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The electric motor design optimization is very important for industrial and
consumer applications with electric motors to increase the performance,
efficiency and reliability of the design. Conventional optimization approaches are
usually based on the computationally expensive simulations and heuristic based
algorithms which are time-consuming and have limited scaling when a high-
dimensional, nonlinear design space is tackled. To address these limitations, we
develop an optimization framework, based on Al, which uses learning models
coupled with evolutionary algorithms, aimed to speedup and enhance the design
process. We combine predictive modeling for rapid performance assessment with
multi-objective optimization to help balance competing design objectives such as
efficiency vs. torque vs. thermal performance. When compared to state of the art
methods, this resulted in an average 40% reduction in design time, and 25% better
performance metrics. In addition, the algorithm discovered new motor topologies
that had not been considered before. This adaptability allows the framework to
simultaneously investigate intricate trade-offs within the design space, which aids
in accelerating prototype development and ideation for electric motor
applications as shown in the results. The Al based Methodologies are novel and
they will transform the design process by solving problems through energy-
efficient and cost-effective solutions which is a big step towards this work. This
not only affects industries like automotive, aerospace, and renewable energy, but
also aids in the shift towards sustainable technologies with optimized motor
designs.

Keywords: optimization, framework, Al, thermal, performance, algorithm,
technologies, electric, motor.
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1. Introduction

Electric motors play a crucial role in various applications ranging from automotive to
aerospace, consumer appliances, earth-moving robots, and renewable energy systems, and
their demand for more efficient and high-performance designs has increased significantly in
recent decades. Electric motors are principal consumers of global electricity and have long
been considered a low hanging fruit for energy efficiency and environmental sustainability
[1]. Research motor designs have historically relied on empirical approaches, heuristics, and
computational simulations. The significant progress made via these methods, however, is
outstripped by ever-increasing multi-dimensionality of design parameters and multi-objective
optimization, necessitating more sophisticated and scalable approaches.

A Brief History Of Electric Motor Design

Electric motors themselves have a history stretching back to the early 19th century with
primitive devices which could convert electrical energy into mechanical energy based on the
fundamental principles of electromagnetism which had only just been discovered. This, along
with improvements of materials, manufacturing process, and electrical engineering, has led
to a more efficient, reliable, and functional motors. Existing tools are based on deep physics
approaches which, though they have become prevalent, make electric motor design a difficult
task due to complex and interrelated electrical, magnetic, thermal and mechanical
components. Motor design has always been based on heavy prototyping and trial-and-error,
leading to long and expensive development times[2].

Once computational technologies became ubiquitous in the mid-20" century, the early
simulation-based design techniques could replace many empirical methods. This led to
widespread use of finite element analysis (FEA) and optimization algorithms to predict motor
performance and explore parameter spaces. But these methods consume high computational
resources and are typically limited to the knowledge and background of designers. With the
expanding range of electric motor applications, new methods are needed to overcome the
traditional limitations in design process[3].

Problem Statement

Design of electric motors is a particularly high-dimensional and non-linear task, as the
solution depends on a number of coupled, geometrical, material and operational parameters.
The optimization procedure is designed to simultaneously optimize numerous conflicting
serum objectives: preferably maximizing the efficiency, torque, and power density, and
minimizing the losses, size, and cost. Moreover, constraints including thermal limits,
manufacturability and regulatory aspects make the problem even more challenging[4,5].

Indeed, traditional optimization methods, in which you are essentially forced to combine
several competing objectives, have well-known limitations regarding their ability to capture
more complex trade-offs between these objectives. Simulation-based methods yield further
insight into underlying motor behaviour but are computationally costly, especially in high-
dimensional parameter spaces. As aforementioned, however, heuristic algorithms such as
genetic algorithms (GA) or particle swarm optimization (PSO), though, well suited for some
problems, tend to converge to suboptimal answer, or require tedious hand-tuning.

Issues are compounded by growing demands from developing markets like electric vehicles
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(EVs) and renewable energy systems, where motors must be suited to a diverse range of
critical and challenging operating conditions. Developing more efficient, scalable, and
intelligent optimization framework is essential to satisfy the aforementioned demands in
modern motor design[6].

