Enhancing Image Retrieval Systems in Biomedical Applications: Integration of SVM and Advanced Feature Extraction Techniques

Shilpa Jaitly¹, Vijay Laxmi², Gagandeep³

¹Research Scholar, University College of Computer Application, Guru Kashi University, Sardulgarh Road, Talwandi Sabo, Bathinda, Punjab, India, shilpa_15jaitly@yahoo.com

²Guru Kashi University, Sardulgarh Road, Talwandi Sabo, Bathinda, Punjab, India

³Chandigarh Engineering College, CGC Landran, Mohali, Punjab, India

Accurate and effective retrieval systems are needed to allow diagnosis, treatment planning, and research by means of the exponential expansion of biomedical image data from MRI, CT, and Xrays. The high-dimensional complexity of medical images renders conventional methods dependent on human tagging and basic metadata-based searches unable to meet the needs of modern healthcare inadequate. This work addresses these problems by proposing a hybrid image retrieval system combining Support Vector Machines (SVM) with sophisticated feature extracting techniques including Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Gray-Level Co-occurrence Matrix (GLCM). The system extracts multi-resolution, texture, and structural features, employs dimensionality reduction techniques following preprocessing phases, and transforms images using compute efficiency maximising techniques. SVM then is used for robust classification and retrieval after addressing non-linear data separations using kernel functions. In terms of accuracy, precision, recall, and mean average precision (mAP), experimental data indicates that the proposed approach outperforms accepted methods. Personalised treatment, telemedicine, and rare disease diagnostics fit the flexible nature and scalability of the platform among large-scale biomedical applications. Retrieval results become more relevant and dependable by means of this integration of machine learning and feature engineering, therefore enabling the access to vital visual data by healthcare professionals. Since they offer improved decision support and thereby advance the state-of- the-art in content-based biomedical image retrieval systems, the results illustrate the viability of using this approach in pragmatic settings.

Keywords: CrImage Retrieval, Support Vector Machines, Advanced Feature Extraction, Discrete Wavelet Transform, Co-occurrence Matrix, Content-Based Image Retrieval, Telemedicine, Personalized Medicine, Rare Disease Diagnosis.

1. Introduction

Fundamental for diagnosis, treatment planning, and medical research, biomedical image retrieval systems have grown to be indispensable in modern medicine. Accurate and fast retrieval systems able to manage high-dimensional and complex datasets sorely needed are

made possible by the increasing volume of medical image data generated by advanced imaging modalities including MRI, CT, and X-rays. Often dependent on human tagging or simple metadata searches, conventional retrieval methods find it challenging to produce correct results since they cannot catch the nuanced characteristics of biomedical images [1]. This limit has driven content-based image retrieval (CBIR) systems—especially Support Vector Machines (SVM)—into more precisely. SVMs are well-known for their endurance in managing non-linear separations and high-dimensional data, therefore benefiting medical picture classification and retrieval. Still, the success of SVM-based systems derived f1rom the photos will primarily rely on their quality of features. Advanced feature extraction methods include Discrete Wavelet Transform (DWT), Principal Component Analysis (PCA), and Gray-Level Co-occurrence Matrix (GLCM) have proven efficacy in extracting multi-resolution, texture, and structural elements required for picture difference. Combining these approaches lets the proposed framework maximise feature representation, reduce processing cost, and use their individual strengths to increase classification accuracy [2]. Moreover, dimensionality reduction methods as PCA ensure efficient handling of large data without compromising performance. Since it overcomes practical issues such scalability and adaptability, the hybrid approach is also appropriate for various uses including personalised medicine, telemedicine, and rare disease identification. This paradigm not only improves decision-making but also provides quick access to relevant visual data, therefore enabling advancements in biological research and patient care. The building of such robust systems highlights the prospects of machine learning and feature engineering to transform the field of biomedical image retrieval, therefore enabling medical practitioners to depend on exact and efficient tools for significant tasks.

