(x)) leaf nodes 

         // Calculation of weight for each leaf node 

          for each lej(Mmo(x)) j ϵ1 to k 

                       compute weight wi(lej(Mmo(x))) 

                       wi (lej(Mmo(x)))  =  
∑ ri

∑  of each 𝛾(1−𝛾)for each lej (Mmo(x)) 
 

              end for  

        // Prediction Probability value for each NF in TD 

                        g = ri(Mmo(x)) + learning_rate * wi (lej(Mmo(x)))   

                           𝛾𝑖(Mmo(x)) =  
1

1 + e−(g)
 

           Mmo(x)   Mmo(x) U 𝛾𝑖(Mmo(x))  

  end for 

end 

 

// Classification  

         for tweet PTi in SD 

                            p =  𝛾 +  learning_rate ∗   wi (lej(M1(x))) + learning_rate ∗   wi (lej(M2(x))) +.....+ 

learning_rate ∗   wi (lej(Mmo(x))) 

                          pp = 
1

(1+e−p) 
 

                 if pp ≤ 0.5 then  

                        Y ’ϵ real 

                 else 

                        Y ’ϵ fake       

       end for 

end 

Neurally Augmented XGBoost Classification  

A Neurally Augmented XGBoost Classification layer is built on the extended version of 

NA_Gradient Boosting to minimize it’s time computation. Neural-Augmented XGBoost 

Classification layer assumes a constant value as initial probability 𝛾 and computes the 

residuals ri for all tweets in the TD as given by (21),  

(20) 

(21) 
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ri = Yi −  𝛾 

Next, tree is constructed based on the binary splits using the computed residuals. Then 

similarity weight is computed for each split with root node, left subtree and right subtree as 

in (22).  

sim_wi =  
∑ ri

∑[𝛾 ∗ (1 −  𝛾)] + λ 
 

where,  

               λ is a regularization constant used to prevent over fitting  

Based on the similarity weight, gain is computed for each split. The split with maximum gain 

is chosen and the tree is grown to maximum levels and is computed by (23),         

gain = sim_wt(leftsubtree) + sim_wt(rightsubtree) −  sim_wt(rootnode)  

Then a new probability is calculated as in (24) and (25), 

g = 𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) + learning_rate * sim_wt(node)(PTi) 

 

𝑛𝑒𝑤_𝛾i =  
1

1 +  e−(g)
 

 

Again residuals are computed for each tweet in TD. This process is repeated until residuals 

gets minimum.  

After the split, whether we should do the splitting or not is decided by pruning. Pruning is 

basically executed in XGBoost by a cover value, 𝛾(1 − 𝛾), if the gain is less than the cover 

value, the branch is cut.  

The entire process of NA_XGBoost classification layer is explained in algorithm 6. 
Algorithm 6: Neurally Augmented XGBoost Classification  

Input: Training dataset, TD:= {(PT1, Y1), (PT2, Y2),.....,(PTc , Yc)}, Test dataset, SD:= {PTc+1 , PTc+2,.....,PTn }, 

Neurally processed Features (NF) 

Output: class labels of SD:- Y ’∊ Yi 

// Calculation of residuals   

      for every tweet PTi in TD do 

           calculate r, residual   

                    ri Yi −  𝛾  

                     𝛾  initialProbability 

     end for 

 

Treeconstruction(NF, ri): 

begin 

 

(22) 

(23) 

(24) 

 

(25) 
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   // Construction of Trees 

  for each tree tn 

     split a binary tree tn by branching NF into node nj with ri 

           where, j ∈ {rootnode, leftsubtree, rightsubtree} 

     // Calculation of similarity weight for each node  

          for each nj in tn calculate 

                    sim_wt (nj) =  
∑ ri

∑  𝛾(1−𝛾)+ λ
 

                          λ  regularization constant 

         end for 

// Calculate gain for each split(si)  

               gain(si) sim_wt (leftsubtree) + sim_wt (rightsubtree) - sim_wt (rootnode) 

              (si) with max(gain) is grown to levels  

end 

 