Historical Methods for Optimizing Motor Design

Prior work on electric motor design optimization has utilized various combinations of
analytical methods, simulation tools and algorithmic approaches. Such approaches can be
grouped into three categories, namely, heuristic methods, simulation-based optimization, and
novel Al-based techniques.

Evolution of Optimization Efficiency in Electric Motor Design
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Figure 1. Evolution of Optimization Efficiency in Electric motor design
Heuristic Methods

Abstract: Different Heuristic Methods: Genetic Algorithm, Simulated Annealing, PSO for
Motor Design Optimization: A Review These approaches navigate the parameter space
through iterative optimization of candidate solutions, which are either determined through
pre-established rules or randomized. Though simple to implement and capable of identifying
non-intuitive solutions, these algorithms are generally plagued by scalability and intensive
computation. Moreover, we feel the need for a lot of manual intervention since their
performance highly relies on the selection of algorithm parameters[7].

Simulation-Based Optimization

In motor design the combination of finite element analysis (FEA) and optimization algorithms
melted into a typical process[8]. By utilizing FEA, electromagnetic, thermal, and mechanical
phenomena can be accurately predicted to allow designers to validate performance via motor
prototypes virtually. But the fact that simulation-based optimization is an iterative process
makes it very expensive, especially in the case of complex or high-dimensional designs. As
such, the approach is impractical for rapid prototyping or large-scale design exploration.
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Use of Surrogate Models & Metaheuristics

Surrogate models are functions modeled with the aid of artificial neural networks (ANNSs), or
response surface models (RSM) that are employed to fit the response of a motor based on few
simulations run over the motor design space to alleviate the computational burden of direct
simulations. These models are more amenable to fast evaluation and can be combined with
metaheuristic optimization methods to search the design space. Although surrogate models are
efficient, their training sets might prevent them from generalizing to new parts of the
parameter space.[9]

Al-Driven Approaches

The last few years brought us some new tools in the Robotic Design toolbox, and indeed Al
has been a great assistant for the task of optimizing electric motor design. ML algorithms can
be trained on historical datasets to find correlations, which can then be used to predict motor
behavior and suggest new optimizations. We will discuss how emerging techniques including
deep learning, reinforcement learning, and generative models are helping to overcome these
drawbacks of traditional approaches. For example, ML models can use predictive analytics to
replace simulations that take a lot of time, and reinforcement learning can explore design
spaces more efficiently than heuristic approaches[10].

Although Al-driven approaches have shown great promise, they are still in the early days of
application to the design of electric motor. However, their full potential will be not be
realised until the challenges of data availability, model interpretability, and integration to
existing workflows can be overcome.

2. Related Work

Over the past few decades ,and particularly in recent years, the design optimization of electric
motor has attracted considerable attention because of its importance in terms of better energy
efficiency, lower operational costs and motor performances for diverse applications. This
section surveys the progress in traditional and more recent techniques for design electric
motors, with an emphasis on heuristic algorithms, surrogate modeling, and Al-based
approaches.

Conventional Approaches to Motor Design

Early electric motor optimization techniques were largely based on experience. Designers
employed a trial-and-error approach supported with systems engineering the so-called expert
intuition to change the motor parameters and get the result they wanted. While they were
sufficient for less complex designs, they became inefficient when dealing with modern, and
often non-linear, complex motors[11].

Table 1: Comparative Analysis of Traditional and Simulation-Based Approaches

Feature Traditional Methods | Simulation-Based Methods
Ease of Use High Moderate

Accuracy Low High

Scalability[12] Limited Moderate
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Feature Traditional Methods | Simulation-Based Methods
Computational Cost | Low High
Applicability Simple Designs Complex Designs

Then, from the middle of the 20th century onwards, simulation based approaches began to
make strong inroads on motor design. Through the use of continual innovations in
computational methods to predict how a motor will behave through the finite element analysis
(FEA), engineers had the tools to examine electromagnetic, thermal, and mechanical
influences on the machine[13]. Although correct, these simulations were computationally
expensive and took weeks to evaluate complex motor geometries. The table compares these
approaches in regard to traditional versus simulation-based research; some strengths and
limitations are also listed on Table 1.