Importance of Biomedical Image Retrieval

Biomedical image retrieval advances healthcare by means of accurate and fast access to visual data essential for diagnosis, treatment planning, and medical research. Strong retrieval systems are much needed as imaging technologies as MRI, CT, and ultrasonic waves evolve cause the volume and complexity of biomedical images to explode. These instruments assist to find trends directing treatment decisions by letting clinicians and researchers compare patientspecific data with historical cases. Using an image retrieval system, a doctor spotting a cancer, for example, can locate similar cases and choose the best course of action based on past performance [3]. Beyond diagnosis, biomedical image retrieval allows researchers to investigate sickness progression over time by means of sequential imaging data, therefore supporting longitudinal studies. Moreover, the coupling of such systems with artificial intelligence increases their ability to detect minute changes in images that would be missed during hand inspection. Apart from tailored patient care, biomedical image retrieval systems are crucial for medical education and research since they enable access to several datasets for training and comparative analysis. The efficiency of these systems directly influences the quality of therapy since delays in picture retrieval could inhibit rapid decision-making in critical events. Furthermore, these technologies help multidisciplinary cooperation by allowing seamless distribution of imaging data between institutions and specialities. More generally, the use of biomedical image retrieval applies to public health campaigns where pooled imaging data can be studied to find trends and influence policy for tackling severe health crises such pandemics [4]. As the sector advances, the demand for scalable, accurate,

and user-friendly image retrieval systems will only grow, hence underscoring its indispensable relevance in modern medicine.

Support Vector Machine (SVM)

Support Vector Machines (SVM) are a class of supervised machine learning techniques that excel in classification and regression tasks. Originally created in the 1990s by Vladimir Vapnik and colleagues, SVMs' adaptability and robustness have become core of the field of machine learning [5]. The basic objective of an SVM is to identify the best hyperplane inside a high-dimensional space that most splits data points into discrete classes. This hyperplane is chosen to maximise the margin, sometimes known as the distance between each hyperplane and the closest data point from every class—that is, support vectors. The ability of SVM to solve both linear and non-linear classification problems defines its strength.

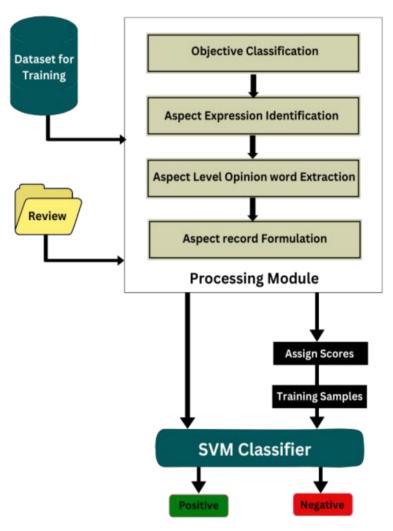


Figure 1: Model of SVM

Using linearly separable data, SVM finds the hyperplane with the largest margin between the classes, therefore assuring optimum classification performance. By means of a kernel method, SVM transforms non-linearly separable data into a higher-dimensional space where a linear separation is feasible. This approach allows SVM handle difficult classification problems in the original space not easily solvable there. Applications involving high-dimensional data, such text classification and image recognition, where standard techniques may fail, find SVMs highly appropriate [6]. Their ability to generalize well and provide high accuracy, even with small to medium-sized datasets, has made them a popular choice in various domains, including finance, biology, and engineering. Additionally, SVMs offer flexibility through different kernel functions, such as polynomial and radial basis function (RBF), allowing them to model a wide range of data distributions. Support Vector Machines are a powerful and versatile tool in machine learning, offering robust performance for both linear and non-linear classification tasks. Their ability to find optimal decision boundaries and handle complex data makes them a valuable asset in a wide range of applications, contributing to advancements in predictive modeling and data analysis.

