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Since the development of smart building technologies is in rise, it is very crucial to optimize the 

consumption of energy within indoor environments for reducing its operational cost as well as bad 

effect on environment. Conventional system is constrained to adapt to complex as well as dynamic 

data which leads to suboptimal energy usage as well as occupant discomfort. AI algorithms have 

the ability to analyse complex datasets by identifying their patterns in order to generate more 

accurate predictions. In this paper, an AI-based model is developed to monitor the energy efficiency 

of smart room appliances using a hybridization of advanced machine learning techniques by 

considering various factors such as CO2 levels, humidity, temperature, light intensity, PIR sensor 

data, indoor air quality index, and air quality level. A dataset comprising 1.3 lakh records from 51 

rooms is taken into consideration and pre-processed using the K-nearest neighbours imputation 

technique to handle missing values. Later, the data is visualized graphically across different 

attributes and classes followed by techniques such as SMOTE-ENN and z-score normalization. 

Various hybrid classifiers such as Recurrent Neural Networks with Bidirectional Long Short-Term 

Memory, Bidirectional Gated Recurrent Unit, Deep Neural Networks, and XGBoost, are trained 

and results from the experimentation phase revealed that, for Data-I, the RNN+Bidirectional LSTM 

achieved the highest validation accuracy of 99.81% on a loss of 0.0050. Conversely, for Data-II, 

the RNN+Bidirectional GRU exhibited the best performance, achieving an accuracy of 99.67% 

with a loss of 0.0221. 

Keywords: Energy efficiency, Smart Room, Co2, Humidity, Hybrid approaches, SMOTE-

ENN, KNN imputation.  

 

 

1. Introduction 

Energy efficiency mainly refers towards the process where less energy is being used while 

performing the same task or to achieve the same level of output. This can be done by using 

various means like usage of appliances which are energy-efficient, optimization of industrial 

processes, improvising insulation in buildings, as well as using those energy sources which 

are renewable in nature [1]. It is very important to work on the improvement of energy 

efficiency as it can help to mitigate climate change by reducing the emission of greenhouse 
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gases. Apart from this, it can also save money which is being used as energy bills for 

households and finally it can enhance the energy security by reducing dependence on foreign 

energy sources [2]. In fact, as shown in Figure 1, the global smart home energy management 

market was worth USD 8.41 billion in 2020 and is predicted to grow 14.7% from 2021 to 2028 

[3]. 

In the current discourse on living a sustainable life, the role of Indoor Air Quality (IAQ) 

emerges as an important factor that cannot be ignored to improve the energy efficiency. In 

fact, the relation between the energy efficiency and IAQ has become increasingly apparent 

because of the intense efforts of societies to minimize the consumption of energy and mitigate 

its bad impact on environment. In addition to this, various remarkable strides can be achieved 

in case of efficient use of energy by optimizing indoor air quality [4]. 

 

Figure 1: US smart home energy management 

There are various traditional techniques which play a crucial role to reduce consumption of 

energy and minimize its environmental impact within homes. These methods include various 

methods such as to adopt energy efficient lighting systems and appliances by using simple 

insulation and weatherization. By using such practices, significant reductions in energy usage 

can be achieved by the home owners including the associated costs over time [5]. But these 

conventional energy efficiency techniques also face certain challenges when being applied to 

residential settings such as investments or the upfront costs for the implementation of energy-

efficient upgrades which usually does not fall in the budget of homeowners with limited 

financial resources and many more [6]. AI-based learning models have the capability to work 

on these issues and offer customized solutions for optimizing the use of energy to improve 

building performance, as well as the comfort of an occupant. Unlike traditional methods, AI 

models can analyse as well as study large amounts of data in real-time for identifying cost-

effective energy-saving opportunities to provide personalized recommendations to users. 

Apart from this, AI systems can also minimize inconvenience to ensure energy savings but 

without disturbing the comfort or productivity [7]. 

