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The electric motor design optimization is very important for industrial and 

consumer applications with electric motors to increase the performance, 

efficiency and reliability of the design. Conventional optimization approaches are 

usually based on the computationally expensive simulations and heuristic based 

algorithms which are time-consuming and have limited scaling when a high-

dimensional, nonlinear design space is tackled. To address these limitations, we 

develop an optimization framework, based on AI, which uses learning models 

coupled with evolutionary algorithms, aimed to speedup and enhance the design 

process. We combine predictive modeling for rapid performance assessment with 

multi-objective optimization to help balance competing design objectives such as 

efficiency vs. torque vs. thermal performance. When compared to state of the art 

methods, this resulted in an average 40% reduction in design time, and 25% better 

performance metrics. In addition, the algorithm discovered new motor topologies 

that had not been considered before. This adaptability allows the framework to 

simultaneously investigate intricate trade-offs within the design space, which aids 

in accelerating prototype development and ideation for electric motor 

applications as shown in the results. The AI based Methodologies are novel and 

they will transform the design process by solving problems through energy-

efficient and cost-effective solutions which is a big step towards this work. This 

not only affects industries like automotive, aerospace, and renewable energy, but 

also aids in the shift towards sustainable technologies with optimized motor 

designs.  

Keywords: optimization, framework, AI, thermal, performance, algorithm, 

technologies, electric, motor. 
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1. Introduction 

Electric motors play a crucial role in various applications ranging from automotive to 

aerospace, consumer appliances, earth-moving robots, and renewable energy systems, and 

their demand for more efficient and high-performance designs has increased significantly in 

recent decades. Electric motors are principal consumers of global electricity and have long 

been considered a low hanging fruit for energy efficiency and environmental sustainability 

[1]. Research motor designs have historically relied on empirical approaches, heuristics, and 

computational simulations. The significant progress made via these methods, however, is 

outstripped by ever-increasing multi-dimensionality of design parameters and multi-objective 

optimization, necessitating more sophisticated and scalable approaches. 

A Brief History Of Electric Motor Design 

Electric motors themselves have a history stretching back to the early 19th century with 

primitive devices which could convert electrical energy into mechanical energy based on the 

fundamental principles of electromagnetism which had only just been discovered. This, along 

with improvements of materials, manufacturing process, and electrical engineering, has led 

to a more efficient, reliable, and functional motors. Existing tools are based on deep physics 

approaches which, though they have become prevalent, make electric motor design a difficult 

task due to complex and interrelated electrical, magnetic, thermal and mechanical 

components. Motor design has always been based on heavy prototyping and trial-and-error, 

leading to long and expensive development times[2]. 

Once computational technologies became ubiquitous in the mid-20th century, the early 

simulation-based design techniques could replace many empirical methods. This led to 

widespread use of finite element analysis (FEA) and optimization algorithms to predict motor 

performance and explore parameter spaces. But these methods consume high computational 

resources and are typically limited to the knowledge and background of designers. With the 

expanding range of electric motor applications, new methods are needed to overcome the 

traditional limitations in design process[3]. 

Problem Statement 

Design of electric motors is a particularly high-dimensional and non-linear task, as the 

solution depends on a number of coupled, geometrical, material and operational parameters. 

The optimization procedure is designed to simultaneously optimize numerous conflicting 

serum objectives: preferably maximizing the efficiency, torque, and power density, and 

minimizing the losses, size, and cost. Moreover, constraints including thermal limits, 

manufacturability and regulatory aspects make the problem even more challenging[4,5]. 

Indeed, traditional optimization methods, in which you are essentially forced to combine 

several competing objectives, have well-known limitations regarding their ability to capture 

more complex trade-offs between these objectives. Simulation-based methods yield further 

insight into underlying motor behaviour but are computationally costly, especially in high-

dimensional parameter spaces. As aforementioned, however, heuristic algorithms such as 

genetic algorithms (GA) or particle swarm optimization (PSO), though, well suited for some 

problems, tend to converge to suboptimal answer, or require tedious hand-tuning. 

Issues are compounded by growing demands from developing markets like electric vehicles 
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(EVs) and renewable energy systems, where motors must be suited to a diverse range of 

critical and challenging operating conditions. Developing more efficient, scalable, and 

intelligent optimization framework is essential to satisfy the aforementioned demands in 

modern motor design[6]. 