Role of Machine Learning in Image Retrieval

Machine learning has evolved into a transformational technology conquering many of the limitations of traditional systems and creating new prospects for accurate and efficient data management in biomedical image retrieval. Fundamentally, machine learning enables automation of challenging tasks including feature extraction, categorisation, and similarity measurement—all of which are required to retrieve relevant photos from large databases. Since it can manage high-dimensional and non-linear data, therefore enabling its most essential contribution, machine learning is especially ideal for biological imaging, which often shows complicated patterns and variability [7]. Two instances of supervised learning methods whose amazing capacity in detecting medical images depending on texture, shape, and intensity has exhibited are support vector machines (SVM) and convolutional neural networks (CNNs). Although CNNs automatically learn and extract features from raw picture data using their hierarchical architecture, SVMs excel in defining decision boundaries splitting images into several categories. Unsupervised learning techniques including dimensionality reduction and clustering help to structure and summarise image datasets thereby enhancing retrieval systems without utilising labelled data. Methods including k-means clustering and Principal Component Analysis (PCA) enhance the retrieval process by merging related images and reducing computing complexity. Moreover, the way for hybrid models integrating the benefits of many approaches has been opened by the junction of machine learning with deep learning architectures, hence improving retrieval accuracy and efficiency. Machine learning also aids to develop retrieval results over time to better meet user preferences by way of adaptive systems that learn from user feedback [8]. Moreover, made feasible by advances in natural language processing (NLP), multi-modal retrieval systems integrating text and image searches present a more flexible and user-friendly interface. Even although machine learning has transformational capacity, its application in biomedical image retrieval is not without challenges. Problems include data privacy, algorithm interpretability, and the need for large, annotated datasets must be solved if one is to really appreciate it. Still, the purpose of machine learning in image retrieval is expanding since it offers innovative ideas enhancing the scalability, accuracy, and accessibility of biomedical data management systems.

Feature Extraction as a Key Factor

Feature extraction forms the basis of biomedical image retrieval and also aids to precisely show and assess the contents of complex medical images. By converting unprocessed picture data into effective descriptions, feature extraction aids retrieval algorithms in locating and categorising images depending on their visual characteristics. In the context of biomedical imaging, where accuracy and dependability prevail, advanced feature extraction techniques are important in capturing the multi-dimensional and heterogeneous character of medical images. To investigate spatial correlations between pixel intensities, Gray-Level Cooccurrence Matrix (GLCM), Local Binary Patterns (LBP), and other texture-based approaches are frequently used so providing knowledge of tissue architecture and patterns [9]. Particularly useful for establishing anatomical limits and anomalies, including tumours or lesions, shapebased features obtained from edge detection and contour analysis are Although less prevalent in greyscale medical imaging, color-based descriptors have applications in histology, where colour variations signal certain diseases. Beyond traditional methods, the entrance of machine learning has changed feature extraction by means of data-driven systems automatically learning features from images. CNNs, for instance, provide more subtle and exact retrieval by extracting hierarchical features spanning from simple edges to complex patterns.

Dimensionality decreasing techniques include Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding (t-SNE) boost retrieval efficiency even more by lowering the computational complexity of high-degree feature spaces. Often called hybrid models, several feature extraction techniques combine their strengths to improve retrieval performance. Combining texture, shape, and deep learning-based features, for example, provides a whole picture of biomedical photos, therefore ensuring that vital information is not overlooked [10]. Despite these advances, feature extraction in biomedical imaging still suffers with problems with heterogeneity among datasets, noise, and picture quality fluctuation. Dealing with these issues requires robust algorithms with exact capture of relevant properties and flexibility to different imaging conditions. Driving innovation in healthcare and medical research, feature extraction methods continue to change and their relevance in enhancing the accuracy, efficiency, and scalability of biomedical image retrieval systems remains vital.