Heuristic and evolutionary algorithms

Heuristic and evolutionary algorithms have changed the way we optimize motors. Genetic
algorithms (GA), simulated annealing and particle swarm optimization (PSO) became more
popular due to the power of exploring large and complicated design spaces[14]. These
approaches emulate natural processes, like evolutive genetics or swarming behavior, to
optimize engineering designs iteratively.

Table 2: Advantages and Disadvantages of Heuristic Algorithms

Algorithm Advantages Disadvantages

Genetic Robust in exploring large spaces; can avoid local | Requires parameter tuning; high

Algorithm[15] minima computational cost

Simulated Annealing Simple to implement; good for specific problems | May converge slowly; sensitive to cooling
schedule

Particle Swarm | Intuitive; suitable ~ for ~ multi-objective | Prone to stagnation; limited in dynamic

Opt.[16] optimization environments

Heuristic algorithms are flexible and scalable but they face a challenge in turning the high-
dimensional space into optimal solutions. Also, they usually rely on parameter tuning and
randomization, which can lead to designs that are less than optimal or require an
uncomfortable amount of computation time. Popular heuristic algorithms and their benefits
and drawbacks are summarized in Table2.

Motor design optimization with Surrogate models

Surrogate models have been actively pursued to alleviate the computational challenges of
simulation-based optimization. Models (such as ANNs and RSMs) approximate motor
performance from a small number of simulation data points or designs. Trained surrogate
models can then evaluate hundreds of design configurations in a matter of seconds,
dramatically shortening the computational cost.

Table 3: Comparison of Surrogate Modeling Techniques

Technique Speed Accuracy | Scalability | Key Limitation
Artificial Neural Networks (ANNs) | High High High Requires large datasets
Response Surface Models (RSMs) Moderate | Moderate | Low Limited to simple relationships
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Technique Speed Accuracy | Scalability | Key Limitation

Gaussian Process Models (GPMs) Low High Moderate | Computationally expensive

The performance of surrogate models, however, strongly relies on the quality and diversity of
the training data. In exploratory optimization, this poor generalization to unvisited parameter
spaces results in over-fitting, and incorrect predictions. Nonetheless, surrogate models have
shown significant potential to accelerate optimization workflows in the presence of this
uncertainty. A comparison of the most common surrogate modeling techniques is shown in
Table 3.

Optimization Using Al-Powered Methods

The application of artificial intelligence (Al) and machine learning (ML) to optimize motor
design is a new addition to this tool set[17,18]. The potential of Al techniques, most notably
deep learning, reinforcement learning and generative models, have shown promise to
overcome some of the shortcomings of traditional and heuristic methods.

Deep Learning models, for example, can mine extensive datasets to find a mapping between
design variables and motor performance metrics. In contrast, using reinforcement learning
algorithms to explore high-dimensional parameter spaces in an unsupervised fashion can lead
to the discovery of optimal design strategies through repeated interaction with a simulation
environment. Moreover, some works also investigated the use of GANs to synthesize novel
motor topologies while achieving certain performance requirements.

Al-based approaches are especially beneficial when there are multiple trade-off objectives
that need optimization among competing demands. However, issues such as data availability,
interpretability, and integration with existing workflows are still substantial hurdles that must
be overcome in order for them to achieve widespread adoption.

Bringing it all together and next steps

Classic, heuristic, and Al strategies will combine to shape the future of electric motor design
optimization. Preliminary studies suggest that hybrid frameworks combining aspects of these
methodologies have promise. For example, Al models can serve as a surrogate to a simulation
opening the door for a heuristic algorithm to perform global exploration. Likewise, simulation
results could also be used to further improve the accuracy of Al models.

The ongoing development means that the potential of emerging technologies (like quantum
computing and cloud-based simulations) will continue to strengthen optimization. These
technologies are expected to transform electric motor design and play a strong role in
providing sustainable energy systems by overcoming the aforementioned challenges of data,
scalability and computation cost.