// Calculation of new probability   

for every tweet PTi in TD do 

          𝑙𝑜𝑔 (𝑜𝑑𝑑𝑠) loge (
𝛾

1−𝛾
) 

          g   log(odds) + learning_rate * sim_wt (nj) from grown tree according to NF in (PTi) 

          𝑛𝑒𝑤_𝛾𝑖   
1

1+ e−(g)
 

         // calculate r   

          new_ri  Yi −  new_𝛾𝑖  
Treeconstruction(NF, new_ri ) 

 

// Classification  

         for tweet PTi in SD 

                      p =  𝛾 +  learning_rate ∗   𝑠𝑖𝑚_𝑤𝑡(t1) + learning_rate ∗  sim_wt(t2) +.....+ 

                                        learning_rate ∗   𝑠𝑖𝑚_𝑤𝑡(tn ) 

                   pp = 
1

(1+e−p) 
 

                 if pp ≤ 0.5 then  

                        Y ’ϵ real 

                 else 

                        Y ’ϵ fake       

       end for 

end 

4 Experimental Setup & Result Analysis 

The experimental setup and evaluation metrics of the proposed model are presented in 

sections 4.1 and 4.2. The result analysis of Neurally Augmented Model, which is done by 

comparing it with other classifiers based on Machine Learning and Deep Learning 

algorithms, is discussed in Section 4.3. 

4.1 Experimental set-up 

The Experiment is performed in system settings with core resources of Intel(R) Core(TM) i5 

Processor, 8GB RAM, 500GB Hard Disk and Graphics Processing Units (GPU) 

environment. The experimentations and evaluations of the proposed model are done using 
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Python 3.7 along with the Scikit-learn library, Tensor flow, Keras, Numpy and Pandas 

package. The Deep Learning-based feature extractor is implemented using the Tensor Flow 

sequential API. The newly created COVID-19 Twitter dataset is given as input to assess the 

proposed network’s performance. 

4.2 Evaluation metrics 

The performance measures for classifying fake news in the COVID-19 dataset are 

manifested in this section. The efficiency of the proposed model is validated using 

evaluation metrics, such as, True Positive (TP), False Negative (FN), False Positive (FP), 

True Negative (TN), Precision, Recall, and F1 Score to measure Accuracy as well as Area 

Under the Receiver Operating Characteristic (AUROC) Score.  

True Positive – The values that are predicted correctly as actual positives. 

False Negative – Negative samples incorrectly predicted as actual positives 

False Positive – Positive samples incorrectly predicted as actual negatives    

True Negative – The samples that are identified correctly as actual negatives 

Precision metric exhibits the accuracy of the positive class and measures whether the 

prediction of the positive class is correct as defined in (26) and is given by, 

Precision = TP / (TP + FP) 

Recall is measured as the fraction of positive classes correctly detected to the total classes as 

defined in (27) and is given by, 

Recall = TP / (TP + FN)  

F1 Score is the weighted average score or harmonic mean of true positive (recall) and 

precision as defined in (28) and is given by, 

F1 Score = 2 * [(P * R) / (P + R)] 

Accuracy is measured as the fraction of total of True Positive, True Negative to the total of 

True Positive, False Positive, True Negative, and False Negative as defined in (29) and is 

expressed as, 

Accuracy = [(TP + TN)/ (TP + TN + FP + FN)] 

The ROC curve is used to visualize the performance of NAM. It is referred to as a 

probability curve. True positive rate gets plotted on the y-axis against the false positive rate 

on the x-axis. The Area Under the Curve (AUC) is a critical parameter for assessing the 

classification accuracy of the model. The larger the AUC measurement, the model can better 

be able to discern between authentic and false news. AUROC Score is the measure of 

predicting power of the model to differentiate the classes. 

4.3 Result analysis 

Phase-1 

This section discusses the results obtained when tested on the created COVID – 19 Twitter 

dataset. The model summary of the proposed 1D ConvNet feature extractor is given in 

(26) 

(27) 

(28) 

 (29) 
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Figure 6.  