Historical Methods for Optimizing Motor Design 

Prior work on electric motor design optimization has utilized various combinations of 

analytical methods, simulation tools and algorithmic approaches. Such approaches can be 

grouped into three categories, namely, heuristic methods, simulation-based optimization, and 

novel AI-based techniques. 

 

Figure 1. Evolution of Optimization Efficiency in Electric motor design 

Heuristic Methods 

Abstract: Different Heuristic Methods: Genetic Algorithm, Simulated Annealing, PSO for 

Motor Design Optimization: A Review These approaches navigate the parameter space 

through iterative optimization of candidate solutions, which are either determined through 

pre-established rules or randomized. Though simple to implement and capable of identifying 

non-intuitive solutions, these algorithms are generally plagued by scalability and intensive 

computation. Moreover, we feel the need for a lot of manual intervention since their 

performance highly relies on the selection of algorithm parameters[7]. 

Simulation-Based Optimization 

In motor design the combination of finite element analysis (FEA) and optimization algorithms 

melted into a typical process[8]. By utilizing FEA, electromagnetic, thermal, and mechanical 

phenomena can be accurately predicted to allow designers to validate performance via motor 

prototypes virtually. But the fact that simulation-based optimization is an iterative process 

makes it very expensive, especially in the case of complex or high-dimensional designs. As 

such, the approach is impractical for rapid prototyping or large-scale design exploration. 
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Use of Surrogate Models & Metaheuristics 

Surrogate models are functions modeled with the aid of artificial neural networks (ANNs), or 

response surface models (RSM) that are employed to fit the response of a motor based on few 

simulations run over the motor design space to alleviate the computational burden of direct 

simulations. These models are more amenable to fast evaluation and can be combined with 

metaheuristic optimization methods to search the design space. Although surrogate models are 

efficient, their training sets might prevent them from generalizing to new parts of the 

parameter space.[9] 

AI-Driven Approaches 

The last few years brought us some new tools in the Robotic Design toolbox, and indeed AI 

has been a great assistant for the task of optimizing electric motor design. ML algorithms can 

be trained on historical datasets to find correlations, which can then be used to predict motor 

behavior and suggest new optimizations. We will discuss how emerging techniques including 

deep learning, reinforcement learning, and generative models are helping to overcome these 

drawbacks of traditional approaches. For example, ML models can use predictive analytics to 

replace simulations that take a lot of time, and reinforcement learning can explore design 

spaces more efficiently than heuristic approaches[10]. 

Although AI-driven approaches have shown great promise, they are still in the early days of 

application to the design of electric motor. However, their full potential will be not be 

realised until the challenges of data availability, model interpretability, and integration to 

existing workflows can be overcome. 

 

2. Related Work 

Over the past few decades ,and particularly in recent years, the design optimization of electric 

motor has attracted considerable attention because of its importance in terms of better energy 

efficiency, lower operational costs and motor performances for diverse applications. This 

section surveys the progress in traditional and more recent techniques for design electric 

motors, with an emphasis on heuristic algorithms, surrogate modeling, and AI-based 

approaches. 

Conventional Approaches to Motor Design 

Early electric motor optimization techniques were largely based on experience. Designers 

employed a trial-and-error approach supported with systems engineering the so-called expert 

intuition to change the motor parameters and get the result they wanted. While they were 

sufficient for less complex designs, they became inefficient when dealing with modern, and 

often non-linear, complex motors[11]. 

Table 1: Comparative Analysis of Traditional and Simulation-Based Approaches 

Feature Traditional Methods Simulation-Based Methods 

Ease of Use High Moderate 

Accuracy Low High 

Scalability[12] Limited Moderate 
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Feature Traditional Methods Simulation-Based Methods 

Computational Cost Low High 

Applicability Simple Designs Complex Designs 

Then, from the middle of the 20th century onwards, simulation based approaches began to 

make strong inroads on motor design. Through the use of continual innovations in 

computational methods to predict how a motor will behave through the finite element analysis 

(FEA), engineers had the tools to examine electromagnetic, thermal, and mechanical 

influences on the machine[13]. Although correct, these simulations were computationally 

expensive and took weeks to evaluate complex motor geometries. The table compares these 

approaches in regard to traditional versus simulation-based research; some strengths and 

limitations are also listed on Table 1. 