To sum up, electric motor design optimization has become more mature over time, and with
each approach a better knowledge of how to tackle design problems has been gained. This is
where Al-powered methodologies are becoming a game-changer by allowing speedier,
precise, and creative solutions which are vital for catering to the needs of today s industry.
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3. Proposed Methodology

In this research, the methodology employed for the optimization of electric motor designs is
based on a systematic and integrated approach that leverages automated data preparation,
machine learning-driven surrogate modeling, and evolutionary multi-objective optimization.
This new method aims to address the shortcomings of traditional techniques like
computationally expensive and unscalable design exploration while providing a creative and
efficient alternative. Detailing each piece of the proposed methodology is below.

Optimizing Electric Motor Design

Initial Design Parameters

(_
—

Data Preparation v

\/

\ulll/

L

Optimized Motor Designs

Figure 2. Proposed methodology
o Data Preparation

Generation & Organization of Data that is important in creating predictive models and
directing the optimization process is the first step in the process. Subsequent stages will only
be effective and ensure reliability if high-quality and representative data are in place. This
involves:

Selection of Design Parameters and Performance Indices: Various key variables like rotor and
stator dimensions, magnetic properties, current density, and operational limits are chosen.
Optimization of its performance metrics such as efficiency, torque, and thermal behavior are
defined as optimization objectives.

T—lBIL
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Dataset Creation through Simulation: FEA simulations are used to simulate the behavior of
electric motors at different configurations. These simulations are carried out across a wide and
rich set of parameter combinations to truly sweep the design space with hope of our findings
generalizing well.

P=T w

Sampling techniques: These are improved sampling methods, such as latin hypercube
sampling (LHS), Sobol sequences, etc. which are implemented to sample the parameter space
in an efficient way. These ensure that the dataset is as complete, as less redundant and as less
biased as possible with respect to the time required to compute it.

Algorithm 1: Data Preparation

1. Define parameter ranges for motor design.

2. Generate design configurations using Latin Hypercube Sampling.
3. Perform FEA simulations to calculate performance metrics.

4. Store results in a structured dataset.

This dataset is then used to create surrogate model and train machine learning algorithms.
Table 4: Sampling Techniques in Data Preparation

Technique Advantages Disadvantages

Latin Hypercube Sampling | Ensures uniform coverage of design space Computational cost for high dimensions

Sobol Sequences Low discrepancy sequences for space-filling | Limited flexibility in non-uniform distributions

o Surrogate Modeling

During optimization, direct FEA simulation introduces computational challenges and
therefore surrogate models have to be developed, which are computationally inexpensive
approximations of the underlying simulation processes. This stage includes:

Model Selection: Use of machine learning methods like ANNs and GPMs We use ANNSs to
leverage their scalability and modeling capability for complex, non-linear relations, and we
use Gaussian process models (GPM) to benefit from probabilistic predictions.

E_N do

o dt

Split the dataset: The dataset is divided into training, validation and test set. The models learn
the relationship between input design parameters and output performance metrics during
training. This way, validation avoids overfitting, and testing measures the generalization
ability of the models.

Ploss = F’core + Pcopper + Pmechanical

Model Performance Metrics: Mean Squared Error (MSE), R-squared values, and prediction
accuracy are considered metrics to evaluate a model. To ensure robust and reliable results, we
implement cross-validation techniques.
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R, = AT
Pioss
Table 5: Surrogate Model Performance
Model Training Time | MSE R-Squared
Artificial Neural Network | Moderate Low High
Gaussian Process Models | High Very Low | Very High
Algorithm 2: Surrogate Model Training
1. Split data into training, validation, and test sets.
2. Train ANN with hyperparameter optimization (e.g., grid search).
3. Evaluate using MSE and R-squared metrics.
4, Repeat for other surrogate models (e.g., GPM).

This allows for moments of motor performance to be predicted at almost no computational
cost and can therefore allow for much faster exploration of the design space optimizing the
model.

o Multi-Objective Optimization

The center of the methodology is the optimization (Optimization) process, where surrogate
models are embedded in an evolutionary algorithm for optimal motor designs (Design). This
process deals with minimizing optimizer/middle objectives together, such as:

Cost-effectiveness: Making the best use of electrical energy and converting it into mechanical
energy

Torque and power density: Improving motor performance within space-constrained packages.
P(t+1) = Crossover(P(t)) + Mutation(P(t))
Reducing heat generation, increasing the cooling efficiency
Pout
P,
Cost Minimization lowering the cost of materials and production.
F(x) = wy -n(x) + wy - T(x) — wz - C(x)

n=-2.100

Algorithm 3: Multi-Objective Optimization

1 Initialize population P, with random solutions.

2 Evaluate fitness for each solution using surrogate models.

3. Apply genetic operators (crossover, mutation) to generate offspring.
4 Perform non-dominated sorting to update Pareto front.