 

Figure 6: Model Summary of 1D ConvNet feature extractor. 

Phase – 2 

The Augmenter layer extracts Neurally processed features from the fully connected layer of 

1D ConvNet feature extractor and use it to augment the Machine Learning classification 

layers, NA_Naive Bayes (NA_NB), NA_Random Forest (NA_RF), NA_Gradient Boosting 

(NA_GB) and NA_XGBoost (NA_XGB) for classification. The model summary of 

Augmenter layer is depicted in Figure 7. 
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Figure 7: Model Summary of the Augmenter Layer. 

 

Learning curve is plotted to visualize the error in the predictions made by the Neurally 

Augmented Machine Learning classification layers changes, when the training set size 

increases or decreases. The Learning curve plots for NA_NB, NA_RF, NA_GB and 

NA_XGB is depicted in Figure 8(a), 8(b), 8(c) and 8(d) respectively.  

 

(a) Learning curve of NA_Naive Bayes 
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(b) Learning curve of NA_Random Forest 

 

(c) Learning curve of NA_Gradient Boosting 
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(d) Learning curve of NA_XGBoost 

Figure 8: Learning curves of Neurally Augmented Machine Learning classification layers 

In Figure 8, Accuracy Score is plotted in X-axis and Training set size is plotted in Y-axis. 

From Figure 8(a), it is observed that the training score initially increases and decreases at the 

starting point and the prediction errors gets reduced and a constant training accuracy score is 

maintained. Cross validation score increases above the training score initially, again it 

decreases and a constant accuracy score is achieved as the training data gets added. From 

Figure 8(b), it is observed that the training score is accurate as it gradually increases when 

the training set size increases. Cross validation score decreases at a point after training set 

size 20000 and again increases slowly after 30000. From Figure 8(c), it is observed that the 

training score is accurate as the dada gets added. Cross validation score increases and 

decreases initially and when the data gets added, the accuracy improves. From Figure 8(d), it 

is observed that both the training score and cross validation score improves by adding the 

data. It is observed that the training score and cross validation score converge with the 

increase in training set size in all the cases of Neurally Augmented Machine Learning 

classification layers. The prediction errors made by each classification layer get reduced 

when training data is added resulting in improved accuracy.  

The performance comparison of the proposed Neurally Augmented Model (NAM) in terms 

of accuracy, AUROC Score, precision, recall and F1 Score are depicted in Figure 9. 
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Figure 9: Performance comparison of Neurally Augmented Models. 

From Figure 5, it is found that NA_NB obtains 95.01% accuracy, 0.9975 precision, 0.9191 

recall, 0.9567 F1 Score and 0.9711 AUROC Score. NA_RF achieves 94.5 % accuracy, 

0.9317 precision, 0.955 recall, 0.943 F1 Score and 0.9733 AUROC Score. NA_GB obtains 

94.25% accuracy, 0.9194 precision, 0.97 recall, 0.944 F1 Score and 0.9447 AUROC Score. 

NA_XGB achieves 97.25 percentage accuracy, 0.96 precision, 0.98 recall, 0.965 F1 Score 

and 0.9624 AUROC Score. Among all the NA_Machine Learning classification layers, 

NA_XGB performs well with the highest accuracy, recall and F1 Score. While considering 

AUROC Score, NA_RF performs well with the highest AUROC Score. The ROC curve of 

NA_NB, NA_RF, NA_GB and NA_XGB classification layers are depicted in Figure 10 (a), 

10 (b), 10 (c) and 10 (d), respectively. 
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(b) ROC curve of NA_Random Forest 

 

(c) ROC curve of NA_Gradient Boosting 
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(d) ROC curve of NA_XGBoost 

Figure 10: ROC curves of Neurally Augmented Machine Learning classification layers 

From Figure 10 (a), it is observed that area under the curve of False Positive Rate range is 

higher resulting in 0.9711 AUROC Score. From Figure 10 (b), it is observed that area under 

the curve of False Positive Rate range is higher resulting in 0.9733 AUROC Score. From 

Figure 10 (c), it is observed that area under the curve of False Positive Rate range is higher 

resulting in 0.9447 AUROC Score. From Figure 10 (d), it is observed that area under the 

curve of False Positive Rate range is higher resulting in 0.9624 AUROC Score. The ROC 

curve of Neurally Augmented Machine Learning classification layers is compared with the 

non-neurally augmented Machine Learning classifiers. The ROC curve of non-neurally 

augmented Machine Learning classifiers namely, Naive Bayes, Random Forest, Gradient 

Boosting and XGBoost are depicted in Figure 11 (a), 11 (b), 11 (c) and 11 (d), respectively. 