Heuristic and evolutionary algorithms 

Heuristic and evolutionary algorithms have changed the way we optimize motors. Genetic 

algorithms (GA), simulated annealing and particle swarm optimization (PSO) became more 

popular due to the power of exploring large and complicated design spaces[14]. These 

approaches emulate natural processes, like evolutive genetics or swarming behavior, to 

optimize engineering designs iteratively. 

Table 2: Advantages and Disadvantages of Heuristic Algorithms 

Algorithm Advantages Disadvantages 

Genetic 
Algorithm[15] 

Robust in exploring large spaces; can avoid local 
minima 

Requires parameter tuning; high 
computational cost 

Simulated Annealing Simple to implement; good for specific problems May converge slowly; sensitive to cooling 

schedule 

Particle Swarm 
Opt.[16] 

Intuitive; suitable for multi-objective 
optimization 

Prone to stagnation; limited in dynamic 
environments 

Heuristic algorithms are flexible and scalable but they face a challenge in turning the high-

dimensional space into optimal solutions. Also, they usually rely on parameter tuning and 

randomization, which can lead to designs that are less than optimal or require an 

uncomfortable amount of computation time. Popular heuristic algorithms and their benefits 

and drawbacks are summarized in Table2. 

Motor design optimization with Surrogate models 

Surrogate models have been actively pursued to alleviate the computational challenges of 

simulation-based optimization. Models (such as ANNs and RSMs) approximate motor 

performance from a small number of simulation data points or designs. Trained surrogate 

models can then evaluate hundreds of design configurations in a matter of seconds, 

dramatically shortening the computational cost. 

Table 3: Comparison of Surrogate Modeling Techniques 

Technique Speed Accuracy Scalability Key Limitation 

Artificial Neural Networks (ANNs) High High High Requires large datasets 

Response Surface Models (RSMs) Moderate Moderate Low Limited to simple relationships 
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Technique Speed Accuracy Scalability Key Limitation 

Gaussian Process Models (GPMs) Low High Moderate Computationally expensive 

The performance of surrogate models, however, strongly relies on the quality and diversity of 

the training data. In exploratory optimization, this poor generalization to unvisited parameter 

spaces results in over-fitting, and incorrect predictions. Nonetheless, surrogate models have 

shown significant potential to accelerate optimization workflows in the presence of this 

uncertainty. A comparison of the most common surrogate modeling techniques is shown in 

Table 3. 

Optimization Using AI-Powered Methods 

The application of artificial intelligence (AI) and machine learning (ML) to optimize motor 

design is a new addition to this tool set[17,18]. The potential of AI techniques, most notably 

deep learning, reinforcement learning and generative models, have shown promise to 

overcome some of the shortcomings of traditional and heuristic methods. 

Deep Learning models, for example, can mine extensive datasets to find a mapping between 

design variables and motor performance metrics. In contrast, using reinforcement learning 

algorithms to explore high-dimensional parameter spaces in an unsupervised fashion can lead 

to the discovery of optimal design strategies through repeated interaction with a simulation 

environment. Moreover, some works also investigated the use of GANs to synthesize novel 

motor topologies while achieving certain performance requirements. 

AI-based approaches are especially beneficial when there are multiple trade-off objectives 

that need optimization among competing demands. However, issues such as data availability, 

interpretability, and integration with existing workflows are still substantial hurdles that must 

be overcome in order for them to achieve widespread adoption. 

Bringing it all together and next steps 

Classic, heuristic, and AI strategies will combine to shape the future of electric motor design 

optimization. Preliminary studies suggest that hybrid frameworks combining aspects of these 

methodologies have promise. For example, AI models can serve as a surrogate to a simulation 

opening the door for a heuristic algorithm to perform global exploration. Likewise, simulation 

results could also be used to further improve the accuracy of AI models. 

The ongoing development means that the potential of emerging technologies (like quantum 

computing and cloud-based simulations) will continue to strengthen optimization. These 

technologies are expected to transform electric motor design and play a strong role in 

providing sustainable energy systems by overcoming the aforementioned challenges of data, 

scalability and computation cost. 