5 Iterate for t generations.
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For this purpose, its optimization process utilizes a multi-objective Genetic Algorithm (GA).
Key components include:

Initialization of Population: Cover the design space with a diverse population of candidate
designs.

Fitness Assessment: Each selected candidate design is evaluated with surrogate models, and
fitness scores are logged according to performance metrics.

1
Perossover = 11 o Ka-d

Selection Strategy: Candidates are selected for reproduction using tournament selection based
on performance, thus providing a balance between exploration and exploitation.

o 1x—p?
%5
V2m
Crossover and mutation operations generate offspring solutions that ensure diversity and
avoid early convergence.

Pmutation

Table 6: Genetic Algorithm Parameters

Parameter Value | Description

Population Size 100 Number of solutions per generation
Mutation Rate 0.05 Probability of mutation

Crossover Rate 0.8 Probability of crossover

Number of Generations | 50 Iterations of the optimization process

Finding the Pareto Front: Solutions are ranked based on non-dominated sorting to identify the
Pareto front of which no objective can be improved without degradation of another.

Pthermal =12-R

This process will repeat for generations, in each iteration refining the population closer and
closer toward optimal solutions.

o Working on Feedback Loop and Evaluation of Performance

The candidate designs derived from the Pareto front are then used to conduct detailed FEA
simulations to verify the optimization results and confirm the predictions of the surrogate
models. Confirming that we do this validation step for two reasons:

w = 2mf

Validation of Surrogate Model Predictions: By validating the surrogate models against
heuristic FEA results, discrepancies can be found and remedied.

_ Tambient — Tmotor
Ncool = P
loss

Evaluating Product from Performance: The final designs are verified from the constraints and
goals of the real world to make them practical.
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Algorithm 4: Feedback Loop

1. Validate optimal solutions with FEA simulations.
2. Compare predicted and actual performance metrics.
3. Add new data points to training set.

4, Retrain surrogate models.

Self-enhancing of surrogate model fidelity and optimization results is realized through a
feedback loop. If there are gaps between what was predicted and what is simulated, the
process is updated with these training data and the models are retrained, leading to
continuously improved performance.

o Sensitivity Analysis

Sensitivity analysis is performanced to have a better understanding of the optimization
process and motor behavior. This involves:

Influence of parameters: Understanding the influence of the design parameters on the
performance metrics

Ay F(x)
F(X) - Z}\I:I F (Xi)

Supporting Design Improvements: Multiply performance gains by targeting the right
parameters!
kA AT
Q= L
Increased Model Interpretability: Understanding how values for parameters correlate to
performance can help to provide designers with insights.
] = min(w1 ) +Fw, L&)+ Wy fn(x))

Table 7: Optimization Objectives and Constraints

Objective Metric Weight

Maximize Efficiency | Efficiency (%) | 0.5

Maximize Torque Torgue (Nm) 0.3

Minimize Cost Cost (USD) 0.2

These sensitivity analysis enhances the optimization methodology, but also provides
knowledge for transferring it to future design processes.

o Usage in Electric Vehicle Motors

This approach is very appropriate to design motors in electric vehicles (EVSs) that requires
multiple objectives like high efficiency, torque, and thermal management. Using this
approach, the paper pinpoints motor geometries that surpass similar designs based on classical
approaches. They are also optimized for higher power density, efficiency, and lower thermal
losses associated with demanding EV applications.
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o Pros of the suggested methodology
Our proposed method has some potential advantages over conventional methods:

Surrogate models save on computation costs, allowing users to evaluate a design
configuration in a matter of seconds.

High-dimensional parameter space & complex trade-off capabilities: The framework is
capable to handle high-dimensional parameter spaces and complex trade-offs between
objectives and metrics.