 

(a) ROC curve of NA_Naive Bayes 
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(b) ROC curve of NA_Random Forest 

 

(c) ROC curve of NA_Gradient Boosting 
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(d) ROC curve of NA_XGBoost 

Figure 11: ROC curves of non-neurally Augmented Machine Learning classifiers 

From Figure 11 (a), it is observed that area under the curve of False Positive Rate range is 

lower resulting in 0.7754 AUROC Score. From Figure 11 (b), it is observed that area under 

the curve of False Positive Rate range is higher resulting in 0.9057 AUROC Score. From 

Figure 11 (c), it is observed that area under the curve of False Positive Rate range is higher 

resulting in 0.9147 AUROC Score. From Figure 11 (d), it is observed that area under the 

curve of False Positive Rate range is higher resulting in 0.9279 AUROC Score. Neurally 

Augmented Naive Bayes shows 20% increased performance over non-neurally Augmented 

Naive Bayes. Neurally Augmented Random Forest shows 7% increased performance over 

non-neurally Augmented Random Forest. Neurally Augmented Gradient Boosting shows 3% 

increased performance over non-neurally Augmented Gradient Boosting. Neurally 

Augmented XGBoost shows 4% increased performance over non-neurally Augmented 

XGBoost. Considering the false positive rate range, Neurally Augmented Machine Learning 

classifier layers classifies the real and fake news better than the non-neurally augmented 

classifiers. 

 

5 Discussion 

In online social networks, the most challenging task is the spread of fake news. Posting fake 

news regarding COVID-19 is still making the situation worse. The major factors influencing 

Machine Learning and, Deep Learning techniques are feature extraction and data. This work 

aims to design a Neurally Augmented Model for the accurate, automatic and timely detection 

of COVID-19 fake news on Twitter platforms. NAM is created with the capability of 

automatic feature extraction and to augment the Deep Neural Network with the classic 

Machine Learning. A Deep Neural Network feature extractor, 1D ConvNet, is used for 

automatic feature extraction. To deal with the limited datasets, COVID-19 twitter datasets 

are created with 50000 tweets and are given as input to NAM. The tweet dataset undergoes 

pre-processing to remove noise from the dataset. After pre-processing, the Semantic-Aware 
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tweet vector representation of tweets is created using a pre-trained embedding, 

‘glove.twitter.27B.100d.txt’. These vector representations form an embedding matrix, which 

is added as the first embedding layer of the feature extractor. This extractor extracts the 

Neurally processed significant features from the tweets. These features are extracted by the 

Augmenter layer from the fully connected layer of the feature extractor and use it to augment 

the Machine Learning classification layers for classification. NA_NB, NA_RF, NA_GB, and 

NA_XGB, are trained to learn the patterns and is made to classify the test tweets. The 

performance of NAM is measured in terms of accuracy, precision, recall, F1-Score and 

AUROC Score. NA_XGB classification layer obtains 97.25% accuracy, 0.96 precision, 0.98 

recall, 0.965 F1 Score and 0.9624 AUROC Score to detect the fake news.  

To further investigate the performance of the proposed model, experiments are done by 

comparing the proposed model with the Machine Learning and, Deep Learning models 

without neural augmentation in terms of Accuracy, F1 Score as depicted in Figure 12. 

 

Figure 12: Performance Comparison of Machine Learning and Deep Learning models with 

and without Neural Augmentation. 