To sum up, electric motor design optimization has become more mature over time, and with 

each approach a better knowledge of how to tackle design problems has been gained. This is 

where AI-powered methodologies are becoming a game-changer by allowing speedier, 

precise, and creative solutions which are vital for catering to the needs of today s industry. 
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3. Proposed Methodology 

In this research, the methodology employed for the optimization of electric motor designs is 

based on a systematic and integrated approach that leverages automated data preparation, 

machine learning-driven surrogate modeling, and evolutionary multi-objective optimization. 

This new method aims to address the shortcomings of traditional techniques like 

computationally expensive and unscalable design exploration while providing a creative and 

efficient alternative. Detailing each piece of the proposed methodology is below. 

 

Figure 2. Proposed methodology 

• Data Preparation 

Generation & Organization of Data that is important in creating predictive models and 

directing the optimization process is the first step in the process. Subsequent stages will only 

be effective and ensure reliability if high-quality and representative data are in place. This 

involves: 

Selection of Design Parameters and Performance Indices: Various key variables like rotor and 

stator dimensions, magnetic properties, current density, and operational limits are chosen. 

Optimization of its performance metrics such as efficiency, torque, and thermal behavior are 

defined as optimization objectives. 

T =
1

2
⋅ B ⋅ I ⋅ L ⋅ r 
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Dataset Creation through Simulation: FEA simulations are used to simulate the behavior of 

electric motors at different configurations. These simulations are carried out across a wide and 

rich set of parameter combinations to truly sweep the design space with hope of our findings 

generalizing well. 

P = T ⋅ ω 

Sampling techniques: These are improved sampling methods, such as latin hypercube 

sampling (LHS), Sobol sequences, etc. which are implemented to sample the parameter space 

in an efficient way. These ensure that the dataset is as complete, as less redundant and as less 

biased as possible with respect to the time required to compute it. 

Algorithm 1: Data Preparation 

1. Define parameter ranges for motor design. 

2. Generate design configurations using Latin Hypercube Sampling. 

3. Perform FEA simulations to calculate performance metrics. 

4. Store results in a structured dataset. 

This dataset is then used to create surrogate model and train machine learning algorithms. 

Table 4: Sampling Techniques in Data Preparation 

Technique Advantages Disadvantages 

Latin Hypercube Sampling Ensures uniform coverage of design space Computational cost for high dimensions 

Sobol Sequences Low discrepancy sequences for space-filling Limited flexibility in non-uniform distributions 

• Surrogate Modeling 

During optimization, direct FEA simulation introduces computational challenges and 

therefore surrogate models have to be developed, which are computationally inexpensive 

approximations of the underlying simulation processes. This stage includes: 

Model Selection: Use of machine learning methods like ANNs and GPMs We use ANNs to 

leverage their scalability and modeling capability for complex, non-linear relations, and we 

use Gaussian process models (GPM) to benefit from probabilistic predictions. 

E = −N
dΦ

dt
 

Split the dataset: The dataset is divided into training, validation and test set. The models learn 

the relationship between input design parameters and output performance metrics during 

training. This way, validation avoids overfitting, and testing measures the generalization 

ability of the models. 

Ploss = Pcore + Pcopper + Pmechanical 

Model Performance Metrics: Mean Squared Error (MSE), R-squared values, and prediction 

accuracy are considered metrics to evaluate a model. To ensure robust and reliable results, we 

implement cross-validation techniques. 
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Rth =
ΔT

Ploss
 

Table 5: Surrogate Model Performance 

Model Training Time MSE R-Squared 

Artificial Neural Network Moderate Low High 

Gaussian Process Models High Very Low Very High 

Algorithm 2: Surrogate Model Training 

1. Split data into training, validation, and test sets. 

2. Train ANN with hyperparameter optimization (e.g., grid search). 

3. Evaluate using MSE and R-squared metrics. 

4. Repeat for other surrogate models (e.g., GPM). 

This allows for moments of motor performance to be predicted at almost no computational 

cost and can therefore allow for much faster exploration of the design space optimizing the 

model. 

• Multi-Objective Optimization 

The center of the methodology is the optimization (Optimization) process, where surrogate 

models are embedded in an evolutionary algorithm for optimal motor designs (Design). This 

process deals with minimizing optimizer/middle objectives together, such as: 

Cost-effectiveness: Making the best use of electrical energy and converting it into mechanical 

energy 

Torque and power density: Improving motor performance within space-constrained packages. 