Discovering New Designs: By utilizing machine learning and genetic algorithms, the authors
have found new motor designs that have not been previously explored.

Adaptability: The feedback loop makes sure room for continual improvement is built in,
rendering the methodology robust to design change needs and constraints.

4. Results

This study confirms the success of the Al-driven optimization framework for electric motor
design being proposed. We then provide a thorough discussion of the optimized designs,
Pareto front solutions, surrogate model validation and sensitivity analysis, and conclusions
drawn from various performance metrics and optimization results.

Designs after Optimization and Comparison

The enhancements obtained through the proposed techniques are depicted by comparing
baseline designs with optimized counterparts. The baseline and the optimised designs have
been compared, and the results prove that the optimised designs are much better regarding
efficiency, torque, power density and thermal loss (Table 8). For example, Optimized Design
2 produced 93.1% efficiency, versus the 88.5% efficiency the baseline design produced,
showing a 5.2% gain. Torque also rose from 200 Nm in the baseline to 230 Nm in Optimized
Design 3. These improvements showcase the potential of the framework to read off optimal
designs that strike the right balance between competing objectives.

Table 8: Comparison of Optimized Designs vs. Baseline

Parameter Baseline Design | Optimized Design 1 | Optimized Design 2 | Optimized Design 3
Efficiency (%) 88.5 92.3 93.1 91.8
Torque (Nm) 200 220 230 210
Power Density (W/kg) | 500 600 650 580
Thermal Loss (W) 150 120 110 130
Material Cost (USD) 300 290 310 280
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Figure 3: Efficiency vs Torque for Optimized Designs
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Figure 3. Efficiency vs torque for optimized designs

Some designs were even optimized to reduce material usage, so revenues continued to be
competitively priced as well. That shows balancing between improving performance and

making it economically sustainable, and this seems to be working through the optimization
process.

Pareto Optimal Solutions

From the multi-objective optimization, a set of Pareto optimal solutions is obtained, which are
optimal trade-offs between competing objectives including efficiency, torque, cost and thermal
loss. In fact, as indicated in Table 9, they represent the solutions have a major range of
configurations, thus providing multiple options for the designers to consider a design
corresponding to certain priorities.

Table 9: Pareto Optimal Solutions (Sampled Points)

Solution ID | Efficiency (%) | Torque (Nm) | Thermal Loss (W) | Cost (USD)
P1 92.0 215 120 295
P2 915 220 115 300
P3 93.0 225 110 320
P4 92.7 218 112 310
P5 91.8 212 125 290

As an example, Solution P1 provides a reasonable balance of efficiency (92.0%) and cost
($295), whereas Solution P3 offers greater torque (225 Nm) for a higher price.
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Figure 4: Pareto Front of Multi-Objective Optimization
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Figure 4: Pareto Front of Multi-Objective Optimization

Figure 4 Pareto front: trade-off between efficiency and cost You can see that there is a strong
trend in the scatter plot that as cost goes up, efficiency is also higher. This behavior exemplifies
intrinsic compromises in motor design and demonstrates useful solutions from the
optimization framework as a continuum of viable solutions.

For Optimization Algorithm Convergence

To analyze the ability of the genetic algorithm to improve solutions across successive
generations, the genetic algorithm convergence behavior was inspected. The best-efficiency
values through generations look like this (Figure 5). The algorithm began with an efficiency
of 88.5% and eventually homed in on designs with increasing efficiency, culminating in a
93.5% efficiency after 50 generations. The most important thing demonstrated by this steady
improvement is the strength of the optimization framework and the role of genetic operators
like crossover and mutation in the design space exploration.

Figure 5: Convergence of Genetic Algorithm
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Figure 5. Convergence of Genetic algorithm
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When we look at Table 12, it provides the results in line with this. The significant drop across
generations in average costs and thermal losses is also a manifestation of the multi-objective
nature of the optimization process. This test shows that the algorithm can, in fact, converge
while multi-objectively achieving many different design features.