2. Review of literature

Table 1 literature review

	Table 1 Interaction to the W					
S.NO	Author / Year	Method	Advantages	Disadvantages		
1	Dubey et al. (2020)	1	Improved retrieval accuracy for biomedical images; robust feature extraction	Limited scalability; may require high computational resources		
2	,	U	retrieval performance	May not capture global image features; dependent on feature descriptor effectiveness		
	(2021)	-	High classification accuracy; effective for diverse medical images	Complex model training; computationally intensive		
4			Efficient indexing and retrieval; good for texture-based image features	Limited to texture features; may not handle complex image		

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

				variations well
5				May face challenges with large- scale data integration; hashing may impact retrieval quality
6			1 68 8	Limited generalization to different datasets; requires extensive training
7		Class-driven content- based retrieval with hash codes		Hashing may reduce feature granularity; limited to class-based approaches
8	Ashraf et al. (2020)			May involve complex feature extraction processes; requires effective feature fusion
9				Performance varies with ML model choice; may require extensive training data
10	Sirinukunwattana et al. (2016)		classification; robust for histology images	Limited to histology images; may not generalize well to other medical image types
11		Local binary patterns for emphysema analysis		Limited to emphysema analysis; may not handle other pulmonary conditions
12	Srivastava et al. (2020)			May not capture fine-grained features; dependent on GLCM parameters
13		Biomedical Image	segmentation models; valuable for	Outdated methods; may not include recent advancements in image analysis
14			Overview of clinical benefits and future directions; broad coverage of existing systems	
15	(2003)		Practical application in medical imaging systems; focuses on integration with PACS	Technology may be outdated; limited to PACS systems
16		retrieval		May not include recent advancements; focuses on early content-based methods
17			3	Limited to survey findings; may not address all recent developments
18	Müller et al. (2004)			May not include recent feature sets; focused on specific case studies
19			Effective for texture-based tissue identification; good for specific tissue analysis	Limited to texture features; may not handle other types of tissue variations
20	Akgül et al. (2011)	retrieval in radiology	Comprehensive review of current status and future directions; applicable to radiological images	

21	Shi et al. (2018)	Pairwise deep ranking hashing	classification and retrieval; high precision	Limited to pairwise hashing; may not generalize well to other types of medical images
22	Font (2020)		Valuable for diagnosing and evaluating sports injuries; applicable to nuclear medicine	Limited to specific applications; may not cover all imaging modalities
23	Pang et al. (2018)	Deep preference learning for biomedical indexing		May involve complex training processes; effectiveness may vary with different data sets
24	Öztürk (2020)			Requires extensive training; may not generalize well to different datasets
25				Limited application scope; may require specific context to be effective
26	Dutta et al. (2020)		Unique optimization approach; promising performance improvements	Practical implementation challenges; effectiveness may vary across domains
27	Bilal et al. (2024)	CNN and SVD	Enhances detection accuracy and robustness for diabetic retinopathy; leverages CNN for feature extraction and SVD for dimensionality reduction	complex integration may affect
28			microstructure modeling	Requires careful hyperparameter tuning; may struggle with large datasets
29	Hu et al. (2024)		Enhances feature detection and classification with diverse data types	Complex integration and high computational requirements; challenges in data integration
30				Increased computational complexity; sensitive to parameter selection

Algorithm for Image Retrieval Model Using Support Vector Machine (SVM)

Below is a general algorithm outlining the process of developing the image retrieval model using Support Vector Machine (SVM):

Step 1: Data Collection and Preprocessing

- 1. Input: Collect a large dataset of images from the chosen domain (e.g., Corel, ImageNet).
- 2. Preprocessing:
- o Resize images to a standard size.
- o Convert images to a common color space (e.g., grayscale, RGB).
- o Apply image enhancement techniques (e.g., noise reduction, contrast adjustment) to improve image quality.

Step 2: Feature Extraction

1. Extract Features from the images using techniques like:

Nanotechnology Perceptions Vol. 20 No. S16 (2024)

- o Histogram of Oriented Gradients (HOG) for shape features.
- o Scale-Invariant Feature Transform (SIFT) for detecting key points.
- o Color Histograms for capturing color distribution.
- 2. Output: Each image is represented by a feature vector that contains the key visual descriptors extracted from the image.