In fact, there are various researchers who have showed their contribution in the realm of 

building energy efficiency model for smart rooms using multiple machine and deep learning 
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models such as Ali et al. (2024) [8]  predicted the energy performance of urban residential 

buildings by using ensemble-based machine learning and end-use demand segregation 

methods. They generated a synthetic dataset of one million buildings and predicted energy 

performance using 19 vital variables for four residential building archetypes and their study 

demonstrated a 91% accuracy rate with the ensemble-based machine learning approach which 

outperformed the traditional method but their model also suffered from data inconsistency. 

Likewise, Deng et al. (2023) [9] presented AutoBPS and EnergyPlus for simulating building 

energy use and rooftop PV generation. They found that their method reduced energy demand 

by 18.5%, with PV installation achieving further savings of 38.6%. Morteza et al. (2023) [10] 

explored various architectures of deep recurrent neural networks (DRNNs) for medium as well 

as long-term energy demand predictions. Their proposed DRNN model surpassed support 

vector machine and gradient boosting regression models by 5.4% and 7.0%, respectively by 

showcasing its superior performance in energy forecasting accuracy. Pham et al. (2020) [11] 

proposed a Random Forests (RF) model to predict short-term energy consumption in multiple 

buildings at hourly resolution. They used five one-year datasets where the RF model 

demonstrated strong prediction accuracy in various scenarios. Gao et al. (2020) [12] 

introduced DeepComfort, a deep reinforcement learning framework for thermal comfort 

control in buildings to predict occupants' comfort levels, followed by a deep deterministic 

policy gradients-based approach for optimal thermal comfort control. Through simulation, the 

framework improved thermal comfort prediction by 14.5% and reduces HVAC energy 

consumption by 4.31%. Somu et al. (2021) [13] introduced CNN-LSTM, a deep learning 

framework for accurate building energy consumption by using recorded data at predefined 

intervals. They incorporated means clustering for trend analysis, Convolutional Neural 

Networks for feature extraction, and Long Short-Term Memory networks for handling 

temporal dependencies in time series data. Demonstrated with real-time data of IIT-Bombay 

in India, CNN-LSTM outperformed -means variants of state-of-the-art models in energy 

demand forecasting. 

Contribution of the paper 

In this paper the aim is to develop an automated system that uses hybrid advanced machine 

learning techniques to identify as well as classify the air quality level on the basis of multiple 

parameters including indoor air quality index. The contribution to perform the research is as 

follows: 

• Initially, a dataset consisting of 132007 records with seven attributes, such as CO2 levels, 

humidity, PIR, temperature, indoor AQI and AQL of 51 rooms were taken into 

consideration. 

• Subsequently, the data was pre-processed to check for irrelevant or missing values 

followed by graphical visualization to understand the pattern of the dataset. 

• For data augmentation and to address class imbalance issue, the SMOTE-ENN technique 

was employed, and the features of the dataset were standardized through scaling. 

• Various hybrid learning techniques were applied and trained with the dataset. The 

performances of these techniques were later examined using various standard metrics 

including learning curves and computational time. 
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2. Methodology 

This section defines the phases that have been used to predict and classify the Air Quality 

Level of a room using hybrid advanced machine learning techniques, as shown in Figure 2. 

 

Figure 2: Proposed System Methodology 

Dataset: The dataset consists of time series data collected at Sutardja Dai Hall at UC Berkeley 

from 255 sensors distributed across 51 rooms on their four floors. The data included five types 

of measurements for each room: CO2, humidity, room temperature, luminosity and motion 

data from Passive Infrared (PIR) sensors. Apart from this, each entry in the dataset includes a 

timestamp in Unix Epoch Time (UET) and the corresponding sensor reading [14]. 

Data Pre-processing: Several steps have been undertaken for pre-processing. Initially, missing 

or null values are checked for each attribute to ensure integrity and completeness of the data, 

as shown in Table I. After identifying the missing values, the KNN imputer technique is used 

to fill them by using information from neighboring points. Subsequently, with a complete 

dataset, the indoor air quality index (AQI) values for each room are computed and during this 

process, it is observed that some calculated AQI values are not helpful to meaningful 

interpretation as well as analysis. Hence, to address this issue, the dataset is refined by 

excluding records with negative AQI values and two rooms are arbitrarily selected i.e. 415 and 

776 for the further execution. Later, based on AQI values, the air quality level (AQL) values 

are generated as Low (0-50), Average (51-100), and Severe (101-500).  