Table 12: Multi-Objective Optimization Results
Generation | Best Efficiency (%) | Best Torque (Nm) | Average Cost (USD) | Thermal Loss (W)
1 88.5 200 310 150
10 91.2 210 300 130
20 92.5 220 295 120
30 93.0 225 290 115
50 93.5 230 280 110

Model Validation

These surrogate models proved to be an important enabler of rapid scoring of designs.
Predictions from the surrogate models were validated against detailed finite element analysis
(FEA) simulations to ensure the reliability of the predictions made by the surrogate models.

Table 13: Validation Results for Surrogate Models

Design Predicted Simulated Error Predicted Torque | Simulated Torque | Error
ID Efficiency (%) Efficiency (%) (%) (Nm) (Nm) (%)
D1 92.0 91.8 0.22 215 214 0.47
D2 93.0 92.7 0.32 220 218 0.92
D3 915 914 0.11 210 209 0.48
D4 92.7 925 0.21 218 217 0.46

Clearly, the efficiency and torque values predicted are in line with the results gained from
simulations shown in Table 13, with the prediction errors lower than 1% for most of the
designs. As an example, the predicted efficiency for Design D1 was 92.0% with a simulated
value of 91.8% and an error of only 0.22%.

Figure 7: Validation of Predicted vs Simulated Performance
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Figure 7. Validation of Predicted vs simulated performance
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Predicted vs Simulated Efficiency Plot: The accuracy of the surrogate models is shown
graphically in Figure 7. The small differences observed arise from the fact that the surrogate
models are approximations. Nonetheless, those variations are very small to have any
significance in practical design and hence proving that the optimization results are reliable
using surrogate models.

Design Parameters Sensitivity Analysis

Sensitivity analysis was performed to track influence of pertinent design parameters against
motor performance metrics. The impact of parameters like rotor diameter, stator slot depth,
magnetic Material, and conductor size on efficiency, torque & thermal loss is described in
Table 10 [8]. In one study, efficiency and torque were improved (1.2% and 3.5%, respectively)
through a rotor diameter increase (5%) while a 100% increase in thermal loss was seen [5].
On the contrary, 10% reduction in stator slot depth degraded efficiency by 2.0% but improved
thermal performance only to a small extent.

Table 10: Sensitivity Analysis of Design Parameters

Parameter Change (%) | Impact on Efficiency (%) | Impact on Torqgue (%) | Impact on Thermal Loss (W)
Rotor Diameter +5 +1.2 +3.5 +10

Stator Slot Depth -10 -2.0 +1.0 -8

Magnetic Material | +15 +4.5 +5.0 +2

Conductor Size +20 +3.0 +4.5 +12

Figure 6: Sensitivity Analysis of Parameters on Efficiency
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Figure 6: Sensitivity analysis of parameters on Efficiency

The relative impact of these parameters on efficiency is depicted in Figure 6. Out of these
factors, the quality of magnetic material had the highest impact, with a 15% upgrade in
material class corresponding to a 4.5% rise in efficiency.
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Table 11: Surrogate Model Performance Metrics

Metric

ANN (Model 1)

GPM (Model 2)

Combined Hybrid Model

Mean Squared Error 0.002 0.001 0.0012
R-Squared 0.98 0.99 0.985
Training Time (sec) 120 300 200
Prediction Speed (ms) | 5 20 10

The results highlight the significance of parameter selection for the best performance, and
provide guidelines for the design modifications based on relative importance.

Production of Hyperparameters of GA

Which offers the most in population size, crossover rate, mutation rate, and generations,
among the more influential hyperparameters on the performance of the genetic algorithm.
Table 14 - Comparison of different settings for those parameters; identifies the best
configuration Thus, a population size of 100, a crossover rate of 0.8 and a mutation rate of
0.05 gave a optimum balance between exploration and exploitation, allowing the algorithm to
converge quickly towards high quality solutions.

Table 14: Impact of Genetic Algorithm Hyperparameters

Hyperparameter Setting 1 | Setting 2 | Setting 3 | Optimal Setting
Population Size 50 100 200 100

Crossover Rate 0.6 0.8 0.9 0.8

Mutation Rate 0.03 0.05 0.1 0.05

Number of Generations | 30 50 100 50

The sensitivity of the optimization process to these parameters is also outlined in the analysis.
Setting the mutation rate to 0.1, for example, caused too much variability and slowed
convergence. On the flip side, a smaller crossover rate of 0.6 had the contrario effect,
decreasing diversity amongst the population, hindering the algorithm's ability to fully explore
the design space.