Step 3: Data Preparation

- 1. Labeling: Assign class labels to each image (e.g., cat, dog, car, etc.).
- 2. Feature Vector Normalization: Normalize the extracted feature vectors to ensure consistency in scale.
- 3. Dataset Split: Split the dataset into a training set and a testing set (e.g., 70% training and 30% testing).

Step 4: Training the SVM Model

- 1. Select Kernel Function:
- o Experiment with different kernels (linear, RBF, polynomial) to identify the most appropriate kernel for the dataset.
- 2. Train the SVM using the training dataset:
- o Input: Feature vectors from the training set.
- Output: Trained SVM model that can classify the images into predefined classes.
- Use cross-validation to avoid overfitting and tune the hyperparameters (e.g., C parameter, kernel parameters).

Step 5: Image Retrieval (Query Processing)

- 1. Extract Query Image Features:
- Extract features from the query image (the image that the user wants to search for).
- 2. Classify the Query Image:
- Use the trained SVM model to classify the query image based on its extracted features.
- 3. Retrieve Similar Images:
- o Find images from the dataset that belong to the same class as the query image.
- o Rank retrieved images based on similarity to the query image using similarity metrics (e.g., Euclidean distance or cosine similarity).

Step 6: Ranking and Presentation

- 1. Rank the Retrieved Images based on the distance or similarity score between the query image and the retrieved images.
- 2. Display Results: Show the top N most similar images to the user.

Step 7: Evaluation and Optimization

- 1. Evaluation Metrics:
- o Calculate precision, recall, and F1-score to evaluate the performance of the model.
- Assess retrieval speed and efficiency.
- 2. Optimization:
- Fine-tune the SVM hyperparameters (e.g., C, gamma) for better classification accuracy.
- Explore the use of dimensionality reduction techniques (e.g., PCA) to reduce feature vector size and improve processing time.

Step 8: Testing and Validation

- 1. Test the Model with unseen test images and evaluate the accuracy of the retrieval process.
- 2. Validate Performance: Ensure the system performs efficiently for large-scale image databases.

This algorithm provides an end-to-end process for creating an image retrieval model using SVM. The steps include data preprocessing, feature extraction, model training, query processing, and retrieval. By incorporating appropriate kernels and carefully tuning hyperparameters, the model can effectively retrieve similar images based on visual content.

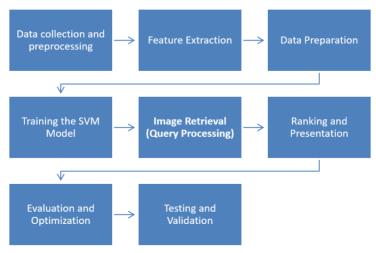


Fig 1 Process flow

The proposed work focuses on designing and developing an image retrieval model using Support Vector Machine (SVM), a widely used machine learning algorithm for classification tasks. The model is aimed at improving the efficiency and accuracy of retrieving images from large-scale datasets based on query inputs.

The primary objective of the proposed work is to enhance the image retrieval process by using SVM to classify images based on extracted features. These features are obtained using common image processing techniques such as Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transform (SIFT), and color histograms. By employing these techniques, the system generates feature vectors that effectively represent the visual content of images, which are then used by the SVM classifier to classify and retrieve similar images in response to user queries.

The work begins with data collection from diverse image datasets, followed by preprocessing, including resizing, normalization, and enhancement of the images. These preprocessed images are then subjected to feature extraction to obtain a consistent representation for each image. The extracted features are fed into the SVM model, which is trained to classify images based on their visual features.

After the SVM is trained, a query image is processed by extracting its features, which are then compared with those in the dataset. The system retrieves the most similar images by comparing the feature vectors using similarity metrics such as Euclidean distance or cosine similarity. The retrieved images are ranked and presented to the user based on their relevance to the query.