From Figure 12, it is found that the existing NB classifier without Neural Augmentation 

achieves 67.12% accuracy and 0.6563 F1 Score. RF achieves 80.86% accuracy and 0.8429 

F1 Score. GB obtains 82.88% accuracy and 0.82 F1 Score. XGB achieves 81.52% accuracy 

and 0.81 F1 Score. Existing Deep Learning model 1D-CNN without Neural Augmentation 

obtains 51.4% accuracy and 0.679 F1 Score. In contrast, the proposed NA_NB obtains 

95.01% accuracy and 0.9567 F1 Score. NA_RF obtains 94.5% accuracy and 0.943 F1 Score. 

NA_GB obtains 94.25% accuracy and 0.944 F1 Score. NA_XGB obtains 97.25% accuracy 

and 0.965 F1 Score. Machine Learning, and Deep Learning models with and without neural 

augmentation in terms of Precision and recall are depicted in Figure 13. 
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Figure 13: Precision and recall Comparison of Machine Learning, Deep Learning models 

with and without Neural Augmentation 

From Figure 13, it is found that the existing Machine Learning model NB without Neural 

Augmentation achieves 0.8783 precision and 0.5239 recall. RF obtains 0.8292 precision and 

0.8571 recall. GB obtains 0.88 precision and 0.84 recall. XGB achieves 0.87 precision and 

0.83 recall. Deep Learning model 1D-CNN without Neural Augmentation obtains 0.87 

precision and 0.82 recall. In contrast, NA_NB obtains 0.9975 precision and 0.9191 recall. 

NA_RF obtains 0.9317 precision and 0.955 recall. NA_GB obtains 0.9194 precision and 

0.97 recall. NA_XGB obtains 0.96 precision and 0.98 recall.  

Consequently, the proposed Neurally Augmented Model outperforms the Machine Learning 

and, Deep Learning models without Neural Augmentation by 12% and 10% in terms of 

accuracy and F1 Score. 

5.1 Performance analysis of NAM on the benchmark datasets 

The proposed model has experimented on the benchmark datasets like LIAR, IFND, ISOT 

and Constraint Shared Task ‘COVID-19 Fake News Dataset’ to further evaluate its 

robustness. The LIAR dataset is a freely accessible benchmark labelled dataset obtained 

from politifact.com with 1.4MB size. It consists of 12K short news samples with six labels 

false, true, mostly true, half true, pants-on-fire and barely true. Indian Fake News Dataset 

(IFND) is a publicly available large-scale Indian dataset that includes text of 4.77MB in size. 

It consists of 48K news samples with binary labels as fake or true. ISOT dataset is collected 

from reuters.com and kaggle.com with 86.6 MB size. It consists of 44K news samples with 

binary labels as fake or true. Each news sample has a length of more than 200 characters. 

COVID-19 Fake News Dataset in Constraint shared task ‘COVID 19 FN’ is collected from 

social media posts, press releases, news articles and tweets from government accounts with 
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2MB in size. It consists of 10K tweet samples with binary labels as real or fake. The 

experimentation results are shown in Figure 14. 

 

Figure 14:  Performance Comparison of NAM model on the benchmark datasets and 

proposed COVID-19 Twitter dataset. 

From Figure 14, it is revealed that the proposed model achieves 83.68%, 89.17%, 93.75%, 

91% and 97.25% accuracy for the LIAR, IFND, ISOT, COVID 19 FN benchmark datasets 

and the proposed COVID-19 Twitter dataset, respectively. Consequently, the proposed 

model performs well for the COVID-19 Twitter dataset than all the benchmark datasets. 

5.2 Performance analysis of the proposed model and existing works based on the benchmark 

datasets 

The performance analysis of the proposed model on the four benchmark datasets is 

compared with the previous works on the benchmark datasets and is tabulated in Table-2. 