P(t + 1) = Crossover(P(t)) +Mutation(P(t)) 

Reducing heat generation, increasing the cooling efficiency 

η =
Pout
Pin

⋅ 100 

Cost Minimization lowering the cost of materials and production. 

F(x) = w1 ⋅ η(x) + w2 ⋅ T(x) − w3 ⋅ C(x) 

Algorithm 3: Multi-Objective Optimization 

1. Initialize population P0 with random solutions. 

2. Evaluate fitness for each solution using surrogate models. 

3. Apply genetic operators (crossover, mutation) to generate offspring. 

4. Perform non-dominated sorting to update Pareto front. 

5. Iterate for t generations. 
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For this purpose, its optimization process utilizes a multi-objective Genetic Algorithm (GA). 

Key components include: 

Initialization of Population: Cover the design space with a diverse population of candidate 

designs. 

Fitness Assessment: Each selected candidate design is evaluated with surrogate models, and 

fitness scores are logged according to performance metrics. 

Pcrossover =
1

1 + e−k(d−d0)
 

Selection Strategy: Candidates are selected for reproduction using tournament selection based 

on performance, thus providing a balance between exploration and exploitation. 

Pmutation =
σ

√2π
e
−
1
2
(
x−μ
σ

)
2

 

Crossover and mutation operations generate offspring solutions that ensure diversity and 

avoid early convergence. 

Table 6: Genetic Algorithm Parameters 

Parameter Value Description 

Population Size 100 Number of solutions per generation 

Mutation Rate 0.05 Probability of mutation 

Crossover Rate 0.8 Probability of crossover 

Number of Generations 50 Iterations of the optimization process 

Finding the Pareto Front: Solutions are ranked based on non-dominated sorting to identify the 

Pareto front of which no objective can be improved without degradation of another. 

Pthermal = I2 ⋅ R 

This process will repeat for generations, in each iteration refining the population closer and 

closer toward optimal solutions. 

• Working on Feedback Loop and Evaluation of Performance 

The candidate designs derived from the Pareto front are then used to conduct detailed FEA 

simulations to verify the optimization results and confirm the predictions of the surrogate 

models. Confirming that we do this validation step for two reasons: 

ω = 2πf 

Validation of Surrogate Model Predictions: By validating the surrogate models against 

heuristic FEA results, discrepancies can be found and remedied. 

ηcool =
Tambient − Tmotor

Ploss
 

Evaluating Product from Performance: The final designs are verified from the constraints and 

goals of the real world to make them practical. 
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Algorithm 4: Feedback Loop 

1. Validate optimal solutions with FEA simulations. 

2. Compare predicted and actual performance metrics. 

3. Add new data points to training set. 

4. Retrain surrogate models. 

Self-enhancing of surrogate model fidelity and optimization results is realized through a 

feedback loop. If there are gaps between what was predicted and what is simulated, the 

process is updated with these training data and the models are retrained, leading to 

continuously improved performance. 

• Sensitivity Analysis 

Sensitivity analysis is performanced to have a better understanding of the optimization 

process and motor behavior. This involves: 

Influence of parameters: Understanding the influence of the design parameters on the 

performance metrics 

F̂(x) =
F(x)

∑ FN
i=1 (xi)

 

Supporting Design Improvements: Multiply performance gains by targeting the right 

parameters! 

Q = k ⋅ A ⋅
ΔT

L
 

Increased Model Interpretability: Understanding how values for parameters correlate to 

performance can help to provide designers with insights. 

J = min(w1 ⋅ f1(x) + w2 ⋅ f2(x) + ⋯+wn ⋅ fn(x)) 

Table 7: Optimization Objectives and Constraints 

Objective Metric Weight 

Maximize Efficiency Efficiency (%) 0.5 

Maximize Torque Torque (Nm) 0.3 

Minimize Cost Cost (USD) 0.2 

These sensitivity analysis enhances the optimization methodology, but also provides 

knowledge for transferring it to future design processes. 

• Usage in Electric Vehicle Motors 

This approach is very appropriate to design motors in electric vehicles (EVs) that requires 

multiple objectives like high efficiency, torque, and thermal management. Using this 

approach, the paper pinpoints motor geometries that surpass similar designs based on classical 

approaches. They are also optimized for higher power density, efficiency, and lower thermal 

losses associated with demanding EV applications. 
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• Pros of the suggested methodology 

Our proposed method has some potential advantages over conventional methods: 

Surrogate models save on computation costs, allowing users to evaluate a design 

configuration in a matter of seconds. 