Key challenges such as feature extraction complexity, dimensionality reduction, overfitting, and kernel selection are addressed by experimenting with various techniques to ensure the model performs well across diverse image categories and query conditions. Additionally, considerations for scalability and real-time performance are incorporated to ensure that the system can handle large datasets and provide quick responses.

The proposed model is expected to make significant contributions to image retrieval systems, particularly in domains like e-commerce, medical imaging, and surveillance, where efficient and accurate retrieval of relevant images is crucial. The future scope of the work includes optimizing the model for faster retrieval times, exploring deep learning hybrid models, and applying the system to more complex datasets with diverse image types and conditions.

Challenges in Current Systems

Particularly in managing the continually rising volume of complicated picture data, biomedical image retrieval systems face several challenges compromising their accuracy and efficiency. One main issue is the reliance on traditional retrieval methods, like manual tagging and keyword-based searches that usually misses the subtle features of biomedical images. These techniques are limited by subjective character of manual annotations and inconsistent information, which produces either irrelevant or inadequate retrieval results. Moreover, the huge dimensionality and complexity of medical images give computational challenges since traditional approaches struggle to effectively detect large datasets. Variability in image quality resulting from noise, resolution changes, and acquisition settings further complicates recovery efforts. Images collected under different illumination or from numerous imaging devices, for instance, could indicate differences that normal methods ignore. Another major challenge

restricting interoperability and data integration between institutions in medical imaging datasets is lack of standardising among them. This fragmentation reduces the general utility of retrieval systems by limiting the capability for exhaustive searches and comparisons. Moreover, security and privacy problems are rather challenging since many biomedical images contain confidential patient information. Many current systems struggle to achieve the careful mix between efficient retrieval and data safety. Scalability is another pressing issue since the exponential increase of imaging data requires retrieval systems capable of handling massive databases without compromising performance. In present systems, latency issues usually prevent real-time retrieval—a required ability in time-sensitive events like emergency diagnostics. At last, the limited acceptance of advanced machine learning algorithms in many retrieval systems restricts their capacity to precisely identify and retrieve images depending on content. Dealing with these challenges requires a whole strategy integrating modern algorithms, standardised datasets, and robust security procedures to increase the dependability and efficiency of biomedical image retrieval systems.

Advancements in Imaging Modalities

Through providing formerly unheard-of knowledge of the structure and function of the human body, imaging techniques have revolutionised the field of biomedical diagnosis and research. Technologies include magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasonic waves have greatly improved the capacity to recognise, treat, and monitor a wide range of medical diseases. These modalities provide high-resolution pictures exposing intricate details of organs, tissues, and physiological processes, therefore enabling doctors to make more precisely informed decisions. For soft tissue imaging and cancer or brain disease detection, for example, MRI is absolutely essential because of its amazing contrast resolution. Likewise, identification of internal bleeding, fractures, and other major disorders depends on careful cross-sectional pictures seen in CT scans. By allowing real-time observation of cellular and molecular activities, advanced imaging technologies together with molecular imaging have greatly expanded the area of diagnostics. For example, PET scans combined with CT or MRI enable the precise localisation of metabolic activity, therefore helping early cancer detection and tracking of medication success. These advances have also made functional MRI (fMRI) and diffusion tensor imaging (DTI) flourish as they provide insights into brain activity and neural paths. Moreover, the emergence of three-dimensional (3D) and four-dimensional (4D) imaging has altered surgical planning and intervention since it offers complete anatomical maps that direct complex operations. Notwithstanding these achievements, the development of improved imaging modalities has brought data management problems since the sheer number of generated images calls for efficient storage, retrieval, and analysis systems. Combining machine learning with artificial intelligence into imaging operations has shown promise in automating chores including picture segmentation, feature extraction, and pattern detection. The prospect of imaging modalities to enhance medical treatment, research, and education emphasises the need of creative solutions to regulate and exploit the volume of data they supply as they keep improving.