Table I: Attributes with their missing values 

Attributes Data-I (415) Data-II (776) 

Co2 0 1095 

Humidity 1113 1 

light 1113 1 
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PIR 55875 59171 

Temperature 1114 0 

EDA: In this research, the role of EDA is to understand the complex relationships between 

various environmental factors and energy consumptions for smart room energy efficiency. 

Figure 3 defines the correlation matrix of the attributes whose values have been recorded from 

two different rooms i.e. 415 and 776 to identify the relation between them and understand their 

statistics. 

 

Figure 3: Correlation Matrix 

Later, Figure 4 illustrates the distribution pattern of three classes of air quality levels: low, 

average, and severe. After analysing the data collected from room 415, it can be seen that 

maximum count is taken up by the LOW with 125143, followed by the AVERAGE class 

which counts up to 5533 instances, and the SEVERE level with 1330 instances. Conversely, a  

different pattern can be seen from the data of room 776, where again LOW class takes the 

highest count of 124252 followed by the least count of SEVERE instances at 182, and an 

intermediate count of AVERAGE count of 7540.  

 

Figure 4: Distribution of AQL classes 
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In the same way, from Figure 5 and 6, the mean values of attributes like CO2, light, PIR, 

humidity, and temperature across different air quality levels (low, average, severe) in rooms 

415 and 776 are computed to provide the information related to the environmental conditions 

within each classification. In Figure 5, the average CO2 level in a room classified as having 

"severe" air quality can indicate potential ventilation issues or high occupancy. Similarly, there 

is also a graph where the mean value of average and severe air quality levels coincide with 

zero PIR values, it suggests that either there is minimal human activity in the monitored space 

or the PIR sensors are not detecting any significant movement.  

 

Figure 5: Mean values of attributes taken from Data-I 

Likewise, from Figure 6, the minimum mean value of PIR in the low air quality class typically 

indicates the lowest level of human presence or movement during periods when air quality is 

categorized as low as compared to the other two classes i.e. average and severe, in the same 

way a high mean value of light indicate factors such as maximum number of human 

occupancy, or lighting preferences that contribute to the overall indoor air quality of the room. 

In fact, in both the figures, the mean values of humidity across different classes of air quality 
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level (low, average, and severe) are approximately similar within a room which means that the 

room is equipped with robust environmental control systems, which effectively regulate 

humidity levels irrespective of variations in air quality. Besides this, it may also suggest that 

the monitored room is not significantly affected by changes in air quality concerning humidity. 

In the same way, the similar mean values of temperature across different classes of air quality 

level indicate effective temperature control mechanisms in place. This consistency suggests 

that the room maintains a stable temperature regardless of fluctuations in air quality levels.  

 

Figure 6: Mean values of attributes taken from Data-II 

Data Augmentation: During data analysis, class imbalance issue has been detected for which 

SMOTE (Synthetic Minority Over-sampling Technique) merged with Edited Nearest 

Neighbors (ENN) is used to balance it, as presented in Figure 7. SMOTE is a resampling 

technique that balances the distribution of the class by generating synthetic samples for the 

minority class  and on the other hand, ENN, is an undersampling technique responsible for 
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removing noise from the dataset to improve its quality [15]. It can be represented as 

SMOTE+ENN (X,y)= ENN(SMOTE(X_minority ),y_minority,k) 

Here, X refers to feature matrix of the dataset, y implies target vector of class labels, and k is 

the number of nearest neighbours used in both SMOTE and ENN. 

 

Figure 7: Class balancing after applying SMOTE-ENN 

Feature Scaling: In this research, Z-score scaling technique is used that quantifies the deviation 

of a data point from the mean of a dataset in terms of standard deviations, as shown in Table 

II and Table III for Data I and Data II respectively. If the value of Z-score is positive, it 

indicates that the data point is above the mean while as the negative value indicates that data 

point is below the mean [16]. 

z=(x-μ)/σ 

Here, x is the value of input data point, μ is the mean of population, and σ is the standard 

deviation of population. 