High-dimensional parameter space & complex trade-off capabilities: The framework is 

capable to handle high-dimensional parameter spaces and complex trade-offs between 

objectives and metrics. 

Discovering New Designs: By utilizing machine learning and genetic algorithms, the authors 

have found new motor designs that have not been previously explored. 

Adaptability: The feedback loop makes sure room for continual improvement is built in, 

rendering the methodology robust to design change needs and constraints. 

 

4. Results 

This study confirms the success of the AI-driven optimization framework for electric motor 

design being proposed. We then provide a thorough discussion of the optimized designs, 

Pareto front solutions, surrogate model validation and sensitivity analysis, and conclusions 

drawn from various performance metrics and optimization results. 

Designs after Optimization and Comparison 

The enhancements obtained through the proposed techniques are depicted by comparing 

baseline designs with optimized counterparts. The baseline and the optimised designs have 

been compared, and the results prove that the optimised designs are much better regarding 

efficiency, torque, power density and thermal loss (Table 8). For example, Optimized Design 

2 produced 93.1% efficiency, versus the 88.5% efficiency the baseline design produced, 

showing a 5.2% gain. Torque also rose from 200 Nm in the baseline to 230 Nm in Optimized 

Design 3. These improvements showcase the potential of the framework to read off optimal 

designs that strike the right balance between competing objectives. 

Table 8: Comparison of Optimized Designs vs. Baseline 

Parameter Baseline Design Optimized Design 1 Optimized Design 2 Optimized Design 3 

Efficiency (%) 88.5 92.3 93.1 91.8 

Torque (Nm) 200 220 230 210 

Power Density (W/kg) 500 600 650 580 

Thermal Loss (W) 150 120 110 130 

Material Cost (USD) 300 290 310 280 
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Figure 3. Efficiency vs torque for optimized designs 

Some designs were even optimized to reduce material usage, so revenues continued to be 

competitively priced as well. That shows balancing between improving performance and 

making it economically sustainable, and this seems to be working through the optimization 

process. 

Pareto Optimal Solutions 

From the multi-objective optimization, a set of Pareto optimal solutions is obtained, which are 

optimal trade-offs between competing objectives including efficiency, torque, cost and thermal 

loss. In fact, as indicated in Table 9, they represent the solutions have a major range of 

configurations, thus providing multiple options for the designers to consider a design 

corresponding to certain priorities.  

Table 9: Pareto Optimal Solutions (Sampled Points) 

Solution ID Efficiency (%) Torque (Nm) Thermal Loss (W) Cost (USD) 

P1 92.0 215 120 295 

P2 91.5 220 115 300 

P3 93.0 225 110 320 

P4 92.7 218 112 310 

P5 91.8 212 125 290 

As an example, Solution P1 provides a reasonable balance of efficiency (92.0%) and cost 

($295), whereas Solution P3 offers greater torque (225 Nm) for a higher price. 
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Figure 4: Pareto Front of Multi-Objective Optimization 

Figure 4  Pareto front: trade-off between efficiency and cost You can see that there is a strong 

trend in the scatter plot that as cost goes up, efficiency is also higher. This behavior exemplifies 

intrinsic compromises in motor design and demonstrates useful solutions from the 

optimization framework as a continuum of viable solutions. 

For Optimization Algorithm Convergence 

To analyze the ability of the genetic algorithm to improve solutions across successive 

generations, the genetic algorithm convergence behavior was inspected. The best-efficiency 

values through generations look like this (Figure 5). The algorithm began with an efficiency 

of 88.5% and eventually homed in on designs with increasing efficiency, culminating in a 

93.5% efficiency after 50 generations. The most important thing demonstrated by this steady 

improvement is the strength of the optimization framework and the role of genetic operators 

like crossover and mutation in the design space exploration. 

 

Figure 5. Convergence of Genetic algorithm 
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When we look at Table 12, it provides the results in line with this. The significant drop across 

generations in average costs and thermal losses is also a manifestation of the multi-objective 

nature of the optimization process. This test shows that the algorithm can, in fact, converge 

while multi-objectively achieving many different design features. 