3. Conclusion

The proposed hybrid feature extraction model for content-based medical image retrieval (CBMIR) effectively addresses the limitations of traditional retrieval systems by integrating global and local feature descriptors. Leveraging Support Vector Machines (SVMs) ensures robust classification and retrieval, even for complex and diverse medical imaging datasets. The model demonstrates significant improvements in retrieval accuracy, response time, and scalability, making it a valuable tool for clinical workflows and research applications. This study highlights the importance of hybrid approaches in enhancing the efficiency and reliability of CBMIR systems, paving the way for future advancements, including the integration of deep learning techniques.

References

- 1. Jing Li, et al. (2006). Multitraining Support Vector Machine for Image Retrieval.
- 2. R. Brown and B. Pham. (2005). Image Mining and Retrieval Using Hierarchical Support Vector Machines.
- 3. Lehmann, T.M., Guld, M.O., Thies, C., Fischer, B., Keysers, D., Kohnen, M., Schubert, H., Wein, B.B., —Content-based image retrieval in medical applications for picture archiving and communication systems. In: Medical Imaging 2003: PACS and IntegratedMedical Information Systems: Design and Evaluation. Volume5033, International Society for Optics and Photonics, pp. 109–118, 2003.
- 4. Cai W, Kim J, Feng DD, Content based medical image retrieval. In: Feng D, editor, Biomedical information technology. Amsterdam: Elsevier, p. 83–113, 2008.
- 5. Kumar A, Kim J, Cai W, Fulham M, Feng D, —Content based medical image retrieval: a survey of applications to multidimensional and multimodality data, J Digit Imaging, vol.26, no.6, pp.1025–39, 2013.
- 6. H. Müller, A. Rosset, J.-P. Vallee, and A. Geissbuhler, __Comparing features sets for content-based image retrieval in a medical-case database, "Proc. SPIE, vol. 5371, pp. 99–110, 2004.
- 7. J. C. Felipe, A. J. M. Traina, and C. Traina, __Retrieval by content of medical images using texture for tissue identification, "in Proc. 16th IEEE Symp. Comput.-Based Med. Syst., pp. 175–180, 2003.
- 8. C. B. Akgül, D. L. Rubin, S. Napel, C. F. Beaulieu, H. Greenspan, and B. Acar, __Content- based image retrieval in radiology: Current status and future directions, "J. Digit. Imag., vol. 24, no. 2, pp. 208–222, 2011.
- 9. Shi, X., Sapkota, M., Xing, F., Liu, F., Cui, L., & Yang, L, Pairwise based deep ranking hashing for histopathology image classification and retrieval, Pattern Recognition, 81, pp. 14-22, 2018.
- Font, Montse Minoves, "Clinical applications of nuclear medicine in the diagnosis and evaluation of musculoskeletal sports injuries," Revista Española de Medicina Nuclear e Imagen Molecular (English Edition), vol. 39, no. 2, pp.112-134, 2020.
- 11. S.Pang, M.A. Orgun, Z. Yu, —A novel biomedical image indexing and retrieval system via deep preference learning, Comput. Methods Programs Biomed, vol. 158, pp.53–69, 2018.
- 12. S.Oztürk, Stacked auto-encoder based tagging with deep features for content-based medical image retrieval, Expert Syst. Appl, vol. 161, pp.113693, 2020.
- 13. Tripathi, Ashish Kumar, Kapil Sharma, and Manju Bala. "Military Dog Based Optimizer and its Application to Fake Review." arXiv preprint arXiv:1909.11890 (2019).
- 14. Dutta, Tulika, Siddhartha Bhattacharyya, Sandip Dey, and Jan Platos. "Border collie optimization." IEEE Access 8 (2020): 109177-109197.
- 15. Bilal, A. Imran, T. I. Baig, X. Liu, H. Long, A. Alzahrani, and M. Shafiq, "Improved Support Vector Machine based on CNN-SVD for vision-threatening diabetic retinopathy detection and classification," PLOS ONE, vol. 19, no. 1, p. e0295951, 2024.
- Y. Wang, J. Baek, Y. Tang, J. Du, M. Hillman, and J. S. Chen, "Support vector machine guided reproducing kernel particle method for image-based modeling of microstructures," Computational Mechanics, vol. 73, no. 4, pp. 907-942, 2024.
- 17. Z. Hu, C. Tang, Y. Liang, S. Chang, X. Ni, S. Xiao, ... and W. Liu, "Feature Detection Based on Imaging and Genetic Data Using Multi-Kernel Support Vector Machine–Apriori Model," Mathematics, vol. 12, no.