Table 2:  Performance comparison of the proposed model with existing works on ISOT, 

IFND, LIAR and COVID-19 FN benchmark datasets. 
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3] 

 
 

 

 

 

 

 
 

DT, 

SGD 

✓  - - - 89 - - - - - - - 

SVM, 

LR 

✓  - - - 84 - - - - - - - 

Linear 

SVM 

✓  - - - 92 - - - - - - - 

KNN ✓  - - - 83 - - - - - - - 

[4

4] 

NB - ✓  - - - - 87.5 - - - - - 

RF - ✓  - - - - 89 - - - - - 

[4
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Bagging - - ✓  - - - - - - 70 - - 
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AdaBoos - - ✓  - - - - - - 70 - - 

RF - - ✓  - - - - - - 65 - - 

Extra 

Trees 

- - ✓  - - - - - - 62 - - 

XGBoos

t 

- - ✓  - - - - - - 62 - - 

[4

6] 

NB - - ✓  - - - - - 60 56 - - 

SVM - - ✓  - - - - - 59 59 - - 

LR - - ✓  - - - - - 58 58 - - 

RF - - ✓  - - - - - 58 55 - - 

Decision 

Tree 

- - ✓  - - - - - 57 57 - - 

Gaussian 

Naïve 
Bayes 

- - ✓  - - - - - 56 56 - - 

KNN - - ✓  - - - - - 50 50 - - 

[4

7] 

SVM - - ✓  - - - - - 55.76 

+/- 
0.003

2 

- - - 

Naïve 

Bayes 

- - ✓  - - - - - 56.37 

+/- 
0.004

7 

- - - 

Auto 

encoder 
(Finance

) 

✓  - - - 81.25 - - - - - - - 

Auto 

encoder 
(Govern

ment) 

✓  - - - 79.25 - - - - - - - 

[7

] 

DT - - - ✓  - - - - - - 85.3

7 

85.39 

GDBT - - - ✓  - - - - - - 86.9

6 

86.96 

Pr

op
os

ed 

NAM ✓  ✓  ✓  ✓  93.75 93.89 89.17 92.02 83.68 84.42 91 91.04 

From Table 2, it is found that the proposed model obtains 93.75%, 89.17%, 83.68% and 

91%accuracy for the ISOT, IFND, LIAR and COVID-19 FN benchmark datasets, 

respectively. The existing works utilizing classic Machine Learning techniques obtain 

accuracy ranging from 81.25% to 92% on the ISOT dataset, 87.5% to 89% on the IFND 

dataset, 50% to 60% on the LIAR dataset and 85.37% to 86.96% on the COVID-19 FN 

dataset. Similarly, the proposed model obtains the highest F1 Score of 93.89, 92.02, 84.42 

and 91.04 on the ISOT, IFND, LIAR and COVID 19 FN datasets, respectively.  

From the overall result analysis, it is concluded that the proposed model with Augmentation 

outperforms the existing non-neural augmented Machine Learning, and Deep Learning 

models and achieves high accurate detection of fake news. This model is successful in 

detecting fake news prevailing on the Twitter platform. 

6 Conclusion 

This paper creates a Neurally Augmented model, which augments 1D ConvNet with the 
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Machine Learning classification layers. 1D ConvNet processes the features neurally and 

these high-level neurally processed features are automatically extracted using the Augmenter 

layer and are augmented to create the NA_Naive Bayes, NA_Random Forest, NA_Gradient 

Boosting and NA_XGBoost classification layers for training and classification. The 

performance of the proposed model is assessed by experimenting it on the created COVID-

19 Twitter dataset. The experimental results show that the proposed model classifies the 

COVID-19 fake news propagating on Twitter by achieving 97.25% accuracy, 0.96 precision, 

0.98 recall, 0.965 F1 Score and 0.9624 AUROC Score. In addition, the proposed model is 

compared with non-neural augmented Machine Learning and Deep Learning models and it is 

found that there is a 12% increase in accuracy and a 10% increase in F1 Score. To 

investigate the robustness of the proposed model, it is tested on the proposed dataset and 

achieved a 5% increase in accuracy over the benchmark datasets. As a future research 

direction, the model could be extended further by using Deep Transfer Learning and unified 

word embeddings for feature extraction. Besides, the neutrosophic field could be utilized to 

handle the prediction errors to improve the classification performance further. 
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