Table II: Z-score on Data I 

UET Co2 Humidity Light PIR Temperature AQI AQL 

325549 1.055964 0.144425 2.379320 -0.023165 0.723173 0.938428 severe 

117896 0.143589 0.157201 -0.093807 -0.023165 0.763403 0.129716 average 

249640 -1.277454 0.189566 2.190298 -0.023165 0.058066 -1.439350 low 

Table III: Z-score on Data II 

UET Co2 Humidity Light PIR Temperature AQI AQL 

358818 1.110844 -0.257155 0.487516 1.297579 -0.454014 1.167029 severe 

210124 -1.228468 1.217274 -1.693483 -0.813769 -0.312602 -1.205204 low 

68366 0.746597 -0.247127 -0.176100 -0.813769 -0.771739 0.540879 average 

Classifiers: In this paper, Recurrent Neural Networks (RNN) with advanced machine learning 

techniques are hybridized for assessing their efficacy to handle the complexity of smart 

building dataset.  

Recurrent Neural Networks (RNNs) constitute an important component in the domain to 
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enhance smart building energy efficiency. It comprises of interconnected neurons that 

maintain a hidden state ht at each time step t. The update process of the hidden state in an 

RNN is governed by a nonlinear function f which operates on xt (current input) and ht−1 

(previous hidden state). Mathematically, this update is expressed as ht = f(xt, ht−1;  θ) where 

θ represents the parameters of the RNN. The hybrid architecture of RNN and bidirectional 

LSTM as well as RNN and bidirectional GRU combines the sequential data processing 

capabilities of RNNs with the enhanced context capturing ability of bidirectional LSTM 

networks. Here, after RNN process the input time series data sequentially, its output is fed to 

a bidirectional models which processes the sequence from the start to the end (forward 

direction), and the other processes it from the end to the start (backward direction). This dual 

processing captures information from both past and future contexts at each time step [17]. Both 

GRUs and LSTMs are types of RNN which are designed to capture long-term dependencies 

and mitigate issues like the vanishing gradient problem but there is a difference in their internal 

mechanisms and computational efficiency. Mathematically, the forward and backward hidden 

states of the bidirectional models are denoted as ( ht
⃗⃗  ⃗ and ht

⃖⃗ ⃗⃗  )respectively and the final output 

at each time step t  is the concatenation of these hidden states: 

ht̃ = [ht
⃗⃗  ⃗;  ht

⃖⃗ ⃗⃗ ] 

Subsequently, the RNN+DNN architecture is used to strengthen both sequential data modeling 

and deep learning capabilities in order to enhancing predictive performance. Within this hybrid 

model, the RN model process the time-series data to capture temporal dependencies to 

generate a sequence of hidden states which are then inputted into a DNN for further processing. 

DNNs comprise multiple layers of interconnected neurons, with each layer applying a linear 

transformation followed by a nonlinear activation function to the input data [18]. The output 

of the DNN is computed using 

ŷ = g(Wn. g(Wn−1.…. g(W1. x + b1) + bn−1) + bn) 

where g is the activation function, Wi and bi are the weights and biases of the ith, and x is the 

input to the network. At the end, the RNN+XGBoost architecture uses both sequential data 

modeling and powerful gradient-boosted decision trees where the RNN processes the time-

series data to capture temporal dependencies and outputs a sequence of hidden states which is 

then fed into an XGBoost model as features [18] and the objective function is computed using: 

ℒ(θ) =  ∑l(yi, ŷi) + ∑ Ω(fk)

K

k=1

n

i=1

 

where l is a differentiable loss function to measure discrepancy  between the actual yi and 

predicted value ŷi, and Ω is a regularization term that penalizes the complexity of the model. 

Performance Metrics 

In the context of smart city classification based on air quality index (AQI), several key metrics 

are typically used to evaluate the performance of classification models. Accuracy, the 

proportion of correctly classified instances, provides an overall measure of model performance 

[19].  
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Accuracy =  
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
 

Loss, often measured using metrics like cross-entropy, quantifies the difference between 

predicted and actual values, serving as a gauge of model convergence and optimization.  