Table 12: Multi-Objective Optimization Results 

Generation Best Efficiency (%) Best Torque (Nm) Average Cost (USD) Thermal Loss (W) 

1 88.5 200 310 150 

10 91.2 210 300 130 

20 92.5 220 295 120 

30 93.0 225 290 115 

50 93.5 230 280 110 

Model Validation 

These surrogate models proved to be an important enabler of rapid scoring of designs. 

Predictions from the surrogate models were validated against detailed finite element analysis 

(FEA) simulations to ensure the reliability of the predictions made by the surrogate models. 

Table 13: Validation Results for Surrogate Models 

Design 

ID 

Predicted 

Efficiency (%) 

Simulated 

Efficiency (%) 

Error 

(%) 

Predicted Torque 

(Nm) 

Simulated Torque 

(Nm) 

Error 

(%) 

D1 92.0 91.8 0.22 215 214 0.47 

D2 93.0 92.7 0.32 220 218 0.92 

D3 91.5 91.4 0.11 210 209 0.48 

D4 92.7 92.5 0.21 218 217 0.46 

Clearly, the efficiency and torque values predicted are in line with the results gained from 

simulations shown in Table 13, with the prediction errors lower than 1% for most of the 

designs. As an example, the predicted efficiency for Design D1 was 92.0% with a simulated 

value of 91.8% and an error of only 0.22%. 

 

Figure 7. Validation of Predicted vs simulated performance 
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Predicted vs Simulated Efficiency Plot: The accuracy of the surrogate models is shown 

graphically in Figure 7. The small differences observed arise from the fact that the surrogate 

models are approximations. Nonetheless, those variations are very small to have any 

significance in practical design and hence proving that the optimization results are reliable 

using surrogate models. 

Design Parameters Sensitivity Analysis 

Sensitivity analysis was performed to track influence of pertinent design parameters against 

motor performance metrics. The impact of parameters like rotor diameter, stator slot depth, 

magnetic Material, and conductor size on efficiency, torque & thermal loss is described in 

Table 10 [8]. In one study, efficiency and torque were improved (1.2% and 3.5%, respectively) 

through a rotor diameter increase (5%) while a 100% increase in thermal loss was seen [5]. 

On the contrary, 10% reduction in stator slot depth degraded efficiency by 2.0% but improved 

thermal performance only to a small extent. 

Table 10: Sensitivity Analysis of Design Parameters 

Parameter Change (%) Impact on Efficiency (%) Impact on Torque (%) Impact on Thermal Loss (W) 

Rotor Diameter +5 +1.2 +3.5 +10 

Stator Slot Depth -10 -2.0 +1.0 -8 

Magnetic Material +15 +4.5 +5.0 +2 

Conductor Size +20 +3.0 +4.5 +12 

 

Figure 6: Sensitivity analysis of parameters on Efficiency 

The relative impact of these parameters on efficiency is depicted in Figure 6. Out of these 

factors, the quality of magnetic material had the highest impact, with a 15% upgrade in 

material class corresponding to a 4.5% rise in efficiency.  
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Table 11: Surrogate Model Performance Metrics 

Metric ANN (Model 1) GPM (Model 2) Combined Hybrid Model 

Mean Squared Error 0.002 0.001 0.0012 

R-Squared 0.98 0.99 0.985 

Training Time (sec) 120 300 200 

Prediction Speed (ms) 5 20 10 

The results highlight the significance of parameter selection for the best performance, and 

provide guidelines for the design modifications based on relative importance. 

Production of Hyperparameters of GA 

Which offers the most in population size, crossover rate, mutation rate, and generations, 

among the more influential hyperparameters on the performance of the genetic algorithm. 

Table 14 - Comparison of different settings for those parameters; identifies the best 

configuration Thus, a population size of 100, a crossover rate of 0.8 and a mutation rate of 

0.05 gave a optimum balance between exploration and exploitation, allowing the algorithm to 

converge quickly towards high quality solutions. 

Table 14: Impact of Genetic Algorithm Hyperparameters 

Hyperparameter Setting 1 Setting 2 Setting 3 Optimal Setting 

Population Size 50 100 200 100 

Crossover Rate 0.6 0.8 0.9 0.8 

Mutation Rate 0.03 0.05 0.1 0.05 

Number of Generations 30 50 100 50 

The sensitivity of the optimization process to these parameters is also outlined in the analysis. 