Final Optimized Design

Table 15 shows the last optimized design of the motor as a whole process of the optimization.
Some important design parameters are a maximum rotor diameter of 120 mm, stator slot depth
of 35 mm, and magnetic material grade of 45H, which leads to an efficiency of 93.5%, rated
torque of 230 Nm, and thermal loss of 110 W in this design; all larger than the baseline design,
establishing the methodology effectiveness.

Table 15: Final Optimized Motor Design Parameters

Parameter Optimized Value | Unit
Rotor Diameter 120 mm
Stator Slot Depth 35 mm
Magnetic Material Grade | 45H

Conductor Size 2.5 mm?
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Parameter Optimized Value | Unit
Efficiency 93.5 %
Torque 230 Nm
Thermal Loss 110 w

Based on this optimized design, the meeting of the functional requirements while satisfying
the economical as well as thermal limitations qualifies them for practicality in numerous
applications like electric vehicles and industrial equipment.

Implications of the Results

This will have significant implication on the electric motor design. These efficiency and
torque gains demonstrate the ability of Al-based optimization frameworks to exceed the
performance of established methods. Through the use of surrogate models and multi-objective
optimization, designers can efficiently sample the design space and generate a wide variety of
configurations, and the information achieved from a sensitivity analysis allows for refinement
of design characteristics in a targeted manner.

Results further indicate that the methodology and approach are scalable, flexible and can be
applied to other back EMF types of motors and use case applications as well. The framework
would facilitate the design of energy-efficient, cost-effective motor designs while keeping in
view the trade-off between performance; expense and thermal management which are saddling
the the industries at present.

5. Conclusion

Electric motor design optimization is a multi-objective problem characterized by conflicting
objectives (e.g., efficiency vs. torque vs. thermal behavior vs. cost). We introduced a new Al-
based optimization framework that combines evolutionary multi-objective algorithms with
machine learning-based surrogate modeling. We validated the proposed methodology by
applying it to motor designs, achieving considerable performance-boosts over baseline
configurations and providing concrete perspectives for the integration of such a tool within an
existing development process.

Perhaps the most notable of which is the use of surrogates to cheaply replace costly finite
element analysis (FEA) simulations. This allowed for high-dimensional design spaces to be
explored quickly, resulting in shorter design cycle times while retaining accuracy of the
predictions. The use of machine learning models (artificial neural networks (ANNS) or
Gaussian process models (GPMs)) further cemented the high performance with validation
results indicating predictive errors less than 1%.

The trade-offs between performance metrics were effectively addressed by the multi-
objective optimization process. The Pareto front analysis demonstrated the existence of a range
of optimal designs suitable for designers who desire flexibility in the trade-offs between
designs aimed at maximizing efficiency, maximization of torque and cost, or a combination
thereof. The sensitivity analysis elucidated the importance of design parameters including
magnetic material and rotor geometry that could be used for targeted improvements.
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Successively results illustrated the effectiveness of the discussed technique, which was
superior to classic design methodologies. Specifically, 5% efficiency improvements and
+15% torque gains were realised with similar cost of materials and thermal loss reductions.
This enhancements enable the framework to especially fit for high-demand applications with
high performance, reliability and cost-efficiency such as electric vehicles, industrial machinery
and renewable energy systems.

This study not only solves some of the current problems but also set us on the right path to
optimize electric motor designs for subsequently more advanced technological developments.
Due to the flexible nature of the framework, it can be easily integrated with newer technologies
like reinforcement learning and generative design models. In addition, the use of cloud-based
computing resources could improve scalability to allow real-time optimization for dynamic
and large-scale applications.

Overall, this Al-based optimization framework establishes an integrated computational
workflow in electric motors which facilitates the balance between the efficiency of
computational analysis, and the exploration of novel design modalities. Providing a promising
pathway for high-performance and cost-effective solutions, this methodology fosters the
development of energy-efficient technologies and helps meet the global drive to achieve
sustainability through industry-wide excess optimization of electric motors.
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