Loss =  
(Actual Value − Predicted Value)2

Number of observations
 

Precision, a measure of the proportion of correctly predicted positive cases among all predicted 

positive cases, is crucial for assessing the model's ability to avoid false positives in identifying 

areas with poor air quality while as Recall, computes the ability of the model to capture all 

actual positive cases that are correctly identified.  

Precision =
True Positive

True Positive + False Positive
 

Recall =
True Positive

True Positive + False Negative
 

F1 score balances the performance of model on the basis of their precision and recall. It is 

mostly useful when there is no balance between positive and negative instances. 

F1 score =  2 ×
Precision × Recall

Recall + Precision
 

 

3. Results 

The section presents the results of the models which have been trained by the data collected 

from both the rooms in different subsections. 

Analysis of models for the Data I of Room 415 

Table IV presents a comparative analysis of different models based on their performance 

metrics, specifically accuracy and loss, on both training and validation datasets.  

Table IV: Analysis of models (Room 415) 

Models 
Training Validation 

Accuracy Loss Accuracy Loss 

RNN+Bidirectional GRU 84.25 0.2696 99.75 0.0139 

RNN+Bidirectional LSTM 95.73 0.0826 99.81 0.0050 

RNN + DNN 39.29 1.3675 33.17 0.9535 

RNN + XgBoost 87.20 21.89 99.76 0.0118 

Employing a bidirectional GRU, demonstrates an accuracy of 84.25% on the training set and 

99.75% on the validation set, with respective losses of 0.2696 and 0.0139. Likewise, using a 

bidirectional LSTM, further improvement in performance has been observed with an accuracy 

(95.73%) on the training and 99.81% on the validation with lower loss values. On combining 
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a simple RNN with a DNN, exhibits relatively poor performance. With an 39.29% as training 

accuracy and 33.17% as validation accuracy along with high values of loss i.e. 1.3675 and 

0.9535 respectively, this model fails to capture the underlying patterns in the data. 

RNN+XGBoost, demonstrates competitive training and validation accuracies of 87.20% and 

99.76% respectively. However, the loss values, particularly the training loss of 21.89, suggest 

potential overfitting of RNN+XgBoost.  

In addition to this, the models have been also examined on the basis of their learning curves 

and it has been found that they show a serious cause of underfitting except RNN+DNN which 

shows overfitting (Figure 8). 

  

a) RNN+Bidirectional GRU 

  

b) RNN+Bidirectional LSTM 

  

c) RNN + DNN 
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d) RNN + XgBoost 

Figure 8: Assessing the classifiers on the basis of their validation accuracy and loss 

Table V provides insights into the classification performance of models on the basis of 

precision, recall, and F1-score. 

Table V: Examination of classifiers for different parameters (Room 415) 

Models Precision Recall F1score 

RNN+Bidirectional GRU 0.9974 0.9974 0.9972 

RNN+Bidirectional LSTM 0.9977 0.9980 0.9954 

RNN + DNN 0.9998 0.9998 0.9998 

RNN + XgBoost 0.9996 0.9997 0.9998 

BidirectionalGRU indicate robust performance by demonstrating high precision and recall 

values both at 0.9974 and an F1-score of 0.9972. BidirectionalLSTM, also displays excellent 

precision as 0.9977 and recall as 0.9980, which contribute to an F1-score of 0.9954. 

RNN+DNN, presents highly accurate and reliable classification outcomes by computing 

balanced precision, recall, and F1-score values, all at 0.9998. RNN+XGBoost, demonstrates 

similarly balance performance with precision and recall both at 0.9996 and an F1-score of 

0.9998.  

Furthermore, a confusion matrix of models has been generated to comprehend the true and 

predicted values of each class, in Figure 9. 
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Figure 9: Confusion matrix of models for Data-I 

Table VI presents the execution of models for different classes of smart room datatset in the 

form of "Low," "Average," and "Severe".  