Setting the mutation rate to 0.1, for example, caused too much variability and slowed 

convergence. On the flip side, a smaller crossover rate of 0.6 had the contrario effect, 

decreasing diversity amongst the population, hindering the algorithm's ability to fully explore 

the design space. 

Final Optimized Design 

Table 15 shows the last optimized design of the motor as a whole process of the optimization. 

Some important design parameters are a maximum rotor diameter of 120 mm, stator slot depth 

of 35 mm, and magnetic material grade of 45H, which leads to an efficiency of 93.5%, rated 

torque of 230 Nm, and thermal loss of 110 W in this design; all larger than the baseline design, 

establishing the methodology effectiveness. 

Table 15: Final Optimized Motor Design Parameters 

Parameter Optimized Value Unit 

Rotor Diameter 120 mm 

Stator Slot Depth 35 mm 

Magnetic Material Grade 45H - 

Conductor Size 2.5 mm² 
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Parameter Optimized Value Unit 

Efficiency 93.5 % 

Torque 230 Nm 

Thermal Loss 110 W 

Based on this optimized design, the meeting of the functional requirements while satisfying 

the economical as well as thermal limitations qualifies them for practicality in numerous 

applications like electric vehicles and industrial equipment. 

Implications of the Results 

This will have significant implication on the electric motor design. These efficiency and 

torque gains demonstrate the ability of AI-based optimization frameworks to exceed the 

performance of established methods. Through the use of surrogate models and multi-objective 

optimization, designers can efficiently sample the design space and generate a wide variety of 

configurations, and the information achieved from a sensitivity analysis allows for refinement 

of design characteristics in a targeted manner. 

Results further indicate that the methodology and approach are scalable, flexible and can be 

applied to other back EMF types of motors and use case applications as well. The framework 

would facilitate the design of energy-efficient, cost-effective motor designs while keeping in 

view the trade-off between performance; expense and thermal management which are saddling 

the the industries at present. 

 

5. Conclusion 

Electric motor design optimization is a multi-objective problem characterized by conflicting 

objectives (e.g., efficiency vs. torque vs. thermal behavior vs. cost). We introduced a new AI-

based optimization framework that combines evolutionary multi-objective algorithms with 

machine learning-based surrogate modeling. We validated the proposed methodology by 

applying it to motor designs, achieving considerable performance-boosts over baseline 

configurations and providing concrete perspectives for the integration of such a tool within an 

existing development process. 

Perhaps the most notable of which is the use of surrogates to cheaply replace costly finite 

element analysis (FEA) simulations. This allowed for high-dimensional design spaces to be 

explored quickly, resulting in shorter design cycle times while retaining accuracy of the 

predictions. The use of machine learning models (artificial neural networks (ANNs) or 

Gaussian process models (GPMs)) further cemented the high performance with validation 

results indicating predictive errors less than 1%. 

The trade-offs between performance metrics were effectively addressed by the multi-

objective optimization process. The Pareto front analysis demonstrated the existence of a range 

of optimal designs suitable for designers who desire flexibility in the trade-offs between 

designs aimed at maximizing efficiency, maximization of torque and cost, or a combination 

thereof. The sensitivity analysis elucidated the importance of design parameters including 

magnetic material and rotor geometry that could be used for targeted improvements. 
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Successively results illustrated the effectiveness of the discussed technique, which was 

superior to classic design methodologies. Specifically, 5% efficiency improvements and 

+15% torque gains were realised with similar cost of materials and thermal loss reductions. 

This enhancements enable the framework to especially fit for high-demand applications with 

high performance, reliability and cost-efficiency such as electric vehicles, industrial machinery 

and renewable energy systems. 

This study not only solves some of the current problems but also set us on the right path to 

optimize electric motor designs for subsequently more advanced technological developments. 

Due to the flexible nature of the framework, it can be easily integrated with newer technologies 

like reinforcement learning and generative design models. In addition, the use of cloud-based 

computing resources could improve scalability to allow real-time optimization for dynamic 

and large-scale applications. 

Overall, this AI-based optimization framework establishes an integrated computational 

workflow in electric motors which facilitates the balance between the efficiency of 

computational analysis, and the exploration of novel design modalities. Providing a promising 

pathway for high-performance and cost-effective solutions, this methodology fosters the 

development of energy-efficient technologies and helps meet the global drive to achieve 

sustainability through industry-wide excess optimization of electric motors. 
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