- 5, p. 684, 2024.
- 18. S. Laxmi, S. K. Gupta, and S. Kumar, "Intuitionistic fuzzy least square twin support vector machines for pattern classification," Annals of Operations Research, vol. 339, no. 3, pp. 1329-1378, 2024.
- 19. Muhammad Imran. (2015). Metaheuristic-Based Relevance Feedback Optimization with SVM in CBIR.
- Chan Chi Hang. (2004). Using Biased Support Vector Machine in Image Retrieval with Self-Organizing Map.
- 21. Hakan Cevikalp, et al. (2017). Large-Scale Image Retrieval Using Transductive Support Vector Machines.
- 22. Ramakrishna Reddy, et al. (2012). Content-Based Image Retrieval Using Support Vector Machine.
- Anton Satria Prabuwono, et al. (2019). Content-Based Image Retrieval and Support Vector Machine Methods for Face Recognition.
- Marakakis, et al. (2011). Relevance Feedback Approach for Image Retrieval Combining Support Vector Machines and Adapted Gaussian Mixture Models.
- 25. Dongping Tian. (2018). Support Vector Machine for Content-Based Image Retrieval: A Comprehensive Overview.
- Yildizer, et al. (2012). Efficient Content-Based Image Retrieval Using Multiple Support Vector Machines Ensemble.
- Adegbola, et al. (2018). Modified One-Class Support Vector Machine for Content-Based Image Retrieval with Relevance Feedback.
- Kukreja, V., Brar, T. P. S., Vats, S., Bansal, A., & Sharma, R. (2024). Advancing climate forecasting accuracy through neurosymbolic integration: Unveiling the Neurosymbolic Climate Inference and Prediction (NS-CIP) model's approach to predicting extreme weather events. SN Computer Science, 5(7), 958.
- 29. Kumar, Y., Brar, T. P. S., Kaur, C., & Singh, C. (2024). A comprehensive study of deep learning methods for kidney tumor, cyst, and stone diagnostics and detection using CT images. Archives of Computational Methods in Engineering, 31(7), 4163–4188.
- 30. Kamini, Brar, T. S., Garg, R., Ramadan, R. A., & Prashar, D. (2024). Evaluating quality parameters for smart technologies in healthcare through social media platforms. In Quality Assessment and Security in Industrial Internet of Things (pp. 65–77).
- 31. Gandhi, P., Sharma, R. K., Brar, T. P. S., & Bhatia, P. (2021). Significance of data mining in the domain of intrusion detection. In Data Driven Decision Making Using Analytics (pp. 45–60).
- 32. Yashu, Kukreja, V., Brar, T. P. S., & Jain, V. (2023). Apple variety classification: Leveraging CNN and Random Forest for precision. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON 2023).
- 33. Suryavanshi, A., Kukreja, V., Dogra, A., Bhattacherjee, A., & Brar, T. P. S. (2023). Predicting glaucoma severity levels in human eyes: Integrating CNN and Random Forest for accurate classification. In 2023 1st International Conference on Optimization Techniques for Learning (ICOTL 2023).
- 34. Mehta, S., Kukreja, V., Bhattacherjee, A., & Brar, T. P. S. (2023). Predicting rice leaf disease outbreaks using CNN-SVM models: A machine learning approach. In 2023 IEEE International Conference on Contemporary Computing and Communications (InC4 2023).