Table VI: Execution of models for different classes of room 415 

Models Class Precision Recall F1score 

RNN+Bidirectional GRU 

Low 0.9996 0.9977 0.9986 

Average 0.9977 0.9947 0.9961 

Severe 0.9951 1.00 0.9975 

RNN+Bidirectional LSTM 

Low 0.9998 0.9985 0.9914 

Average 0.9985 0.9957 0.9970 

Severe 0.9960 1.00 0.9979 

RNN + DNN 
Low 0.9998 0.9997 0.9997 

Average 0.9997 0.9998 0.9997 
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Severe 1.00 1.00 1.00 

RNN+ XgBoost 

Low 0.9998 1.00 0.999 

Average 0.9991 0.9998 0.999 

Severe 1.00 0.9993 0.9996 

RNN + DNN and RNN + XGBoost models achieve almost perfect scores across all metrics 

and highlight their impact to accurately identifying patterns in case of Low class. In the 

"Average" class, albeit of having lower scores than Low class, the performance of all models 

remains strong. Finally, in the "Severe" class, RNN + DNN model achieves perfect scores 

across all metrics, which indicates its ability to handle even the most challenging datasets 

effectively. Similarly, the RNN + XGBoost model demonstrates excellent precision and F1-

score, albeit with a slightly lower recall, suggesting some difficulty in correctly identifying all 

instances within this class. The bidirectional models also perform well by computing good 

scores of these metrics to showcase their capacity in handling such data scenarios. 

Analysis of models for the data-II of Room 776 

Table VII presents the performance metrics for four different models on both the training and 

validation datasets. 

Table VII: Analysis of models (Room 776) 

Models 
Training Validation 

Accuracy Loss Accuracy Loss 

RNN+Bidirectional GRU 75.43 0.3844 99.67 0.0221 

RNN+Bidirectional LSTM 96.62 0.0864 99.56 0.0144 

RNN + DNN 42.92 1.2139 47.61 0.8524 

RNN + XgBoost 95.92 0.0797 99.17 0.0289 

RNN+Bidirectional GRU model performs well on the dataset by obtaining an accuracy of 

75.43% on the training set and a higher accuracy of 99.67% on the validation set with the 

losses of  0.3844 and 0.0221 respectively. Moving to the RNN+Bidirectional LSTM model, it 

achieves higher accuracy on the training set, at 96.62%, but computed lower validation 

accuracy, at 99.56% with the respected associated losses as 0.0864 and 0.0144. Likewise, the 

RNN+XGBoost model also demonstrates strong performance by achieving a training accuracy 

of 95.92% on 0.0797 as training loss and validation accuracy of 99.17% on 0.0289 as 

validation loss. But on the other hand, the RNN+DNN model shows its struggle to learn from 

training data as it shows poor performance by computing only 42.92% as training accuracy 

and 47.61% as validation accuracy with highly notable losses of 1.2139 for training and 0.8524 

for validation.  

Furthermore, the models have been also evaluated based on their learning curves, revealing a 

significant issue of underfitting (Figure 10). 
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a) RNN+Bidirectional GRU 

  

b) RNN+Bidirectional LSTM 

  

c) RNN + DNN 
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d) RNN + XgBoost 

Figure 10: Graphical assessment of classifiers 

In addition to this, Table VIII presents precision, recall, and F1-score metrics for four different 

models: RNN+Bidirectional GRU, RNN+Bidirectional LSTM, RNN+DNN, and 

RNN+XgBoost.  

Table VIII: Examination of classifiers for different parameters (Room 776) 

Models Precision Recall F1score 

RNN+Bidirectional GRU 0.9979 0.9967 0.9973 

RNN+Bidirectional LSTM 0.9956 0.9956 0.9955 

RNN+DNN 0.9989 0.9989 0.9989 

RNN+XgBoost 0.9971 0.9996 0.9983 

RNN+DNN model demonstrates outstanding performance by obtaining the highest precision, 

recall, and F1-score among all models, with values of 0.9989 for each metric followed by 

RNN+BidirectionalGRU model effectively minimizes the false positives and captures the high 

proportion of true positives by achieving the high precision, recall, and F1-score, with values 

of 0.9979, 0.9967, and 0.9973 respectively. RNN+XgBoost model also achieves high 

precision and F1-score, with values of 0.9971 and 0.9983 respectively, while exhibiting the 

highest recall of 0.9996 among all models while as RNN+Bidirectional LSTM model obtains 

the least value of precision, recall, and F1-score values of 0.9956, 0.9956, and 0.9955 

respectively.  

In addition to this, the confusion matrix of the models has been also generated to understand 

the actual as well as predicted value of each class (Figure 11). 



                                   Optimizing Energy Efficiency of Smart Rooms… Jasbir Singh Saini et al. 2810  
  

Nanotechnology Perceptions Vol. 20 No. S15 (2024) 

 
 

  

Figure 11: Confusion matrix of models for Data-II 

Table IX offers the analysis of models across different classes of dataset as "Low," "Average," 

and "Severe," based on precision, recall, and F1-score metrics. 

Table IX: Execution of models for different classes of room 776 

Models Class Precision Recall F1score 

RNN+Bidirectional GRU 

Low 1.00 0.9929 0.9964 

Average 0.9969 0.9973 0.9970 

Severe 0.9973 1.00 0.9986 

RNN+ Bidirectional LSTM 

Low 1.00 0.9932 0.9965 

Average 0.9932 0.9937 0.9934 

Severe 0.9937 1.00 0.9968 

RNN + DNN 
Low 0.9992 0.9976 0.9983 

Average 0.9977 0.9992 0.9984 
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Severe 1.00 1.00 1.00 

RNN + XgBoost 

Low 0.9999 0.9990 0.9994 

Average 0.9914 0.9999 0.9956 

Severe 1.00 1.00 1.00 

In the "Low" class, all models compute high precision scores which indicate a low false 

positive rate except RNN + DNN and RNN + XGBoost models. However, slight variations 

can be seen in recall and F1-score across models, with the RNN + DNN and RNN + XGBoost 

models showing highest recall values as compared to the RNN + Bidirectional models. Moving 

to the "Average" class, a consistent performance is being observed across most models, with 

drifting around 99% range of these metrics and here RNN + DNN model shows its ability to 

effectively capture a high proportion of true positives. However, the RNN + XGBoost depict 

a slightly higher false positive rate because of low precision. In the "Severe" class, 

RNN+XgBoost stand out where as all models demonstrate correctly identifying of instances 

with minimal false positives and negatives. 

Table X presents the overall computational time taken by the models to process the Data I and 

Data II. Despite of their efficiency in handling long term dependencies, RNN+GRU took the 

longest training time of 4 hours followed by RNN+Bidirectional Long Short-Term Memory 

networks which took 3 hours and 45 minutes. RNN+DNN proved to be efficient by having 

training time of 2 hours and 30 minutes along with RNN+XgBoost which completed training 

in 2 hours and 15 minutes. This reduction in time is due to the ability of the models to handle 

the structured data and reduce the overall complexity as well as training duration compared to 

bidirectional architectures. 

Table X: Computational time of models 

Models Time frame 

RNN+Bidirectional GRU 4 hrs 

RNN+Bidirectional LSTM 3 hrs 45 min 

RNN+DNN 2 hr 30 min 

RNN+XgBoost 2 hrs 15 min 

 

4. Conclusion 

The paper emphasizes the role of using advanced machine learning techniques for enhancing 

energy efficiency in indoor environments. Through the development as well as implementation 

of hybrid approaches, Recurrent Neural Networks with Bidirectional LSTM and GRU 

computed high validation accuracies as well as the results also demonstrate the effectiveness 

of the proposed hybrid classifiers in accurately classifying air quality levels based on multiple 

parameters. However, few limitations encountered during our research such as the issue of 

underfitting and the poor performance of RNN+DNN in terms of accuracy and loss which can 

be improved by using optimization techniques in order to generate robust as well as 

generalizable results. Moving forward, there are several avenues for future research which 

includes more advanced AI techniques as well as the optimizers, diversity of dataset, and 
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integration of technologies such as IoT devices and sensor networks to investigate the energy 

efficiency of a room more properly and its cost effectiveness.  
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